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Abstract. Galaxy-galaxy lensing (GGL) measures the 2-point cross-correlation between galax-
ies and mass in the universe. In this work we seek to generalise this effect by considering the
third-order correlations between galaxies and mass: galaxy-galaxy-galaxy lensing. We introduce
the higher-order cross-correlation functions and discuss their physical interpretation in terms of
the halo model. We then demonstrate that measuring the lensing shear of background galaxies
about foreground galaxy pairs, which we term galaxy-galaxy-galaxy lensing, provides a mea-
sure of the third-order cross functions. We note that current surveys in which detections of
the cosmic shear 3-point correlation function have been reported should also be able to detect
galaxy-galaxy-galaxy lensing. Indeed, we suggest that this effect may already have been detected
in recent studies of GGL.

1. Introduction
Galaxy-galaxy lensing (GGL) is the shear distortion of background galaxies by indi-

vidual foreground galaxies. It offers the possibility of allowing us to study the mass en-
vironments of galaxies of particular colour, type or luminosity, their occupation of dark
matter halos and their relationship to the large-scale structure of the universe. Such re-
lations together make up the the so-called “bias” between galaxies and dark matter. The
measurement of GGL was first attempted by Tyson et al. (1984), and its first detection
was reported by Brainerd et al. (1996). Since then a number of GGL measurements have
been reported: in the HST Medium Deep Survey (Griffiths et al. 1996), the Hubble Deep
Field (Dell’Antonio & Tyson 1998; Hudson et al. 1998), and more recently, in the RCS
survey by Hoekstra et al. (2001, 2002), the COMBO-17 survey (Kleinheinrich et al. 2004)
and the Sloan Digital Sky Survey (Fischer et al. 2000; McKay et al. 2001; Guzik & Seljak
2002; Sheldon et al. 2004, Seljak et al. 2004).

The basic observable of GGL is the 2-point (cross) correlation function (2PCF) between
galaxies and dark matter. Such a quantity is easily generalisable to higher-order so that
one may define sequence of n-point cross-correlation functions. In this paper we consider
the meaning of such higher-order statistics and demonstrate how they may be detected
through observations similar to those of standard galaxy-galaxy lensing. We argue that
the next generation of cosmic shear surveys, which will measure the 3-point correlation
function (3PCF) of the cosmic shear field, will also be in an ideal position to measure
the three-point cross-correlation functions. Indeed, we point out that detection of higher-
order cross-correlations may have already been made in existing studies of GGL.

2. Definitions
We begin with some basic definitions in terms of continuous density fields. The over-

density of dark matter (δd) and of galaxies (δg) can be defined at comoving position x
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in the following way:

δd(x) =
nd(x)

n̄d
− 1, δg(x) =

ng(x)
n̄g

− 1 . (2.1)

We mean by nd(x) and ng(x) the number density of dark matter particles or galaxies
respectively such that the chance of finding a galaxy in the volume dV is given by
ng(x)dV , and nd(x)dV gives the probability of finding a dark matter particle. The 2-
point autocorrelation function for the dark matter and galaxies are defined in the usual
way by the ensemble averages

ξδδ(x1) = 〈δ(x)δ(x + x1)〉 , ξgg(x1) = 〈δg(x)δg(x + x1)〉 . (2.2)

We can define the cross-correlation function by

ξδg(x1) = 〈δ(x)δg(x + x1)〉 , (2.3)

These quantities are related to their respective power spectra through the Fourier trans-
form relation

ξab(x) =
∫

d3k

(2π)3
Pab(k)e−ik.x. (2.4)

Note that ξab and Pab are functions of scalar arguments only due to the statistical isotropy
of the universe.

We define the higher-order correlation functions in an equivalent manner so that

ζddd(x1,x2) = 〈δd(x)δd(x + x1)δd(x + x2)〉 and (2.5)

ζggg(x1,x2) = 〈δg(x)δg(x + x1)δg(x + x2)〉 (2.6)
denote the third-order autocorrelations, whereas

ζddg(x1,x2) = 〈δd(x)δd(x + x1)δg(x + x2)〉 and (2.7)

ζggd(x1,x2) = 〈δg(x)δg(x + x1)δd(x + x2)〉 (2.8)
give the two different third-order cross-correlations. The Fourier transforms of these
quantities are the various cross-bispectra, Babc:

ζabc(x1,x2) =
∫

d3k1

(2π)3

∫
d3k2

(2π)3
Babc(k1,k2,−k1 − k2)e−ik1.x1e−ik2.x2 . (2.9)

One could trivially continue these definitions to even higher order. However, in this paper
we restrict our attention to third-order statistics.

3. Interpretation and motivation
In the context of GGL, the physical interpretation of the galaxy-dark matter 2PCF

is relatively simple: on small scales, for isolated foreground galaxies, this function can
be taken to be a direct measure of the mass distribution about individual galaxies. On
larger scales one may instead think of the cross correlation function in terms of the bias
and correlation parameters ξgd = brξdd (Dekel & Lehav 1999). A major application of
GGL, in combination with observations the of cosmic shear correlation functions, is then
to measure these bias and correlation parameters for various samples of galaxies over a
range of scales (Schneider 1998, Hoekstra et al. 2002).

For the third-order quantities defined in the previous section, the physical interpreta-
tion is not clear and it is not so easy to establish precisely the information that these
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functions contain concerning the bias. One could proceed as in the case of the 2-point
statistics and define a new set of third order bias parameters: these quantities would
measure some element of the non-Guassianity of the bias. This approach is discussed in
Schneider & Watts (2004). Alternatively, one may use the Halo Model (Seljak 2000, Ma
& Fry 2000, Peacock & Smith 2000) to probe the information content of the correlation
functions in terms of the Halo Occupation Distribution (HOD; see Berlind & Weinberg
2002).

According to the halo model, on small scales – such as those probed in GGL – the
cross power spectrum is dominated by the 1-halo (1H) contribution. This is written as

P 1H
gd (k) =

∫
dm n(m)

m

ρ̄

〈N |m〉
n̄g

Ũd(k|m)
[
Ũg(k|m)

]p

. (3.1)

where Ũd(k) is the (mass normalised) dark matter halo density profile, n(m) is the mass
function and ρ̄ is the background density [see Cooray & Sheth (2001) for a review]. The
radial distribution of the galaxies with respect to the dark matter is specified by the
profile Ũg(k), while the average number of galaxies in a halo of given mass is given by
the occupation number 〈N |m〉. The parameter p takes the value 1 when 〈N |m〉 > 1, so
that most halos contain at least a single galaxy, but is 0 when 〈N |m〉 < 1.

The occupation number is just the first moment of a probability distribution P (N |m).
This distribution fully specifies the population of galaxies of a particular type in dark
matter halos. Together with the radial galaxy profile it makes up “two thirds” of the
Halo Occupation Distribution (HOD; Berlind & Weinberg 2002) – the remaining “third”
being the velocity distribution of the galaxies with respect to the dark matter, which is
not probed directly by GGL. As pointed out by Berlind & Weinburg (2002) (see also
Berlind et al. 2003), the HOD offers a prescription for bias that is essentially complete.
It’s empirical determination would place strong constraints on theoretical models for
galaxy formation and therefore represents a major goal for cosmology.

Using the halo model one can also write down expressions for the third-order cross-
correlations introduced in the last section. Again limiting the discussion to the nonlinear,
1-halo terms we have

B1H
ggd(k1, k2, k3) =

∫
dm n(m)

m

ρ̄

〈N(N − 1)|m〉
n̄2

g

Ũg(k1|m)
[
Ũg(k2|m)

]p

Ũd(k3|m) (3.2)

and

B1H
ddg(k1, k2, k3) =

∫
dm n(m)

m2

ρ̄2

〈N |m〉
n̄g

Ũd(k1|m)Ũd(k2|m)
[
Ũg(k3|m)

]p

. (3.3)

The motivation for studying these higher-order cross-correlations is clear from equation
(3.2), where 〈N(N − 1)|m〉 is the number of galaxy pairs in a given halo of mass m: the
higher-order functions measure the higher-order moments of the occupation probability
P (N |m) and depend strongly on the radial galaxy profile Ug. We note that from this
perspective Bggd is the more interesting quantity to measure, though we remark that de-
termination of Bggd could also be important since it depends on the same set of physical
parameters as the cross-power spectrum (equation 3.1), though with detailed dependen-
cies that may be complimentary. In the next section we show how a trivial generalisation
of GGL can be used to measure the Bggd cross-bispectrum. Similar arguments can also
be applied to the Bddg function, though we do not consider this in this paper (but see
Schneider & Watts 2004).
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4. Formalism
To detect galaxy-galaxy lensing, one measures the average tangential shear about indi-

vidual foreground galaxies. In this section we compute the average tangential shear about
pairs of foreground galaxies. We will show that this is related to the cross bispectrum
Bggd. In the spirit of GGL, we refer to this cross-correlation of foreground galaxy pairs
with the shear distortion of background galaxies as galaxy-galaxy-galaxy lensing (G3L).

Our calculation is carried out with background metric

ds2 = c2 dt2 − a(t)2[dχ2 + r2(χ)dΩ2 ] (4.1)

where χ is the comoving radial coordinate, r(χ) is the comoving angular diameter dis-
tance, c is the speed of light and a is the cosmological expansion factor.

Consider the probability of finding a galaxy in each of two small volumes δV1 and
δV2 together with a dark matter particle in a third volume δV3. The coordinates of
the δVi are r(χi)θ̂i, where θ̂i denotes an angular position on the sky relative to the
origin of coordinates, which we take to be the midpoint of the galaxy pair. The galaxies
have angular separation ψ. The probability of this configuration is specified by the joint
distribution function

δP (1, 2, 3) = δV1 δV2 δV3 n̄2
g n̄d

[
1 + ξ gg(12) + ξ gd(13) + ξ gd(23) + ζ ggd(123)

]
, (4.2)

where n̄g and n̄d are the number density of galaxies and dark matter particles respectively.
We introduce the notation ξ gg(12) as shorthand for ξ gg(|r(χ1)θ̂1 − r(χ2)θ̂2|) etc. The
joint probability distribution for a galaxy pair is

δP (1, 2) = δV1 δV2 n̄2
g [1 + ξ gg(12)]. (4.3)

Using Bayes’ rule we have that P (3|2, 1) = P (1, 2, 3)/P (1|2)P (2). We can therefore write
the average number density of dark matter particles at coordinate r(χ3)θ̂3, given the
galaxy pair, as

nd[r(χ3) θ̂3 ] =
n̄ d

1 + ξ gg(12)
[
1 + ξ gg(12) + ξ gd(13) + ξ gd(23) + ζ ggd(123)

]
. (4.4)

The projection of equation (4.4) along the radial direction gives the convergence

κ( θ̂ ) =
∫ χ0

0

dχ
g(χ)

a
δ[ r(χ) θ̂ ], (4.5)

where g(χ) is the lensing weight function

g(χ) =
3
2

(
H0

c

)2

Ωm

∫ χ0

χ

dχ′ r(χ) r(χ′ − χ)
r(χ′)

pg(χ′) , (4.6)

with pg(χ′) the radial distribution of background (source) galaxies. If the redshifts of
both foreground galaxies are known, the convergence at angular position θ̂3 on the sky
is

κ( θ̂3 ) = κ13 + κ23 + κ123,

κ13( θ̂3 ) =
∫ χ0

0

dχ3
g(χ3)

a

ξ gd(13)
1 + ξ gg(12)

κ123( θ̂3 ) =
∫ χ0

0

dχ3
g(χ3)

a

ζ ggd(123)
1 + ξ gg(12)

(4.7)

where κ23 is given by a similar relation to κ13.
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The average tangential shear is computed in a circular aperture of radius θ centred on
the midpoint of the galaxy pair. The shear is related to the average convergence within
the aperture by

〈γt〉(θ) = −1
2

d κ̄(θ)
d ln θ

(4.8)

where the average convergence is

κ̄(θ) =
1

πθ2

∫ θ

0

θ′dθ′
∫ 2π

0

dφ κ( θ̂
′
). (4.9)

To compute these integrals of equations (4.7) we rewrite the correlation functions in
terms of their Fourier transforms [equations (2.4) and (2.9]. Following Villumsen (1996),
working under the plane parallel approximation and under the assumption that ψ, θ � 1,
we find that

〈γt〉(θ) = γ13(θ) + γ23(θ) + γ123(θ) (4.10)
where

γ13 =
1

1 + ξ gg(r12ψ)
g(χ1)

a

∫
dk k P gd(k, χ1) J2[kr(χ1)θ] J0[kr(χ1)ψ] and

γ123 =
1

1 + ξ gg(r(χ)ψ)
g(χ)

a

∫
dk1 dk2 k1k2

∫
dβ B ggd(k1, k2, β)

× J2[r(χ)θ f(k1, k2, β)] J0[r(χ)ψ f(k1, k2, β)]. (4.11)

and where J0 and J2 are Bessel functions of the first kind. In the above expressions we
have defined r2

12 = r2(χ1) + r2(χ2) − 2r(χ1)r(χ2)ψ and f2 = k2
1 + k2

2 + 2k1k2 cos β.
Equations (4.10) and (4.11) relate the tangential shear about a pair of foreground

galaxies to the cross bispectrum and power spectrum. The result is a sum of three terms:
two of these, γ13 and γ23, arise from the usual GGL about each of the foreground galaxies
(see Guzik & Seljak 2001). The other, which we denote γ123, is the intrinsic 3-point
correlation. The γ123 term is non-zero only if r(χ1) = r(χ2) = r(χ), i.e both foreground
galaxies lie at the same radial distance.

Measurement of the G3L signal from a galaxy survey should, at least in principle, be
straightforward. A practical estimator can be obtained by first defining bins in (ψ, θ)-
space. Then, for each triplet of two foreground ground galaxies and one background
galaxy falling within a bin, one sums the tangential shears of the background galaxies
measured with respect to the midpoint of the galaxy pair, If only foreground pairs of
galaxies with the same redshift are included in the sum, then subtracting the 2-point
(GGL) contributions will leave the intrinsic 3-point cross correlation, γ123.

5. Conclusions
In this paper we have introduced the higher order cross correlation functions between

dark matter and galaxies. We have explored their physical interpretation in terms of
the halo model and the halo occupation distribution. It was noted that the higher order
cross-correlation functions measure the higher order moments of the occupation proba-
bility P (N |m) and depend strongly on the radial distribution of galaxies in dark matter
halos. By considering the average tangential shear about pairs of foreground galaxies
we have introduced a new observational effect, galaxy-galaxy-galaxy lensing, which is a
measure of the three-point galaxy-galaxy-mass cross-correlation. The G3L effect is com-
plimentary to regular galaxy-galaxy lensing. Firstly it probes the higher order moments
of the occupation probability P (N |M), whereas GGL measures only the mean. Secondly
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the condition that γ123 is nonzero only when the galaxies in pairs lie at smilar redhsifts
implies that the dominant contribution to G3L comes from pairs of galaxies that reside
in the same dark matter halo. G3L therefore explores a different mass regime to GGL
since only those dark matter halos that contain at least two galaxies will contribute (i.e
galaxy groups).

Observationally the G3L signal should not be difficult to detect. Although it is a third-
order effect we note that it is only first order in the shear. It is therefore a more simple
measure than the cosmic shear 3-point (or even 2-point) correlation function (see e.g
Schneider & Lombardi 2003). In principle surveys capable of measuring the cosmic shear
3-point correlation function should also be capable of measuring G3L, though photomet-
ric redshift information on the foreground population would be an advantage in order
to unambiguously identify the intrinsic 3-point contribution. Indeed this signal, or in-
tegral measures of it, has probably been detected already in studies of GGL: McKay
et al. (2002) have demonstrated that their measurement of GGL from the SDSS is
stronger for foreground galaxies that are located in regions of high galaxy density. This
detection provides a correlation between the GGL signal and the number density of
galaxies, which is a signature of G3L.

We finally note that we have presented only one approach to galaxy-galaxy-galaxy
lensing: that of measuring the average tangential shear about foreground galaxy pairs.
An alternative approach is investigated in detail by Schneider & Watts (2004) who define
the three-point cross-correlation functions directly in terms of the shear and the projected
galaxy number density. They then relate these to the third-order aperture mass statistics.
This approach has the main advantage of avoiding the cumbersome integrals of equations
(4.11).
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Jenkins, A., Katz, N. & Lacey, C.G., 2003, ApJ, 593, 1
Brainerd, T.G., Blandford, R.D. & Smail, I., 1996, ApJ, 466, 623
Cooray, A. & Sheth, R.K., 2003. Physics Reports, 372, 1.
Dekel, A. & Lahav, O., 1999, ApJ, 520, 24
Dell’Antonio, I.P. & Tyson, J.A., 1996, ApJ 473, L17
Fischer, P., McKay, T.A., Sheldon, E. et al., 2000, AJ 120, 1198
Griffiths, R.E., Casertano, S., Im, M. & Ratnatunga, K.U., 1996, MNRAS 282, 1159
Guzik, J. & Seljak, U., 2001, MNRAS 321, 439
Guzik, J. & Seljak, U., 2002, MNRAS 335, 311
Hoekstra, H., van Waerbeke, L., Gladders, M.D., Mellier, Y. & Yee, H.K.C., 2002, ApJ 577, 604
Hoekstra, H., Yee, H.K.C. & Gladders, M.D., 2001, ApJ 558, L11
Hudson, M.J., Gwyn, S.D.J., Dahle, H. & Kaiser, N., 1998, ApJ 503, 531
Kleinheinrich, M., Rix, H.-W., Erben, T. et al., 2004, A&A submitted (also astro-ph/0404527)
Ma, C., Fry, J.N., 2000. ApJ, 543, 503.
McKay, T.A., Sheldon, E.S., Racusin, J. et al., 2001, astro-ph/0108013
Peacock, J.A. & Smith, R.E., 2000. MNRAS, 318, 1144.
Seljak, U., 2000., MNRAS, 318, 203.
Seljak, U., Makarov, A., Mandelbaum, R. et al. 2004, astro-ph/0406594
Sheldon, E.S., Johnston, D.E., Frieman, J.A. et al. 2004, AJ 127, 2544
Schneider, P., 1998, ApJ 498, 43
Schneider, P. & Lombardi, M., 2003, A&A, 397, 809
Schneider, P. & Watts, P.I.R., 2004, A&A submitted
Tyson, J.A., Valdes, F., Jarvis, J.F. & Mills Jr., A.P. 1984, ApJ 281, L59
Villumsen, J.V., 1996, MNRAS, 281, 369

https://doi.org/10.1017/S1743921305002048 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921305002048

