
J. Fluid Mech. (2016), vol. 794, pp. 775–797. c© Cambridge University Press 2016
The online version of this article is published within an Open Access environment subject to the
conditions of the Creative Commons Attribution licence <http://creativecommons.org/licenses/by/3.0/>.
doi:10.1017/jfm.2016.180

775

Rossby wave propagation on potential vorticity
fronts with finite width
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The horizontal gradient of potential vorticity (PV) across the tropopause typically
declines with lead time in global numerical weather forecasts and tends towards a
steady value dependent on model resolution. This paper examines how spreading the
tropopause PV contrast over a broader frontal zone affects the propagation of Rossby
waves. The approach taken is to analyse Rossby waves on a PV front of finite width
in a simple single-layer model. The dispersion relation for linear Rossby waves on
a PV front of infinitesimal width is well known; here, an approximate correction is
derived for the case of a finite-width front, valid in the limit that the front is narrow
compared to the zonal wavelength. Broadening the front causes a decrease in both
the jet speed and the ability of waves to propagate upstream. The contribution of
these changes to Rossby wave phase speeds cancel at leading order. At second order
the decrease in jet speed dominates, meaning phase speeds are slower on broader
PV fronts. This asymptotic phase speed result is shown to hold for a wide class of
single-layer dynamics with a varying range of PV inversion operators. The phase
speed dependence on frontal width is verified by numerical simulations and also
shown to be robust at finite wave amplitude, and estimates are made for the error in
Rossby wave propagation speeds due to the PV gradient error present in numerical
weather forecast models.
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1. Introduction

Large-scale Rossby waves are ubiquitous features of the extratropical atmosphere.
They typically reside on, and propagate along, the region of large isentropic potential
vorticity (PV) gradient at the tropopause. The region of large PV gradient is narrow, in
the sense that its width is much smaller than the typical wavelengths of Rossby waves,
and as such the jet stream itself meanders latitudinally. A simple model for this PV
front is obtained in the limit of a single PV step separating two regions of uniform PV,
representing the tropopause as a discontinuity between high PV stratospheric air on
the poleward side and low PV tropospheric air on the equatorward side (e.g. Verkley
1994; Swanson, Kushner & Held 1997). The dynamics then reduce to an evolution
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equation for the lateral displacement of this PV step which can be solved via contour
dynamics techniques (Zabusky, Hughes & Roberts 1979; Pullin 1992).

In reality, however, the width of the region of strong isentropic gradient of PV at
the tropopause is finite. Furthermore, the isentropic gradient of PV at the tropopause is
found to be systematically too smooth in current global numerical weather prediction
(NWP) models, with the gradient typically exhibiting a reduction of approximately
20 % from its initial value over the first three days of a forecast (Gray et al. 2014).
It is therefore important to understand how the behaviour of Rossby waves on a PV
front with small but finite width differs to those on an infinitely sharp PV front. Such
differences may arise as a modification of the propagation speeds of linear Rossby
waves, and also via nonlinear processes such as filamentation and wave breaking
which may alter the amplitude of large-scale meanders (see, e.g., Scott et al. 2004).

The focus of this paper is the modification of the dispersion relation for Rossby
waves on a PV front of infinitesimal width (henceforth a sharp PV front) resulting
from a smoothing of the PV front. Smoothing the front fundamentally modifies
the problem: in the sharp PV front case there exists only a single normal mode,
representing north–south meanders of the front, whereas in the smooth case there is
an additional continuum of modes representing sheared disturbances within the PV
gradient zone. An additional complication may also arise if critical lines are present
on the jet flanks: in the sharp PV front problem the PV gradient is nearly everywhere
zero so any critical lines are passive. If the smoothing modifies the basic state PV
gradient at the critical line then the linear theory will cease to remain valid. This
problem is avoided here by assuming the smoothed basic state PV gradient is at least
exponentially small in the smoothing width away from the PV front.

To explore how the phase speed of waves might be modified on a smooth front,
consider the following general form of the dispersion relation of a zonally propagating
wave:

c(k)=Uadv − cint(k), (1.1)

where c(k) is the zonal phase speed of a wave of zonal wavelength k, Uadv represents
advection by the basic state jet and cint(k) represents the self-induced, or intrinsic,
phase speed of the wave. A westerly extratropical jet is considered for which Uadv and
cint(k) are both positive. Both Uadv and cint(k) depend on the basic state PV profile,
and might both be expected to reduce as a sharp PV front is smoothed. The key
questions addressed here are: what is the sign of the change in phase speed c resulting
from a smoothing, and how does it depend on frontal width? Is a frontal smoothing
error of the magnitude present in NWP models expected to have a measurable impact
on the propagation of Rossby waves in NWP forecasts?

The propagation of waves on a finite-thickness tropopause has been studied
previously using several different approaches. Plougonven & Vanneste (2010) analyse
the dynamics of linear waves on a vertical discontinuity in static stability (see Rivest,
Davis & Farrell 1992) in which the meridional PV gradient is independent of latitude.
This represents a broad baroclinic zone with no meridional jet structure. Smoothing
this basic state results in a continuous transition from low to high stratification across
the tropopause, and the study shows that this acts to increase the Rossby wave phase
speeds. In the notation of (1.1) the smoother vertical PV profile reduces the ability
of waves to propagate upstream (cint) without directly modifying advection by the jet
(Uadv).

In contrast, the study of Juckes (1998a,b) explores the growth rates of baroclinic
disturbances in a set-up similar to the Eady model: a uniform static stability, uniform
PV atmosphere is considered, bounded by rigid horizontal boundaries at the ground
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Finite-width potential vorticity fronts 777

and tropopause. Unlike the Eady model, the meridional temperature gradient at the
boundaries is confined into a meridionally narrow baroclinic zone, representing the
tropopause and temperature gradient at the ground. The associated jet stream is
localised in latitude. In this case, smoothing the basic state acts to reduce the jet
maximum but it is shown that the growth rates of the baroclinically growing normal
modes are relatively insensitive to the smoothing. Implicit in his equations (e.g. (43a)
in Juckes (1998a)) it can be seen that the smoothing also acts to reduce the phase
speeds of the edge waves. This is a result of the smoothing reducing both Uadv and
cint(k) in (1.1), with the reduction in Uadv dominating.

There is clearly a question of which set-up is more appropriate: the broad baroclinic
zone of Plougonven & Vanneste (2010) or the narrow baroclinic zone of Juckes
(1998a,b)? The present paper follows the approach of Juckes by analysing a model
with a narrow PV gradient zone, and an associated jet stream that is localised in
latitude. The set-up is simplified as much as possible by considering a single-layer
model and focusing attention solely on the propagation of Rossby waves. In addition,
since the most appropriate 2-D representation of the full 3-D atmosphere is not known
precisely, a number of different 2-D simplified models are often used. The robustness
of the asymptotic result for phase speed modification is explored by considering a
general family of single-layer PV inversion operators and smoothing kernels.

The analysis begins with a single-layer model with a step function basic state PV
profile (described in § 2). A smooth PV front is then generated with finite width
r0 via convolution with a smoothing kernel. The approximate dispersion relation for
waves propagating on this smooth basic state, valid for kr0 � 1, is derived in § 3.
The analysis assumes small wave slope, such that kη � 1 where η represents the
size of lateral displacements. Initially the simplest relevant fluid dynamical model is
considered, the quasi-geostrophic shallow water (QGSW) equations. In § 4 the results
are generalised to a class of similar models with only modest constraints on the PV
inversion operator. Implications for errors in operational NWP models are discussed
in § 5.1 and some finite-amplitude numerical simulations are presented in § 5.2 to test
the robustness of the results at finite wave amplitude (where kη0 ∼ 1 but kr0 � 1).
Section 6 presents the key conclusions.

2. Linear waves on a sharp potential vorticity front
The QGSW model (see, e.g., Vallis 2006) represents the large-scale dynamics

of a single-layer fluid at small Rossby number. It is commonly used as a model
of large-scale atmospheric motions as it incorporates the effects of both rotation
and stratification in a simple fashion. The quasi-geostrophic PV, q, is related to the
geostrophic streamfunction ψ via

q= f +∇2ψ − ψ

L2
R
, (2.1)

where f is the Coriolis parameter, assumed constant, and the Rossby radius of
deformation is given by LR = √gH/f where g is the acceleration due to gravity
and H the average layer depth. The horizontal wind is related to the streamfunction
via (u, v) = (−ψy, ψx) where x = (x, y) are the zonal and meridional coordinates
respectively. The dynamics is governed by the Lagrangian conservation of PV
following the geostrophic flow:

Dq
Dt
= 0. (2.2)
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FIGURE 1. Example basic state PV profiles (a) and zonal wind profiles (b) for the single
sharp front of (2.3) and (2.4) (dashed lines), the double sharp front of (2.15) (dotted lines),
and the smooth front of (3.3) and (3.4) with the Gaussian smoothing kernel (3.33) (solid
lines). PV values are scaled by ∆ and wind values are scaled by 1LR/2. The double sharp
front and the smooth front are shown with width r0 = 0.4LR.

The QGSW dispersion relation for linear Rossby waves on a sharp PV front is
well known (e.g. Swanson et al. 1997; Esler 2004; Zhu & Nakamura 2010). Here
a brief derivation is provided which highlights, for later reference, the presence of
a continuous spectrum of passive singular modes in addition to the familiar discrete
meandering mode. Whilst passive for a sharp PV front, the continuous spectrum is
important for the finite-width front examined below. The extension to the case of
multiple sharp PV steps is then summarised in § 2.1.

The basic state is given by a step function in PV located at y= 0:

Q(y)= f + ∆
2

sgn(y), (2.3)

where ∆ is the magnitude of the PV jump across the front. The corresponding zonal
wind profile is obtained by solving (2.1) for q=Q(y) to obtain

u=U(y)= 1LR

2
e−|y|/LR . (2.4)

The profiles of Q(y) and U(y) are illustrated by the dashed lines in figure 1(a,b),
respectively.

Considering a perturbation to the basic state, equation (2.2) implies that the PV
front is a material contour. Away from the front the PV gradient vanishes, however
for generality consider a continuum of passive tracer contours which are advected by
the flow but have zero PV contrast: for each y= ỹ of the basic state write the position
of the perturbed contour as y= ỹ+ η(x, ỹ, t), where y= η(x, 0, t) is the PV contour.
Material advection of these contours implies the kinematic relation(

∂

∂t
+ u

∂

∂x

)
η(x, y, t)= v, (2.5)

where u and v are evaluated at (x, y+ η(x, y, t), t). The dispersion relation is obtained
by linearising (2.5) around the basic state (2.3) and (2.4). This is achieved by writing
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Finite-width potential vorticity fronts 779

q= Q+ q′, u= U + u′ and v = v′ and neglecting terms that are nonlinear in primed
quantities, and evaluating all terms at (x, y, t). In addition, the PV inversion can be
calculated by approximating q′ as a line distribution along y= 0:

q′ ≈−η1δ(y). (2.6)

For a normal mode disturbance of the form η(x, y, t) = η̂(y)eik(x−ct), with the small-
amplitude condition requiring |kη̂| � 1, the streamfunction induced by (2.6) is:

ψ ′ = φ(y; k)η̂(0)eik(x−ct), (2.7)

where
φ(y; k)= 1LR

2κ
e−κ|y|/LR (2.8)

represents the meridional structure of the perturbation streamfunction for a wavenumber
k disturbance and the effective wavenumber is given by κ2=1+ k2L2

R. In the following,
the argument k of φ is omitted when the meaning is clear.

After linearisation, (2.5) becomes

(U(y)− c) η̂(y)= φ(y)η̂(0). (2.9)

This equation admits two types of the solution, a discrete mode representing
meridional meanders of the PV contour:

η̂(y)= η̂(0) φ(y)
U(y)− c

with c=U(0)− φ(0)= 1LR

2

(
1− 1

κ

)
, (2.10)

and a continuous spectrum of singular modes:

η̂(y)∝ δ(y− y0) with c=U(y0) for any y0 6= 0. (2.11)

The discrete mode (2.10) propagates zonally with speed equal to the sum of
advection by the maximum of the basic state jet and an upstream propagation of the
Rossby wave proportional to 1/κ . The corresponding group speed:

cg ≡ ∂

∂k
(kc)= 1LR

2

(
1− 1

κ3

)
, (2.12)

is also slower than the jet maximum for all wavenumbers. The structure of the discrete
mode (2.10) is singular where U(y)= c, that is at

|y| = yc = LR log
(

κ

κ − 1

)
, (2.13)

identified with a critical line on each flank of the jet. However, these critical lines are
passive since the PV gradient vanishes at all y 6= 0 so no PV mixing occurs. Similarly,
the continuous spectrum of singular modes (2.11) represent meridional displacements
of the passive tracer contours which are localised away from the PV front and as
such do not induce any flow. Each mode is localised to a particular value of y and
is simply advected by the basic state wind there. Clearly neither the critical lines nor
the continuous spectrum play a dynamical role in the sharp PV front problem.
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The dispersion relation (2.10) for the discrete mode is qualitatively similar to that
of Rossby waves on a uniform PV gradient. For instance, the dispersion relation of
linear waves with zero latitudinal wavenumber on a uniform wind basic state given
by Q= f + β̂y and U = β̂L2

R, is

c= β̂L2
R

(
1− 1

κ2

)
. (2.14)

(Vallis 2006) so such waves are advected by the basic state jet and propagate upstream
with speed proportional to 1/κ2. Therefore, short waves on a uniform PV gradient
are less able to propagate upstream than their PV front counterparts. Furthermore, the
group speed corresponding to (2.14) is easily derived and shown to have a maximum
at a finite wavenumber (κ = 4 in this case) which is faster than the basic state jet
speed. It is shown below that these two properties of waves on a uniform PV gradient
are recovered when the single sharp PV front is smoothed.

2.1. Potential vorticity fronts composed of multiple sharp PV steps
The procedure for analysing perturbations to a single sharp PV front can be extended
to a front composed of multiple parallel PV steps. Instead of the single equation (2.9)
for the evolution of a single PV front, one obtains a system of n coupled equations
for the evolution of n PV steps. This set-up could be used to study the smooth
PV front problem by approximating it as a large number of weak PV steps. In the
following section the smooth PV front problem is instead considered directly, however
the simplest multiple-step case of n= 2 is illustrated here since it provides valuable
insight into the general problem.

The two steps are taken to be of equal magnitude and spaced a distance 2r0 apart:

Qd(y)= 1
2(Q(y− r0)+Q(y+ r0)), (2.15)

where Q(y) is the single front basic state PV profile of (2.3) and the subscript d
denotes the double front case. By linearity, the corresponding zonal jet profile Ud(y)
is likewise equal to the sum of two single front jet profiles and is illustrated in
figure 1(b). Due to symmetry, there are now two equal jet maxima located at the
locations of the PV fronts, with weaker values in the jet core. Repeating the above
analysis for this system one finds two normal mode solutions with phase speeds:

c± = 1
2(U(0)+U(2r0)− (φ(0)± φ(2r0))), (2.16)

which represent a meander of the jet (c+) in which the two contours move in phase
with each other, and a varicose (or jet streak) mode (c−) in which the two contours
move in anti-phase. Expanding (2.16) for ε = kr0� 1 gives:

c+ = 1LR

2

((
1− 1

κ

)
− ε2

κ + 1

)
+O(ε3), (2.17)

c− = 1LR

2

(
1− 2ε√

κ2 − 1

)
+O(ε3), (2.18)

which shows that c+ reduces to the normal mode solution (2.10) of the single sharp
front problem in the limit ε → 0, whereas c− collapses onto the jet core speed.
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Finite-width potential vorticity fronts 781

Increasing the frontal separation reduces the phase speeds of both modes, but the
impact on the meandering mode is quadratic in ε due to a leading-order compensation
between a reduction in advection by the basic state jet and the ability of the waves
to propagate upstream (see (1.1)). The phase speed of the varicose mode, in contrast,
reduces linearly with ε from the jet maximum suggesting that jet streaks are more
sensitive to r0 than the meandering mode. In the next section it is shown that both
of these results carry over to the continuous PV gradient case.

3. Linear waves on a potential vorticity front of finite width
In this section an approximate correction to the dispersion relation (2.10) for a

smooth PV front with finite width r0 is derived. The approximation is in terms of
the parameter

ε = kr0 (3.1)

and is valid in the limit ε � 1, that is, for smoothing width much smaller than the
zonal wavelength. It is also required that r0� LR.

To generate a smooth basic state, the single sharp front of (2.3) is convolved with a
smoothing kernel w(y; r0) of width r0. Such a function should be everywhere positive,
so that the PV gradient remains single signed. It should also have a domain integral
equal to unity, and scale with r0 in the sense that

w(y; r0)=W(Y)/r0 (3.2)

for some function W(Y), where Y = y/r0. Finally, it is assumed that w(y; r0) decays
exponentially at |y|� r0. The argument r0 of w is omitted when the meaning is clear.

By linearity of the PV inversion operator, the basic state PV and jet are given by:

Qs(y)=
∫

Q(y′)w(y− y′) dy′, (3.3)

Us(y)=
∫

U(y′)w(y− y′) dy′, (3.4)

where Q(y) and U(y) are the single front PV and zonal jet profiles of (2.3) and (2.4)
and the subscript s denotes the smooth front case. All integrals shown span the range
(−∞,∞). Since Q(y) is a step function, the smoothing kernel is proportional to the
PV gradient of the smooth basic state:

dQs

dy
=1w(y). (3.5)

Therefore the requirement that w(y) decays exponentially at |y| � r0 ensures the PV
gradient is small away from the front. Example profiles of Qs(y) and Us(y) for the
Gaussian smoothing kernel of (3.33) are illustrated by the solid lines in figure 1(a,b),
respectively.

As for the sharp PV front, the dispersion relation is derived by adding meridional
displacements to the basic state PV contours: for each basic state contour position
y= ỹ, the position of the corresponding perturbed contour is written y= ỹ+ η(x, ỹ, t).
Writing η(x, y, t)= η̂(y)eik(x−ct) and linearising the contour advection equation (2.5) for
each ỹ gives the following condition for linear waves

(Us(y)− c) η̂(y)=
∫
φ(y− y′)η̂(y′)w(y′) dy′, (3.6)
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where the right-hand side is a Green’s function expression for the meridional wind.
The function φ(y), defined in (2.8), is the meridional streamfunction structure of a
wavenumber k disturbance in the sharp PV front problem.

Equation (3.6) describes the evolution of linear perturbations to the finite-width PV
front, analogous to (2.9) for the sharp PV front case. The smoothing results in two
modifications to the equation: the advection is by the smooth jet profile Us(y), and
the perturbation streamfunction is given by a convolution over all of the PV contours
where the basic state PV gradient w(y) is non-zero. Equation (3.6) is an eigenvalue
problem for the meridional structure of the modes η̂(y) with corresponding eigenvalues
c. Multiplying by w(y) and integrating gives an expression for the eigenvalues in terms
of η̂(y):

c=

∫
(Us(y)− φs(y))η̂(y)w(y) dy∫

η̂(y)w(y) dy
, (3.7)

where, analogous to the definition (3.4) of Us(y),

φs(y)=
∫
φ(y− y′)w(y′) dy′. (3.8)

In the remainder of this section it is shown that, as in the sharp PV front problem,
equation (3.6) admits two types of solution: a single discrete mode representing
large-scale meanders of the PV front and a continuous spectrum of singular modes
which represent sheared disturbances within the frontal zone. Continuous spectra are
a common feature of shear flows in unbounded domains, as identified by Orr (1907),
in which often the set of discrete normal modes is incomplete in the sense that it is
insufficient to describe arbitrary initial conditions. In the following, the structure and
phase speed of the discrete mode are shown to be modified by the smoothing, and
their leading-order corrections are derived. The continuous spectrum is shown to be
dynamically active, unlike for the sharp PV front case, and details of its structure are
discussed.

3.1. Asymptotic analysis
Equations (3.6) and (3.7) show that the global structure of the modes η̂(y) and the
phase speeds c are both determined solely by the values of η̂(y) in the region where
the PV gradient is non-zero, that is where y=O(r0). As such, an asymptotic analysis
of (3.6) is performed in this ‘inner region’, utilising the stretched variable

Y = y/r0. (3.9)

Each term in (3.6) is now expanded in terms of ε for Y =O(1), allowing coefficients
of like powers to be equated.

First, the Taylor expansion of U(y) is written, for Y =O(1), as

U(r0Y)=U(0)+ r0|Y|U′(0)+ r2
0

2
Y2U′′(0)+O(r3

0), (3.10)

where it is understood that the derivatives are evaluated at 0+. Upon substitution
into (3.4) the expansion of the smooth basic state jet is found to be

Us(r0Y)=U(0)+ εf (1)(Y)U′(0)+ ε
2

2
f (2)(Y)U′′(0)+O(ε3), (3.11)
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where the following functions have been defined:

f (n)(Y)= Ln
R

(κ2 − 1)n/2

∫
|Y − Y ′|nW(Y ′) dY ′ (3.12)

and the identity r0 = εLR/
√
κ2 − 1 has been used.

Similarly, the right-hand side of (3.6) can be expanded in terms of φ(0) and its
derivatives, as presented in appendix A. Substitution of (3.11) and (A 2) into (3.6)
allows a solution to be sought for the inner region as a series expansion in ε:

η̂(y)= η̂0(y)+ εη̂1(y)+ ε2η̂2(y)+ · · · , (3.13)

c= c0 + εc1 + ε2c2 · · · . (3.14)

Collecting together the O(1) terms of (3.6) gives the following condition relating η̂0

and c0:

(U(0)− c0)η̂0(y)= φ(0)
∫
η̂0(y′)w(y′) dy′. (3.15)

There are two types of solution to (3.15). The first is the single solution

η̂0(y)= constant, (3.16)

c0 =U(0)− φ(0), (3.17)

and the other is any function satisfying∫
η̂0(y)w(y) dy= 0, (3.18)

c0 =U(0). (3.19)

These two types of solution relate respectively to the discrete mode and the continuous
spectrum of singular modes from the sharp PV front problem. More specifically, it
is only that part of the continuous spectrum which is associated with non-zero PV
perturbations and as such solutions to (3.18) and (3.19) are the smooth front extension
of the varicose mode from the two-step front problem of § 2.1. The leading-order
corrections to each of these solutions are now considered by examining the O(ε) and
O(ε2) terms of (3.6) in turn, the equations for which are derived in appendix A.

3.2. The discrete mode
To find the leading-order correction to the normal mode structure and phase speed,
the O(1) solution (3.16) and (3.17) is substituted into the O(ε) terms of (3.6),
equation (A 5). The result is

c1η̂0 = φ(0)
(
η̂1(y)−

∫
η̂1(y′)w(y′) dy′

)
, (3.20)

where the identity U′(0)= φ′(0) has been used. This identity can be seen to hold for
the QGSW system from (2.4) and (2.8); it is shown below to also hold for a general
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PV inversion operator. Multiplying by w(y) and integrating shows that c1 must vanish,
so the only solution is

η̂1(y)= constant, (3.21)

c1 = 0. (3.22)

Therefore there is no O(ε) correction to the phase speed and an O(ε2) correction must
be sought. There is likewise no O(ε) correction to the structure of the solution in the
inner region since the constant η̂1 can be absorbed into η̂0.

Next consider the O(ε2) terms of (3.6), equation (A 6). Upon substituting for η̂0, η̂1,
c0 and c1, this reduces to the relation(

c2 − U′′(0)− φ′′(0)
2

f (2)(Y)
)
η̂0 = φ(0)

(
η̂2(y)−

∫
η̂2(y′)w(y′) dy′

)
, (3.23)

which, again by first multiplying by w(y) and integrating to find c2, can be seen to
have the solution

η̂2(y)=−U′′(0)− φ′′(0)
2φ(0)

(
f (2)(Y)−

∫
f (2)(Y ′)W(Y ′) dY ′

)
η̂0, (3.24)

c2 = U′′(0)− φ′′(0)
2

∫
f (2)(Y ′)W(Y ′) dY ′, (3.25)

where U′′(0) − φ′′(0) =∆(1 − κ)/2LR < 0. Therefore there is an O(ε2) correction to
both the phase speed and the structure of the normal mode in the inner region.

Returning to the full expression for η̂ of (3.6), an approximate solution can now be
found for all y by substituting the O(ε2) expression for η̂(y) in the inner region into
the right-hand side of (3.6) to find

η̂(y)= η̂0
φs(y)

Us(y)− c
+O(ε3). (3.26)

Similarly, a convenient form of the phase speed can be recovered from (3.7)

c= cm ≡
∫
(Us(y)− φs(y))w(y) dy+O(ε4). (3.27)

Note that the error here is O(ε4), as shown in appendix B, which is a remarkable
result. The quadratic correction of the normal mode structure in the inner region has
yielded a cubic correction to the phase speed. It can be shown that cm = c0 + ε2c2 +
O(ε3), so (3.7) is equivalent to the series expansion derived above but with an extra
order of accuracy. In addition, the form of (3.27) is particularly attractive since it
retains explicitly a term associated with advection by the basic state, which is given
by the jet profile weighted by the PV gradient, and a term associated with upstream
propagation. Both of these terms reduce linearly with ε for small ε, but their sum
reduces quadratically.

As with the sharp front solution (2.10) there is a critical line on each flank of the
jet, located at |y| = yc with Us(yc)= c, associated with singularities in the structure of
the discrete normal mode (3.26). It can be shown that the smoothing does not move
the critical line far from the sharp PV case: the correction to yc from (2.13) is only
O(ε2). Unlike the sharp front problem, the critical line may potentially play an active
role in the evolution since the PV gradient does not necessarily vanish at |y| = yc.
However, since the PV gradient w(y) is assumed to decay exponentially at large |y|/r0,
any mixing of PV at the critical line will not influence the leading-order correction of
the wave structure or its phase speed provided yc� r0, which is the case for ε� 1.
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3.2.1. Properties of cm

A key property of the approximate phase speed cm of the discrete normal mode is
that it reduces quadratically for small ε. Here it is shown that in addition cm decreases
monotonically for all ε. The expression is then evaluated explicitly for a Gaussian
smoothing kernel.

First it is noted that cm can be written directly in terms of the sharp front functions

cm =
∫
(U(y)− φ(y)) x(y) dy, (3.28)

where x(y) is the self-convolution of the smoothing kernel:

x(y)=
∫

w(y− y′)w(y′) dy′. (3.29)

Substituting for U(y) and φ(y) and differentiating with respect to r0 gives

cm = 1LR

2

∫ (
e−r0|Y|/LR − e−κr0|Y|/LR

κ

)
X(Y) dY, (3.30)

where, analogous to the definition (3.2) of W(Y), X(Y)= r0x(y/r0). Therefore,

dcm

dr0
=−∆

2

∫
|Y| (e−r0|Y|/LR − e−κr0|Y|/LR

)
X(Y) dY 6 0, (3.31)

with the inequality a result of the fact that κ>1, implying that the term in parentheses
is non-negative for all Y and r0. Therefore cm always reduces if the width of
smoothing is increased, indicating that the influence of smoothing on the advection
term dominates the influence of smoothing on the self-propagation term.

In the limit of large ε, it is of note that cm has the same form as the dispersion
relation (2.14) for Rossby waves on a uniform PV gradient. For large ε, expanding
X(Y) as a Taylor series around Y = 0 in (3.30) and integrating gives

cm = 1X(0)
r0

L2
R

(
1− 1

κ2

)
+O(ε−3), (3.32)

which is equivalent to (2.14) in the limit ε →∞, with corresponding PV gradient
given by β̂ =1X(0)/r0.

Finally, it is noted that for the Gaussian kernel function,

w(y; r0)= e−y2/2r2
0√

2πr0
, i.e., W(Y)= e−Y2/2

√
2π

, (3.33a,b)

the jet maximum takes the value

Us(0)= 1LR

2
E
(

r0√
2LR

)
, (3.34)

where the function E(x) = ex2
(1 − erf(x)) is the scaled complementary error

function, equation (3.29) evaluates as x(y) = w(y/
√

2)/
√

8 and the approximate
phase speed (3.30) can be evaluated as

cm = 1LR

2

(
E
(

r0

LR

)
− 1
κ

E
(
κr0

LR

))
. (3.35)
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FIGURE 2. The smooth front dispersion relation (3.27) evaluated for the Gaussian
smoothing kernel (3.35). Both panels show phase speeds (solid), group speeds (dashed)
and the basic state jet maxima (dotted). (a) Speeds as a function of r0 for fixed
wavenumber kLR = 1 together with the quadratic approximation (3.25) (grey line).
(b) Speeds as a function of k for fixed smoothing width r0 = 0.4LR. Both panels also
show the results of finite-amplitude numerical simulations (kη0 = 0.1, grey symbols) as
described in § 5.2. All values are scaled by U0 ≡1LR/2.

Figure 2 shows values of (3.35) and the corresponding group speeds for a range of
r0 with fixed k (a), and a range of k with fixed r0 (b). Figure 2(a) shows that both
quantities decrease with the smoothing width r0 and that their gradients tend to zero
at small r0; figure 2(b) shows that the group speed has a maximum at intermediate
k which is faster than the advecting velocity, qualitatively similar to the dispersion
relation (2.14) for Rossby waves on a uniform PV gradient.

3.3. The continuous spectrum of singular modes
Similar to above, the structure of the singular modes are examined further by
substituting what is known of the O(1) solution (3.18) and (3.19) into the O(ε)
truncation of (3.6), equation (A 5), giving(

U′(0)f (1)(Y)− c1
)
η̂0 = φ′(0)g(1)(Y; η̂0)+ φ(0)

∫
η̂1(y′)w(y′) dy′, (3.36)

where the function g(1)(Y; η̂0) is defined in (A 3). Multiplying by w(y) and integrating
shows that the final term

∫
η̂(y)w(y) dy must vanish (using U′(0) = φ′(0) again),

resulting in extra information about η̂0(y): as well as satisfying (3.18) it must satisfy
the new integral eigenvalue equation given by (3.36) with the final term removed.
Therefore for the singular modes the O(1) solution is only determined by considering
the O(ε) terms.

Assuming no further discrete modes exist satisfying these criteria, it can be
anticipated that the leading-order singular mode solution should satisfy (3.36), and
its phase speed will take the form c = c0 + εc1 with c1 = U′(0)f 1(Y; 1) for some Y .
That is, their phase speeds reduce linearly with ε. More generally, from the form
of (3.6) it can be expected that singular modes exist with any phase speed in the
range c ∈ [0, Us(0)]. However, those that live outside of the inner region examined
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here, that is those with c = Us(y0) with w(y0) small, will be passive, like the entire
continuous spectrum of the sharp PV front problem. Those inside the inner region
behave as described above: as ε→ 0 the phase speeds of these modes collapse onto
the jet core speed of the sharp front problem.

Combining this result with the previous section, it can be expected that a general
initial condition can be projected onto a linear combination of the discrete normal
mode and the continuous spectrum of singular modes. The evolution is then
determined by each mode propagating independently at its phase speed. Typically in
sheared flow problems, the energy contained in singular modes decays with time as
they are sheared out (Orr 1907; Farrell 1982; De Vries et al. 2009), although transient
growth can occur via the Orr mechanism. Therefore at long times the solution will
reduce to the projection of the initial condition onto the discrete normal mode. For
a linear shear flow the long-time decay of energy in the continuous spectrum scales
like t−2 (Orr 1907), however in the present case the shear is not linear (there is a
stationary point at the jet core for any smooth w(y)), and it is expected that the decay
will be slower than t−2, although no attempt is made to quantify this here.

4. Generalisation to alternative Green’s functions
The previous sections used the QGSW model. In this section it is shown that the

expression (3.27) for Rossby wave phase speeds on a smooth PV front is valid for a
wide range of inversion operators, and the key property of a quadratic dependence of
the phase speed on ε requires only a modest condition on the Green’s function.

The general set-up of a 2-D fluid model resulting from an advected PV field with a
linear inversion operator is considered, and the Green’s function for the PV inversion
operator, denoted G(x), is assumed to (i) be differentiable except for a possible
singularity at x = 0, and (ii) not grow as fast as x at large x. The expression (2.4)
for the jet induced by a single sharp PV front formally generalises to the contour
integral formula (Pullin 1992)

U(y)=−∆
∫

G
(√

x2 + y2
)

dx. (4.1)

However, this integral fails to converge if G(x) does not decay sufficiently fast at large
x. To ensure convergence for all relevant G, the integral is instead written

U(y)=−∆
∫ (

G
(√

x2 + y2
)
−G

(√
x2 + y2

0

))
dx, (4.2)

where y0 is arbitrary and the second term in the integrand is effectively a constant
of integration such that U(y0)= 0. The integral may fail to converge at small x only
when y= 0 if the singularity in G is not integrable, in the sense that the 1-D integral∫ a

0 G(x) dx is finite for any a. In that case the basic state jet has a singularity at the
location of the PV front, as is the case for example in surface QG dynamics (Juckes
1995; Harvey & Ambaum 2010), but is finite at all other y. Similar to (4.2), the
expression (2.8) for the meridional structure of the streamfunction perturbation in the
single sharp PV front case generalises to

φ(y)=−∆
∫ (

G
(√

x2 + y2
)
−G

(√
x2 + y2

0

))
cos(kx) dx, (4.3)

where the appropriate solution is obtained by taking y0→∞.
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An expression for the dispersion relation for disturbances on a single sharp PV
front in this general case is readily obtained by substituting (4.2) and (4.3) into (2.10).
Similarly, the expression (3.27) for the approximate phase speed of the discrete
normal mode for the smoothed PV front is obtained from substituting (4.2) and (4.3)
into (3.28):

cm =−∆
∫

X(Y)(U(r0Y)− φ(r0Y)) dY, (4.4)

where X(Y) is defined below (3.30). The Y integral in (4.4) is a smoothing operation
which will not change the dependence on r0, therefore the behaviour of cm at small r0
is determined by the term in parentheses. To test if this variation is quadratic, one can
differentiate the term in parentheses with respect to r0 and integrate the x-integrals by
parts to obtain

d (U(r0Y)− φ(r0Y))
dr0

=1r0

∫
G
(√

x2 + r2
0Y2

)(
k

sin(kx)
x
− 1− cos(kx)

x2

)
dx. (4.5)

Due to the factor r0 in front of the integral, it is clear that cm will vary quadratically
with r0 for small r0 if the integral is finite in the limit r0→ 0. At large x the integral
will converge if G(x) does not grow as fast as x, as is assumed, and at small x the
term in parentheses is finite:

k
sin(kx)

x
− 1− cos(kx)

x2
= k2

2
+O(x2). (4.6)

Therefore the integral will converge if the singularity in G is integrable. This condition
is equivalent to requiring that U(0) is finite. In conclusion, the expression for the
approximate phase speed of the meandering component (4.4) varies quadratically
for r0 for small r0 for any choice of Green’s function provided the jet of the
corresponding sharp PV front is not singular.

4.1. Illustration for a family of inversion operators
To illustrate this property, and examine the transition from a regular jet to a singular
one, the calculation is performed for the so-called α-turbulence family of Green’s
functions introduced by Pierrehumbert, Held & Swanson (1994). These inversion
operators are defined most simply in spectral space for which

ψ̂(|k|)=− q̂(|k|)
|k|α , (4.7)

where α > 0 is a real number and hats denote 2-D Fourier transforms. Physically
realisable members of the family include 2-D Euler dynamics (α= 2) and surface QG
dynamics (α = 1) (Held et al. 1995), which represent the limits of deep and shallow
3-D QGPV anomalies respectively. As such, the horizontal structure of a 3-D PV
distribution may be expected to qualitatively satisfy (4.7) with 1 < α < 2. Iwayama
& Watanabe (2010) derive expressions for the corresponding Green’s functions and
also argue that α > 3 is unphysical, so here the attention is restricted to the range
0 < α < 3 for which the Green’s function of Iwayama & Watanabe (2010) can be
written as

G(x)=Ψ (α)(|x|α−2 − 1) with Ψ (α)= −1
2α sin(πα/2)Γ (α/2)2

. (4.8)
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The function Ψ (α) is singular at α= 2, but the combination in (4.8) is regular in the
limit α→ 2 and reduces to the familiar 2-D Euler Green’s function G(x)= log(x)/2π
in that case. The Green’s function (4.8) is differentiable everywhere except x= 0 and
it does not grow as fast as x at large x for all α < 3. However, the singularity at
x= 0 is only integrable when α > 1. Therefore the approximate phase speed (4.4) of
the discrete normal mode is expected to vary quadratically for small r0 for α > 1, but
not for α 6 1.

To test this assertion, the integrals (4.2)–(4.4) are evaluated explicitly for the α-
turbulence model in appendix C. The following expressions are obtained for the basic
state jet and dispersion relation of the single sharp PV front

U(y)=U0 − A(α)|y|α−1 with A(α)=− ∆

2 cos(πα/2)Γ (α)
, (4.9)

c=U0 − B(α)
|k|α−1

with B(α)= 1Γ (α − 1)
2α−1Γ (α/2)2

, (4.10)

where U0 is a constant. As anticipated, the basic state jet (4.9) is finite everywhere
for α > 1 but singular at y = 0 for α 6 1. For the special case α = 1 the function
A(α) is singular, but the combination in (4.9) is regular in the limit α→ 1 (with a
suitable choice of U0, see appendix) resulting in the logarithmic velocity singularity of
a surface QG temperature front U(y)=−(∆/π) log |y/y0| (Harvey & Ambaum 2010).
In contrast, the phase speeds (4.10) are finite for all α > 0, despite the singularity in
the basic state wind field when α6 1. Again α= 1 is a special transitional case but as
above it is straightforward to recover the well-known relation for surface QG waves
on a temperature front c= (∆/π) log |ky0| (Harvey & Ambaum 2010).

The integral (4.4) is also evaluated explicitly in appendix C, and the leading-order
terms in ε = kr0 are shown to take the form

cm(r0)≈U0 − B(α)
|k|α−1

+ 1
|k|α−1

(
εα+1C1(α)

∫
X(Y)Yα+1 dY + ε2C2(α)

∫
X(Y)|Y|2 dY

)
,

(4.11)

where the functions C1(α) and C2(α) are given in appendix C. The first two terms
on the right-hand side of (4.11) are the exact result for the linear phase speed on a
sharp PV front of (4.10). The final two terms are the two leading-order corrections due
to smoothing. For α > 1 the C2 term dominates and C2(α) < 0 meaning that cm(r0)
decreases quadratically with ε. For α < 1 the PV inversion operator becomes more
local, the jet becomes singular, and the C1 term dominates resulting in the phase speed
varying faster than a quadratic. These properties confirm the result above that cm is
quadratic in ε if the singularity in G is integrable.

5. Implications for the error in numerical weather forecast models
5.1. Typical dimensional values

Returning to the dispersion relation for the QGSW model with a Gaussian smoothing
kernel (3.35), typical numbers are now used to estimate the potential error in phase
speeds resulting from the systematic smoothing of the PV at the tropopause by NWP
models. The magnitude of the smoothing error has recently been evaluated for several
state-of-the-art weather forecast models by Gray et al. (2014). They found that the
decrease in the isentropic gradient of PV at the tropopause typically occurs during the
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r0 r0/LR Us(0) cm(r0) d(kcm)/dk(r0)

(km) (m s−1) (m s−1) (m s−1)

Sharp PV front 0 0 70.0 20.5 45.3
Typical analysis values 308 0.440 50.9 17.7 38.2
Typical 5-day forecast values 381 0.544 47.6 16.8 36.0

TABLE 1. Typical values for the Gaussian smoothing kernel of the jet maximum Us(0)
from (3.34) and the phase and group speeds from (3.35) with wavenumber kLR = 1. The
values of r0 are taken from Gray et al. (2014) and all other parameter values are as
described in the text.

first three days of a forecast, during which time the maximum isentropic PV gradient
decays by at least 20 % from the analysis value to a lower value dependent on model
and resolution.

Typical dimensional values for the PV front model relevant to the extratropical
tropopause region are given by Swanson et al. (1997) and Esler (2004) as LR =
700 km and ∆= 2× 10−4 s−1. These result in a value of U(0)=1LR/2≈ 70 m s−1

for the strength of the jet maximum and the following values for the phase speed of
Rossby waves from (2.10)

c≈ 70
(

1− 1
κ

)
≈
{

0 m s−1, k→ 0,
20 m s−1, kLR = 1, (5.1)

where k→ 0 is the long-wave limit and kLR = 1 is typical of baroclinic waves. It
should be noted that this value of jet maximum represents a local wind speed value;
nonlinear waves of realistic amplitude considerably reduce the zonal mean wind speed.

A typical isentropic gradient of Ertel PV at the troposphere–stratosphere boundary
to the northern side of wintertime ridges in analyses is 1.30 PVU per 100 km, and
in 5-day forecasts is 1.05 PVU per 100 km (Gray et al. 2014). Taking a typical
PV contrast across the tropopause of 4 PVU therefore gives typical widths of the
tropopause front on an isentropic surface of r0= 308 km and r0= 381 km in analyses
and 5-day forecasts, respectively. The values of the jet maximum and the phase and
group speeds for wavenumber kLR = 1 from these two cases are presented in table 1,
in addition to the values for a sharp PV front (r0 = 0) for reference.

The jet maximum decreases as r0 increases, with the analysis value 19 m s−1 slower
than the sharp PV front value and the 5-day forecast value a further 3 m s−1 slower
than the analysis value. The phase speeds are less sensitive to changes in r0, with the
5-day forecast value only 1 m s−1 slower than the analysis value, and the change in
group speed lies between two with the 5-day forecast value 2 m s−1 slower than the
analysis value. The near compensation between the advection and propagation terms
in the dispersion relation means that the phase speed correction is smaller than the
basic state jet correction. However, a 1 m s−1 error over a period of 5 days would
result in a phase error of 430 km. There is a similar first-order cancellation in the
group speed, although the variation in group speed with r0 is over twice as large as
the variation in phase speed in this case. This may impact the ability of the forecast
models to accurately predict downstream development events which result from the
zonal propagation of Rossby wave activity.
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5.2. Numerical validation and finite-amplitude illustration
A numerical QGSW code has been used to verify the analytic dispersion relation (3.35)
for a smooth PV front. The aim is twofold, first to perform a simple verification of
the linear theory in the case of small-amplitude disturbances and second to present
an illustration of the finite-amplitude case.

The code used is based on that used in Harvey & Ambaum (2011): a semi-
Lagrangian scheme is used to advect the PV q around a doubly periodic domain,
and inversion is performed in spectral space. The initial condition is specified as the
smoothed PV front given by (3.3) with the Gaussian smoothing kernel (3.33) a single
wavenumber perturbation of the form:

q(x, y)= ∆
2

erf
(

y− η(x)
2r0

)
with η(x)= η̂0 cos(kx). (5.2)

To diagnose the wave speed the quantity (q(t)− q(0))2 is considered, where the
overbar denotes the domain average, and the phase speed is calculated from the
timing of the first minimum of this quantity.

The symbols in figure 2 show results from integrations using small-amplitude
disturbances (η̂0= 0.1LR). They show that the dispersion relation (3.35) is remarkably
accurate in this case. For kLR = 1 (a) the accuracy of the numerical result degrades
as the smoothing width increases, but the error is within 2.3 % of the analytic value
when r0/LR < 1, and within 14.2 % when r0/LR < 2. For fixed r0/LR = 0.4 (b) the
accuracy of the numerical result degrades as the wavenumber increases but is within
2.4 % of the analytic value when kLR < 2.

The accuracy of the analytic result also varies with the disturbance amplitude η̂0
since for larger wave slopes nonlinear terms will become important. Esler (2004)
derives a weakly nonlinear theory for waves on a sharp PV front and shows that the
phase speed decreases quadratically with the wave amplitude, at small amplitudes, due
to a reduction of advection by the basic state. In the smooth PV front case there are
also additional complications such as the presence of nonlinear filamentation of PV. In
this paper attention is restricted to some simple numerical simulations to provide an
illustration of the large-amplitude case. The aim is to address the pragmatic question:
does the impact of the smoothing on the phase speeds, as presented in table 1, vary
strongly with wave amplitude?

Figure 3(a,b) shows PV snapshots from two integrations with wavenumber kLR = 1
and initial wave slope kη̂0 = 1. The two integrations have smoothing widths of
r0= 0.440LR and r0= 0.544LR, corresponding respectively to the analysis and forecast
model estimates from the previous section, and the snapshot time corresponds to
approximately 1.3 wave cycles into the integration. Filamentation of PV away from
the front is clearly present and, as anticipated, there is more filamentation in the
smoother PV front case (b). Figure 3(c) shows the difference between the two PV
fields, with the positions of the zero contours indicating the phase difference between
the two cases. The wave on the smoother PV front travels more slowly than the
wave on the sharper PV front, and its amplitude decays as a result of meridional
divergence of wave activity.

To quantify how the phase speed varies with wave amplitude, integrations have
been performed for a range of amplitude values between kη̂0= 0.1 and kη̂0= 1.4 and
the phase speed estimated as above. Figure 4 shows that the phase speeds decrease
approximately quadratically as the wave amplitude increases, consistent with the
theory of Esler (2004). The difference between the two simulations represents the
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(a) (c)(b)

FIGURE 3. PV snapshots at time t= 75/∆ from QGSW model integrations of the initial
condition (5.2). (a) r0= 0.440LR and (b) r0= 0.544LR and (c) the difference (b)–(a). Both
integrations have wavenumber kLR = 1 and initial wave slope kη̂0 = 1. High and low PV
values are indicated by red and blue respectively, and the two contours in (c) are the zero
PV contours from (a) (solid) and (b) (dashed) respectively.

 0.1

0.2

 0.3

0.4

 0.5

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

FIGURE 4. Numerically obtained phase speeds as a function of wave amplitude for
smoothing widths r0/LR = 0.440 (light grey) and r0/LR = 0.554 (dark grey). The solid
line shows the difference in phase speed for the two values of r0 (multiplied by 10 for
ease of viewing). The crosses on the y-axis indicate the results from the linear theory for
comparison.

error between propagation speeds in analyses and model forecasts, and this quantity
decreases with wave amplitude: at wave slope kη̂0 = 1 the correction due to finite
r0 is reduced by 35 %. The corresponding dimensional values for the phase speeds,
using the typical parameter values discussed above, are cm = 15.5 and 14.8 m s−1.

6. Conclusions and discussion
The dispersion relation for linear Rossby waves on a PV front of infinitesimal width

is well known for the quasi-geostrophic shallow water model. In this paper a smooth
PV front of small but finite width r0 is considered. It is shown that the single discrete
normal mode of the sharp PV front problem, representing north–south meanders of the
front, still exists on a smooth front provided the PV gradient remains negligible at the
latitudes of the critical lines. In addition there is a continuous spectrum of singular
modes, representing internal structure at the front. The leading-order correction to the
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discrete mode structure and phase speed are derived, valid in the limit ε = kr0 �
1 where k is zonal wavenumber. In addition, the analysis is generalised to the α-
turbulence family of single-layer fluid dynamics models. This paper has demonstrated
that

(i) Rossby wave phase speeds are relatively insensitive to the smoothing width r0
due to a first-order cancellation between a reduction in advection by the jet and
the ability of waves to propagate upstream; and

(ii) at O(ε2) the reduction in advection dominates, resulting a decrease of phase
speeds with r0.

Both properties are robust across a wide class of single-layer PV dynamics with
varying scale effect of PV inversion. Therefore, even though the most appropriate
single-layer proxy for Rossby wave propagation in the 3-D atmosphere is unknown,
the results derived here are likely to hold whatever the precise form assumed.

The result is applied to mid-latitude Rossby waves, which reside on the region
of large isentropic PV gradient at the tropopause. In reality the PV front has a
finite width, and furthermore, current global numerical weather prediction models are
known to evolve towards having a PV front which is too broad. Typical numbers
from meteorological analyses and forecast models are taken from Gray et al. (2014)
and used to estimate a typical error in the propagation speeds of Rossby waves in
the forecast models. The smoother tropopause in the forecast results in phase speeds
that are typically too low by 1 m s−1, which over a 5-day period amounts to a
phase error of 400 km and group speeds that are too low by 2 m s−1. The result is
systematic for both phase and group speed and therefore likely to result in systematic
large-scale model error in forecasts.

An important caveat to these results is that they are based on linear theory. Typical
atmospheric Rossby waves have non-negligible wave slopes, of order 1, which can act
to slow their eastward propagation (Esler 2004). Whilst the theory presented here is
only valid for small amplitude disturbances, it is shown from numerical simulations
that at finite amplitude the impact of smoothing on phase speeds is smaller than
predicted, but only by around 35 % at a realistic wave slope kη= 1.

Finally, it is noted in the discussion of the finite-amplitude illustration that additional
processes may be important in that case. In particular, simulations of smoother PV
fronts exhibit stronger filamentation of PV away from the front (see figure 3). Such
filamentation, which is neglected in the linear theory, will lead to a sharpening of the
jet by erosion, but may also be expected to result in a reduction in the amplitude
of the Rossby wave due to enhanced meridional dispersion of wave activity (see, e.g.
Scott et al. 2004). This may have two important consequences. First, in addition to
quantifying the systematic smoothing of the tropopause PV gradient in NWP models,
Gray et al. (2014) noted that on average model forecasts tend to underpredict the
amplitude of Rossby waves. The average ridge amplitude typically decreases from
the analysis value to a smaller, model dependent value over the first five days of a
forecast. It is possible that increased filamentation and PV mixing on the jet flanks (a
more ‘lossy’ waveguide) could contribute to this bias and this process is, as explained
previously, missing from the analytical treatment presented above. Second, assuming
the reason the tropopause is too smooth in the models is excessive numerical diffusion,
the action of the filamentation to enhance the PV gradient will be balanced by larger
diffusive fluxes of PV in the jet core. It could be anticipated that these mechanisms
combined provide a route whereby small-scale diffusion can systematically damp large-
scale waves. Both of these consequences are currently under investigation.
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Appendix A. Asymptotic expansion of the evolution equation (3.6)
In order to expand (3.6) in powers of ε the Taylor expansion of φ(y) is written, for

Y =O(1), as

φ(r0Y)= φ(0)+ r0|Y|φ′(0)+ r2
0

2
Y2φ′′(0)+O(r3

0), (A 1)

where it is understood that the derivatives are evaluated at 0+. Upon substitution into
the right-hand side of (3.6) the following is obtained:∫

φ(r0Y − y′)η̂(y′)w(y′) dy′ = g(0)(Y; η̂)φ(0)+ εg(1)(Y; η̂)φ′(0)

+ ε
2

2
g(2)(Y; η̂)φ′′(0)+O(ε3), (A 2)

where the functions g(n)(y; η̂) are defined by

g(n)(Y; η̂)= Ln
R

(κ2 − 1)n/2

∫
|Y − Y ′|nη̂(r0Y ′)W(Y ′) dY ′, (A 3)

the function W(Y) is defined in (3.2) and the identity r0 = εLR

√
κ2 − 1 is used.

The expansion of (3.6) is then obtained by substituting from (3.11) and (A 2)
together with (3.13) and (3.14) and collecting like powers of ε. The O(1) terms give

(U(0)− c0) η̂0 = φ(0)
∫
η̂0(r0Y ′)W(Y ′) dY ′. (A 4)

Likewise, the O(ε) terms give(
U′(0)f (1)(Y)− c1

)
η̂0 + (U(0)− c0) η̂1 = φ′(0)g(1)(Y; η̂0)+ φ(0)

∫
η̂1(r0Y ′)W(Y ′) dY ′,

(A 5)
and the O(ε2) terms give(

U′′(0)
2

f (2)(Y)− c2

)
η̂0 +

(
U′(0)f (1)(Y)− c1

)
η̂1 + (U(0)− c0) η̂2

= φ
′′(0)
2

g(2)(Y; η̂0)+ φ′(0)g(1)(Y; η̂1)+ φ(0)
∫
η̂2(r0Y ′)W(Y ′) dY ′. (A 6)

Appendix B. Error estimate for equations (3.26) and (3.27)
Equations (3.26) and (3.27) show the structure and phase speed of the discrete

normal mode, with stated as O(ε3) and O(ε4) respectively. Here these results are
derived in order to justify the error estimates.
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The discrete normal mode has the form

η̂(r0Y)= η̂0 + ε2η̂2(r0Y)+ ε3η̂3(r0Y)+O(ε4), (B 1)

where η̂0 is a constant, η̂2 is given by (3.24), and η̂3 has not been derived explicitly
but similarly to η̂2 can be chosen to satisfy

∫
η̂3(y)w(y) dy= 0 by a rescaling of η̂0.

Substituting into (3.6) gives

η̂(y)= η̂0
φs(y)

Us(y)− c
+ ε2

Us(y)− c

∫
φ(y− r0Y ′)η̂2(r0Y ′)W(Y ′) dY ′ +O(ε3). (B 2)

At first sight the second term on the right-hand side is O(ε2), however φ(y− r0Y ′)=
φ(y) + O(ε) and

∫
η̂2(r0Y ′)W(Y ′) dY ′ = 0 trivially. Therefore (B 2) is equivalent

to (3.26). Similarly, substituting (B 2) into (3.7) gives

η̂0c = η̂0

∫
(Us(y)− φs(y))w(y) dy

+
∫
(Us(y)− φs(y))

(
ε2η̂2(r0Y ′)+ ε3η̂3(r0Y ′)

)
W(Y ′) dY ′ +O(ε4) (B 3)

and the task here is to show that the second term on the right-hand side is at least
O(ε4). To this end, it is noted that Us(r0Y)− φs(r0Y)=U(0)− φ(0)+O(ε2), and as
above utilising that

∫
η̂2(r0Y ′)W(Y ′) dY ′ = ∫ η̂3(r0Y ′)W(Y ′) dY ′ = 0 gives the result.

Appendix C. Derivation of dispersion relation for the α-turbulence model
Here a derivation is presented of the formulae given in § 4.1 for the α-turbulence

family of inversion operators with Green’s function (4.8). These are the sharp PV front
jet profile (4.9) and dispersion relation (4.10) and the leading-order correction to the
dispersion relation for a slightly smoothed PV front (4.11).

To derive the basic state jet profile (4.9), (4.8) is substituted into (4.2) to give

U(y)=−1Ψ (α)
∫ (

(x2 + y2)α/2−1 − (x2 + y2
0)
α/2−1

)
dx. (C 1)

This integral is evaluated by first differentiating with respect to y to give

U′(y)=−1Ψ (α)(α − 2)y
∫
(x2 + y2)α/2−2 dx, (C 2)

which converges at large x for all α < 3, then utilising the identity (obtained from
equations (8.380.3) and (3.384.1), Gradshteyn & Ryzhic (2000))∫

(x2 + y2)λ dx= y|y|2λ√π
Γ (−(λ+ 1/2))

Γ (−λ) for λ<−1/2. (C 3)

Substituting (C 3) into (C 2) and integrating with respect to y gives, after substituting
for Ψ (α) from (4.8) and using standard gamma function identities given for instance
in Iwayama & Watanabe (2010),

U(y)=−A(α)(|y|α−1 − |y0|α−1) with A(α)=− ∆

2 cos(πα/2)Γ (α)
, (C 4)
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where y0 is the same constant of integration as in (C 1). The expression (C 4)
reduces trivially to (4.9) when α 6= 1 by choosing U0 = A(α)|y0|α−1. At α = 1
the function A(α) is singular, but the combination (C 4) is regular simplifies to
U(y)=−(∆/π) log(|y/y0|).

Next, the meridional structure of the perturbation streamfunction for the sharp PV
front is derived by substituting (4.8) into (4.3) to give

φ(y; k)=−1Ψ (α)
∫ (

(x2 + y2)α/2−1 − 1
)

cos(kx) dx. (C 5)

As above, this is evaluated by first differentiating with respect to y to give

φ′(y; k)=−1Ψ (α)(α − 2)y
∫
(x2 + y2)α/2−2 cos(kx) dx, (C 6)

which converges at large x for all α < 3, and then using the identity (equation
(8.432.4), Gradshteyn & Ryzhic (2000))∫

(x2 + y2)λ cos(kx) dx= 2λ+3/2√π

Γ (−λ)|k|2λ+1

K−(λ+1/2)(|ky|)
|ky|−(λ+1/2)

for λ<−1/2, (C 7)

where Kν(x) is the modified Bessel function of the second kind of order ν.
Substituting (C 7) into (C 6) and integrating with respect to y gives, after substituting
for Ψ (α) from (4.8), again using standard gamma function identities together with
the recurrence relation

∫
Kν(z)/zν−1 dz=−Kν−1(z)/zν−1,

φ(y; k)=− A(α)
Γ (β)|k|α−1

2Kβ(|ky|)
2β |ky|β , (C 8)

where β = (1 − α)/2. The result (C 8) is now used to derive both the dispersion
relation for waves on a single sharp PV front via (2.10) and also the correction for
the smooth front PV dispersion relation via (4.4). The following expansion is used

2Kν(z)
2νzν

= Γ (ν)
z2ν

(
1+ z2

4(1− ν) +O(z4)

)
+ Γ (−ν)

22ν

(
1+ z2

4(1+ ν) +O(z4)

)
. (C 9)

Combining (C 4) and (C 8) then gives

U(y)− φ(y; k)≈ A(α)|y0|α−1 − B(α)
|k|α−1

+ 1
|k|α−1

(
A(α)|ky|α+1

2(α + 1)
− B(α)|ky|2

2(3− α)
)
, (C 10)

where

B(α)= ∆

2
√

π

Γ ((α − 1)/2)
Γ (α/2)

. (C 11)

The result (4.10) follows directly from (C 10) evaluated at y→ 0 and the result (4.11)
follows from (C 10) by defining

C1(α)= A(α)
2(α + 1)

and C2(α)=− B(α)
2(3− α). (C 12a,b)
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