ON THE ABSOLUTE NÖRLUND SUMMABILITY OF A FOURIER SERIES (II) ${ }^{1}$

FU CHENG HSIANG

(Received 21 March 1967)

1

Let $\sum_{n=0}^{\infty} a_{n}$ be a given series with its partial sums $\left\{s_{n}\right\}$ and $\left\{p_{n}\right\}$ a sequence of real or complex parameters. Write

$$
P_{n}=p_{0}+p_{1}+p_{2}+\cdots+p_{n} ; p_{-k}=P_{-k}=0 \quad(k \geqq 1)
$$

The transformation given by

$$
t_{n}=\frac{1}{P_{n}} \sum_{\nu=0}^{n} p_{n-\nu} s_{\nu}
$$

defines the Nörlund means of $\left\{s_{n}\right\}$ generated by $\left\{p_{n}\right\}$. The series $\sum a_{n}$ is said to be absolutely summable (N, p_{n}) or summable $\left|N, p_{n}\right|$, if $\left\{t_{n}\right\}$ is of bounded variation, i.e., $\sum\left|t_{n}-t_{n-1}\right|$ converges.

2

Let $f(t)$ be a periodic function with period 2π and integrable in the sense of Lebesgue over $(-\pi, \pi)$. Let

$$
\begin{aligned}
f(t) & \sim \sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right) \\
& \approx \sum_{n=1}^{\infty} A_{n}(t) .
\end{aligned}
$$

We write

$$
\varphi(t)=\frac{1}{2}\{f(x+t)+f(x-t)\} .
$$

In this note, we prove the following theorem concerning the $\left|N, p_{n}\right|$ summability of the Fourier series of $f(t)$ at $t=x$.

Theorem. Let $\left\{p_{n}\right\}$ be a sequence of non-negative and non-increasing real parameters such that $\left\{\Delta p_{n}\right\}$ is monotonic. If (i) $\varphi(t)$ is of bounded variation in $(0, \pi)$ and (ii) $\left\{P_{n} \sum_{\nu=n}^{\infty}\left(\nu p_{\nu}\right)^{-1}\right\}$ is bounded, then the Fourier series of $f(t)$ is summable $\left|N, p_{n}\right|$ at $t=x$.
${ }^{1}$ The first paper appears under the same title in this journal, vol. 7 (1967), 252-256.

The following lemmas are required.
Lemma 1 (McFadden) [1]. For $0 \leqq a<b<\infty, 0 \leqq t \leqq \pi$,

$$
\left|\sum_{\nu=\alpha}^{b} p_{\nu} e^{i(n-p) t}\right| \leqq A P_{\tau}
$$

where $\tau=\left[t^{-1}\right]$.
Lemma 2. If $\left\{p_{\nu}\right\}$ is monotonic increasing and $\left\{\Delta p_{\nu}\right\}$ monotonic, then, for a fixed $n,\left\{\left(P_{n}-P_{v}\right)(n-v)^{-1}\right\}$ is non-increasing and $\left\{\left(p_{\nu}-p_{n}\right)(n-v)^{-1}\right\}$ monotonic in the same direction as $\left\{\Delta p_{\nu}\right\}$.

Proof. If $\left\{p_{v}\right\}$ is monotonic, then the sequence

$$
\sigma_{k}=\frac{p_{1}+p_{2}+\cdots+p_{k}}{k}
$$

is also monotonic in the same direction as $\left\{p_{\nu}\right\}$. Thus, we see that, for a fixed n, if $p_{\nu} \geqq 0, p_{\nu} \geqq p_{\nu+1}$, then

$$
\frac{P_{n}-P_{v}}{n-v}=\frac{p_{v+1}+p_{v+2}+\cdots+p_{n}}{n-v}
$$

is non-increasing for $v<n$ and since $\left\{\Delta p_{\nu}\right\}$ is monotonic,

$$
\frac{p_{\nu}-p_{n}}{n-v}=\frac{\left(p_{v}-p_{v+1}\right)+\left(p_{v+1}-p_{v+2}\right)+\cdots+\left(p_{n-1}-p_{n}\right)}{n-v}
$$

is also monotonic in the same direction as $\left\{p_{\nu}\right\}$. This proves the lemma.
Lemma 3 (McFadden) [1].

$$
\begin{aligned}
I= & \sum_{n=1}^{\infty} \frac{1}{P_{n} P_{n-1}}\left|\sum_{\nu=0}^{n-1}\left(P_{n} p_{\nu}-P_{\nu} p_{n}\right) \frac{\sin (n-v) t}{n-v}\right| \\
\leqq & \sum_{n=1}^{r} \frac{1}{P_{n} P_{n-1}}\left|\sum_{\nu=0}^{n-1}\left(P_{n} p_{\nu}-P_{\nu} p_{n}\right) \frac{\sin (n-v) t}{n-v}\right| \\
& +\sum_{n=\tau+1}^{\infty} \frac{1}{P_{n} P_{n-1}}\left|\sum_{\nu=0}^{k-1}\left(P_{n} p_{\nu}-P_{\nu} p_{n}\right) \frac{\sin (n-v) t}{n-v}\right| \\
& +\sum_{n=\tau+1}^{\infty} \frac{1}{P_{n-1}}\left|\sum_{\nu=k}^{n-1}\left(p_{\nu}-p_{n}\right) \frac{\sin (n-v) t}{n-v}\right| \\
& +\sum_{n=\tau+1}^{\infty} \frac{1}{P_{n} P_{n-1}}\left|\sum_{\nu=k}^{n-1}\left(\frac{P_{n}-P_{\nu}}{n-\nu}\right) \sin (n-v) t\right| \\
= & I_{1}+I_{2}+I_{3}+I_{4},
\end{aligned}
$$

say, where $\tau=\left[t^{-1}\right]$ and $k=[n / 2]$.

We have

$$
\begin{aligned}
t_{n} & =\frac{1}{P_{n}} \sum_{\nu=0}^{n} p_{n-\nu} s_{\nu} \\
& =\frac{1}{P_{n}} \sum_{\nu=0}^{n} P_{\nu} a_{n-\nu} \\
& =a_{0}+\frac{1}{P_{n}} \sum_{\nu=0}^{n-1} P_{\nu} a_{n-\nu},
\end{aligned}
$$

and

$$
\begin{aligned}
t_{n-1} & =\frac{1}{P_{n-1}} \sum_{\nu=0}^{n-1} P_{\nu} a_{n-\nu-1} \\
& =a_{0}+\frac{1}{P_{n-1}} \sum_{\nu=0}^{n-1} P_{\nu-1} a_{n-\nu},
\end{aligned}
$$

thus,

$$
\begin{aligned}
\left|t_{n}-t_{n-1}\right| & =\left|\sum_{\nu=0}^{n-1}\left(\frac{P_{\nu}}{P_{n}}-\frac{P_{\nu-1}}{P_{n-1}}\right) a_{n-\nu}\right| \\
& =\frac{1}{P_{n} P_{n-1}}\left|\sum_{\nu=0}^{n-1}\left(P_{n} p_{\nu}-P_{\nu} p_{n}\right) a_{n-\nu}\right| .
\end{aligned}
$$

Also, for the Fourier series of $f(t)$ at $t=x$,

$$
A_{n}(x)=\frac{1}{\pi} \int_{0}^{\pi} \varphi(t) \cos n t d t
$$

5

In order to establish the theorem, it is enough to prove that, under the conditions of the theorem,

$$
\sum_{n=1}^{\infty}\left|\int_{0}^{\pi} \varphi(t) \Omega(n, t) d t\right| \leqq A,
$$

where

$$
\Omega(n, t)=\frac{1}{P_{n} P_{n-1}} \sum_{\nu=0}^{n-1}\left(P_{n} p_{\nu}-P_{\nu} p_{n}\right) \cos (n-\nu) t,
$$

and here and elsewhere A is an absolute constant not necessarily the same at each occurrence. Noticing that

$$
\int_{0}^{\pi} \varphi(t) \Omega(n, t) d t=-\int_{0}^{\pi}\left\{\int_{0}^{t} \Omega(n, u) d u\right\} d \varphi(t),
$$

and that

$$
\sum_{n=1}^{\infty}\left|\int_{0}^{\pi}\left\{\int_{0}^{t} \Omega(n, u) d u\right\} d \varphi(t)\right| \leqq \int_{0}^{\pi}|d \varphi(t)|\left\{\sum_{n=1}^{\infty}\left|\int_{0}^{t} \Omega(n, u) d u\right|\right\},
$$

by (i), since $\varphi(t)$ is of bounded variation in $(0, \pi)$.

$$
\int_{0}^{\pi}|d \varphi|<\infty,
$$

we establish the theorem if we can show that

$$
\sum_{n=1}^{\infty}\left|\int_{0}^{t} \Omega(n, u) d u\right| \leqq A
$$

uniformly for $0<t<\pi$, or that is the same thing,

$$
\begin{aligned}
I & =\sum_{n=1}^{\infty} \frac{1}{P_{n} P_{n-1}}\left|\sum_{\nu=0}^{n-1}\left(P_{n} p_{\nu}-P_{\nu} P p_{n}\right) \frac{\sin (n-v) t}{n-v}\right| \\
& \leqq A
\end{aligned}
$$

6

We denote $\tau=\left[t^{-1}\right]$ and $k=[n / 2]$ and separate I in McFaddens' way as in Lemma 3. Since $P_{n} / P_{n} \geqq P_{\nu} / p_{\nu}$ for $\nu \leqq n$ and $|\sin (n-v) t /(n-\nu)| \leqq A t$,

$$
\begin{aligned}
I_{1} & =\sum_{n=1}^{\tau} \frac{1}{P_{n} P_{n-1}}\left|\sum_{\nu=0}^{n-1}\left(P_{n} p_{\nu}-P_{\nu} p_{n}\right) \frac{\sin (n-v) t}{n-v}\right| \\
& \leqq A t \sum_{n=1}^{\tau} \frac{1}{P_{n} P_{n-1}} \sum_{\nu=0}^{n-1} P_{n} p_{\nu} \\
& =A t \sum_{n=1}^{\tau} \frac{1}{P_{n-1}} \sum_{\nu=0}^{n-1} p_{\nu} \\
& \leqq A
\end{aligned}
$$

By Abel's transformation and Lemma 1,

$$
\begin{aligned}
I_{2}= & \sum_{n=\tau+1}^{\infty} \frac{1}{P_{n} P_{n-1}}\left|\sum_{\nu=0}^{k-1} \frac{P_{n}-P_{\nu} p_{n} / p_{\nu}}{n-v} p_{\nu} \sin (n-v) t\right| \\
\leqq & A P_{\tau} \sum_{n=\tau+1}^{\infty} \frac{1}{\mathrm{P}_{n} P_{n-1}}\left(\frac{P_{n}-P_{k-1} p_{n} / p_{k-1}}{n-k+1}\right) \\
& +A P_{\tau} \sum_{n=\tau+1}^{\infty} \frac{1}{P_{n} P_{n-1}} \sum_{\nu=0}^{k-2}\left|\Delta_{\nu}\left(\frac{P_{n}-P_{\nu} p_{n} / p_{\nu}}{n-v}\right)\right| \\
\leqq & A P_{\tau} \sum_{n=\tau+1}^{\infty} \frac{1}{P_{n} P_{n-1}} \cdot \frac{P_{n}}{n-k+1}
\end{aligned}
$$

$$
\begin{aligned}
& \quad+A P_{\tau} \sum_{n=\tau+1}^{\infty} \frac{1}{P_{n} P_{n-1}} \sum_{\nu=0}^{k-2} \frac{P_{n}}{(n-v)(n-v-1)} \\
& \quad+A P_{\tau} \sum_{n=\tau+1}^{\infty} \frac{1}{P_{n} P_{n-1}} \sum_{\nu=0}^{k-2} \frac{P_{n}}{n-v}\left(\frac{P_{v+1}}{p_{\nu+1}}-\frac{P_{\nu}}{p_{\nu}}\right) \\
& \leqq \\
& \leqq P_{\tau} \sum_{n=\tau+1}^{\infty} \frac{1}{n P_{n-1}}+A P_{\tau} \sum_{n=\tau+1}^{\infty} \frac{1}{P_{n-1}} \sum_{v=0}^{k-2} \frac{1}{(n-v)(n-v-1)} \\
& \quad+A P_{\tau} \sum_{n=\tau+1}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}} \cdot \frac{1}{n-k+2}\left(\frac{P_{k-1}}{p_{k-1}}-\frac{P_{0}}{p_{0}}\right) \\
& \leqq \\
& \leqq A+A P_{\tau} \sum_{n=\tau+1}^{\infty} \frac{1}{n P_{n-1}} \\
& \leqq \\
& \leqq A+A P_{\tau} \sum_{n=\tau}^{\infty} \frac{1}{n P_{n}} \\
& <
\end{aligned}
$$

by (ii). By Lemma 2, since $\left\{\left(p_{\nu}-p_{n}\right)(n-v)^{-1}\right\}$ is monotonic, Abel's transformation gives

$$
\begin{aligned}
\mid \sum_{\nu=k}^{n-1} & \left.\frac{p_{\nu}-p_{n}}{n-\nu} \sin (n-v) t \right\rvert\, \\
& \leqq \frac{A}{t} \frac{p_{k}-p_{n}}{n-k}+\frac{A}{t}\left(p_{n-1}-p_{n}\right)+\frac{A}{t} \sum_{\nu=k}^{n-2}\left|\Delta_{\nu}\left(\frac{p_{\nu}-p_{n}}{n-v}\right)\right| \\
& \leqq \frac{A}{t} \cdot \frac{p_{k}}{k}+\frac{A}{t}\left(p_{n-1}-p_{n}\right)+\frac{A}{t}\left|\frac{p_{k}-p_{n}}{n-k}-\left(p_{n-1}-p_{n}\right)\right| \\
& \leqq \frac{A}{t} \cdot \frac{p_{k}}{k}+\frac{A}{t}\left(p_{n-1}-p_{n}\right) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
I_{3} & \leqq \frac{A}{t} \sum_{n=\tau+1}^{\infty} \frac{p_{k}}{k P_{n-1}}+\frac{A}{t} \sum_{n=\tau+1}^{\infty} \frac{p_{n-1}-p_{n}}{P_{n-1}} \\
& \leqq \frac{A}{t} \sum_{n=\tau+1}^{\infty} \frac{1}{k(k-1)}+\frac{A}{t} \cdot \frac{p_{\tau}}{P_{\tau}} \\
& \leqq A+A \tau \frac{p_{\tau}}{P_{\tau}} \\
& <A .
\end{aligned}
$$

Moreover, by Lemma 2, since $\left\{\left(P_{n}-P_{\nu}\right\rangle(n-v)^{-1}\right\}$ is non-increasing,

$$
\begin{aligned}
&\left|\sum_{\nu=k}^{n-1} \frac{P_{n}-P_{\nu}}{n-v} \sin (n-v) t\right| \\
& \leqq \frac{A}{t} \sum_{\nu=k}^{n-2}\left|\Delta_{\nu}\left(\frac{P_{n}-P_{\nu}}{n-v}\right)\right|+\frac{A}{t} \cdot \frac{P_{n}-P_{k}}{n-k}+\frac{A}{t} p_{n} \\
& \leqq \frac{A}{t} \cdot \frac{P_{n}-P_{k}}{n-k}+\frac{A}{t} p_{n}+\frac{A}{t} \cdot \frac{P_{n}-P_{k}}{n-k}+\frac{A}{t} p_{n} \\
& \leqq \frac{A P_{n}}{n t}
\end{aligned}
$$

Thus, we obtain

$$
\begin{aligned}
I_{4} & \leqq \frac{A}{t} \sum_{n=\tau+1}^{\infty} \frac{p_{n}}{n P_{n}} \\
& \leqq \frac{A}{t} \sum_{n=\tau+1}^{\infty} \frac{1}{n(n-1)} \\
& <A
\end{aligned}
$$

This completes the proof of the theorem.

Reference

[1] L. McFadden, 'Absolute Nörlund summability', Duke Math. Jour., 9 (1942), 168-207.
National Taiwan University Formosa, China

