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Abstract

This is an application of the characteristic identity satisfied by matrices
whose elements are also elements of a semi-simple Lie algebra. Generalized
eigenvectors are determined for matrices consisting of generators of GlHji),
O(n) and Sp(n), and it is shown how to resolve the identity into idempo-
tents constructed from such eigenvectors. By this means rather general
functions of the matrices may be defined. It is also shown how to determine
traces of such functions, in terms of the invariants of the Lie algebra.

1. Introduction

The generators of various classical groups may be assembled to form a
square matrix a, of which the elements aOT (p, q = 1,2, • • • n) are also elements
of a semi-simple Lie algebra [1]. Although the elements of such a matrix do
not commute with one,another in general, it has many properties analogous to
those of numerical matrices. Powers a' of the matrix can be defined in the
usual way by the formulae

(where repeated affixes like p, q, r are considered to be summed from 1 to n).
From these powers of a, polynomials in a may also be constructed. If the
generators are suitably chosen, the traces of arbitrary polynomials in a, in
particular the

tr(a')=(a'),P, (2)

are invariants, i.e., commute with all elements of the Lie algebra.
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130 H. S. Green [2]

It is known from the work of Ilamed [2] that any matrix a whose
elements are also elements of an associative algebra must satisfy a characteris-
tic identity, analogous to the Cayley-Hamilton identity satisfied £y numerical
matrices. Explicit identities of the type

n(a-ot) = 0 (3)

have been derived by Bracken and Green [3] and Green [4] for matrices
whose elements are generators of O(n), Sp(n), GL(n) and related groups;
the 'eigenvalues' ak were determined as invariant multiples of the identity
matrix a", and it was shown how to relate the ak to the invariants tr(a'). The
transpose b of a, defined as usual by

K = aqp (4)

naturally satisfies a similar identity

11(6-/30 = 0, (5)
fc-1

where the /3k are also invariant multiples of a".
The matrix a may be applied from the left to a vector i/», with

components ipp (p = 1,2, • • • n) which are, in general, linear operators and do
not necessarily commute with one another, with the a^, or indeed with the ak.
The transpose b may be applied to such a vector from the right. The vector tp
may be resolved into right 'eigenvectors' of a, or left 'eigenvectors' of b, thus:

•Z' = 2 /-<A = 2 Hi

f n / a ~

where, because of (3) and (5),

(a-«,)(/,</') = (</'&)(&-A) = 0. (7)

With a non-degenerate numerical matrix a, it is possible to achieve
spectral resolutions of the identity of the types

a" = 2 u>c>vi

(8)
= 2 vid>ui

i->

where
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[3] Spectral resolution of the identity 131

«/ = /,*. v, = g,<t> (9)
are eigenvectors of a and its transpose b, respectively, and the c, and d, are
numerical constants. Such resolutions are useful, because they allow the
definition of rather general functions of a and b, by means of the formulae

(10)

In this paper, we shall investigate the generalization of results such as (8) and
(10) when the elements aOT of a are also elements of semi-simple Lie algebras.
Of special interest is a decomposition in which the vectors u, and v, are in the
enveloping algebra of the Lie algebra, and therefore commute with ak and fik.

2. Resolution for GL(n)

If the am are generators of GL(n), (see [5])

[dp,,, ars] = 8rqaps - 8psarq, (11)

where, as usual, [A, B] means AB - BA. The generators of U(n) satisfy
similar commutation relations, the only restriction arising from the condition
that the elements bn of the transpose of a must also be the hermitean
conjugate of aOT. In any event, the generators satisfy characteristic identities of
the types (3) and (5), where, according to [4],

ak = Ak + n - k

ft-A. + 1-k ( 1 2 )

and the eigenvalues lk of the \k serve to identify irreducible representations
of GL(n); in the tensor representations, these eigenvalues are integers such
that / | 2 / 2 s • • • g /„ s 0. Also, the traces tr(a') are given by relations

etc., which can be used if desired to define the Afe independently, in an
algebraic extension of the enveloping algebra of the Lie algebra. An
independent method of obtaining these relations will be outlined in the last
section of this paper.

Let us introduce two vectors ip and ^, whose components satisfy
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[«„, ipr] = 8q,ipp

[aPq,X'] = KXP-

These vectors are not defined within a particular irreducible representation of
GL(n), since, as we shall soon have occasion to notice, they have components
which change one irreducible representation to another. Vectors with the
required properties can, however, be found among the generators of groups,
such as GL(n + 1) and GL(n+2), of which GL(n) is a subgroup; for
instance, we could take \\i, = a,n+, and \> = a,n+2, and the commutation
relations (11), extended for values n + 1 and n + 2 of p, q, r and s, would then
include (14). The vectors ip and x may be resolved, as shown in (6), into right
and left eigenvectors of a and b respectively; it is known from earlier work of
the author [4] that

), (15)

and it follows from (13) that

a(J,4>) = (f,il>)(b + n), (16)

so that /;(/> is also a left eigenvector of b:

/,<A = fe- (17)

Now, it can be seen from (15) that the tensor

(18)

increases the eigenvalue /, of A; in an irreducible representation of GL(n) by
two units, leaving the other eigenvalues lk unchanged. This (see [6]) is well
known to be a property of symmetric tensors only, and it follows that

4>> [(8, )„ if,)v - (g,)« if, )P. \X. = 0. (19)

We now notice that, because the vectors ip and x a r e arbitrary, they may be
dropped from the equation, leaving the identity

(gXifX = (g,U(f,U (20)

[For instance, to eliminate the factor ipr, we may set ip, = a,n+1, and take the
commutator of (18) with an+l r.] If, instead of >p and x-, w e had introduced two
adjoint vectors, satisfying

[aw<M=-M><, (21)

we should have obtained the similar result
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= ifXigX (22)
with fj and g, interchanged.

The results (20) and (22) have important consequences. We consider, if
necessary, a subspace in which

c, = (f,U 4=(a)» (23)
are non-singular, and define a set of vectors u, and v, with components

Wyp {Jj Jpn C f

djl.

By setting q = r = s = n in (20) and (22) and dividing by c, and d, from right
and left, we obtain

., . (25)
V1P CI Ul )"P-

By setting r = s = n in (20) and (22), and again dividing by c, and d, from right
and left, we have also

K , «;,] = K , «i,] = 0. (26)

Thus, the components of either of these vectors commute among themselves;
as uin = v,n = 1, this is a non-trivial result only for n =£ 3. Finally, by setting
r = p = n in (20) and (22), we have

= viqdiUla.

It follows, with the help of (6), that

(28)

This is the required generalization of (8); clearly, c, and d, are no longer
numerical constants, but linear operators which do not commute with the
vectors u, and i>,-; but u, and v, are eigenvectors of a and 6, so that the
analogy is a good one. In particular, it is easy to deduce results of the form
(10) when 6(a) is any polynomial function of a; and the results may be
extended to transcendental functions 9{a), provided 0(a,) and 0(ft) are
defined for all admissible eigenvalues of a, and /3,.

The argument leading to (28) involved vectors tfi, x, <f>, • • • which could not
be constructed from generators of GL(n), but the final results do not involve
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such vectors and can be verified independently. However, the verification is
by no means trivial even in the simplest instances. Thus, for n = 2, the
formula

reduces to a generalized determinantal identity

(au — A2) = ai2(aZ2 - A2)"1a2i,

which is verifiable with the help of (11) and (13), but is hardly obvious.

3. Extension to O(n) and Sp(n)

We now extend the results of the previous section to matrices con-
structed from generators of O(n) and Sp(n), and their pseudo-orthogonal
and pseudo-symplectic analogues. As in [4], we introduce a metric tensor g w

which is either symmetric or antisymmetric:

g « = VgqP, (29)

where TJ = + 1 for O(n) or - 1 for Sp(n). We require the existence of a
corresponding contravariant tensor g", satisfying

gp'g>, = &*"' = 8$; (30)

this imposes the usual limitation to even values of n for Sp(n). The elements
of the matrix a in this instance will be denoted by ap

q, and those of the
'transpose' by

V = a\. (31)

The commutation relations are

[ < a;] = 8qa>, - 8'.a'q ~ g^.a1, + g^a',. (32)

The characteristic identities can still be written in the form (3) and (5),
where

ak = Aie + n - TJ - k,

ft = A* + 1 - k = - an+l-k.
 ( 3 3 )

The relation between the ak and /3k follows from the formulae

Ak + An+,_k = 77 fc^(n + l)
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defining the A* for k s \{n + 1) in terms of those for k < \(n + 1). Here again,
the Afc are invariants whose eigenvalues U, for k < 2 (1 +1), serve to label
irreducible representations, and can be defined implicitly by formulae con-
necting them with the traces of the even powers of a, e.g.,

tr(a2) = 2 2 Ak(Al + n + l -T , -2fc) , (35)
k - l

where h = \n when n is even, but h = \(n - 1) when n is odd.
We next introduce two vectors t[i and x, with components which satisfy

( 3 6 )

The corresponding adjoint vectors satisfy commutation relations of the type

. (37)

Again it follows from earlier work of Bracken and Green [3] and Green [4]
that

and from (20) it follows that

a(f^) = (fk>P)(b + n-r,) (38)

so that

(a - o*)(A*) = (£*)(* - ft) = 0,
and

M = 0g*. (39)

From this point, the argument leading to the result (8) parallels that leading
from (17) to (28) in the last section. As the tensor TM defined by (18) increases
the eigenvalue /, of A; by two units, when j/i(n + 1) it corresponds to a
representation of O(n) or Sp(n) labelled (2,0, •••) and is necessarily
symmetric. Thus (20) and (22) are still valid, for j/\(n + 1), and we can
proceed to deduce (24), (25), (26) and (27). A special derivation of (27) is
evidently needed only for the 'idempotents' fm and gm, where m = h + 1 =
\{n + 1), for O(n) when n is odd. For this purpose, let us define

vmq = eqrs...xya" • • -a"",
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where

a,, = gna-, a" = a',g", (41)

and e is the permutation symbol. Then, by a calculation similar to that given
by Bracken and Green [3, Appendix A], we verify that

a"quZ, = hup
m,

(42)
vmqa

q
p = hvmp.

Thus, um and vm are the right and left eigenvectors of a, corresponding to the
eigenvalue Am = h, and we need only define

cm =(vmqu

dm = (u2,vm
(43)

to secure the correct normalization of fm and gm, as given by (27). It should be
noticed that, unlike the other c, and dh cm and dm thus defined are invariants
which commute with all elements of the Lie algebra.

As the formulae (27) are now established for all values of /, (28) follows.

4. Evaluation of traces

We shall now apply the foregoing to evaluate the trace of any well
defined function 0(a) of a matrix a of the type considered in the previous two
sections. Since

tr(/) , (44)

it is clear that our purpose will be accomplished by the evaluation of

(45)

We consider first the application to matrices consisting of generators of
GL(n). It is evident from 8PA, = SM and (28) that

vipuip = c;1,

ulpvlp = d;\

and from (27) that

t, = u,pCjVjp. (47)

But as the q, do not, in general, commute with the vectors u, and v,, there is
some difficulty in the direct application of this formula. From the definition of
/; in (6), however, it follows that
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(48)

where p, must reduce to a polynomial of the (n — l)-th degree in the ak.
The polynomial can in fact be determined completely by general

considerations. First we note that, if aOT is replaced by an + cSp,,, where c is
any numerical constant or invariant, the commutation relations (11) are
unchanged; also, although the 'eigenvalues' ak of a are replaced by ak + c,
the 'eigenvectors' are unchanged; thus, /, and t, cannot depend on c. It follows
that the polynomials p, can only depend on the differences ak — at of the
'eigenvalues' of a. Moreover, by symmetry, p, must remain unchanged when
ak and a, are interchanged, provided k^ j and / / / . We now observe that,
according to (12),

ak = Ak + n - k;

also the eigenvalues lk of the Ak must satisfy U ^ l2 g • • • g /„ in tensor
representations. Jt follows that, if i/» is any vector, />t/» must vanish when
applied to a tensor eigenvector of the \k such that /; = //+1. Hence, the trace of
f must possess a factor (a, - a,+, - 1). Taking account of the requirements of
symmetry already noticed, we must have

P, = cYl ( « / -« , -1 ) (49)

where c is a numerical constant. From the condition

[ n , (50)

we infer that c = 1, so that

From this result, and the formula (44), the relations (13) are easily confirmed,
and a general formula for tr(ak) can be written down.

Next, we consider the application to matrices consisting of generators of
O(n) or Sp(n). Again the invariants /, are given by (48), and again tt can only
depend on differences of the 'eigenvalues' ak of a, given this time by

ak = At + n — 17 — k.
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However, the Ak cannot be assigned arbitrarily, but must satisfy (34). We must
consider separately even and odd values of n.

For even values of n, symmetry required that p, must remain unchanged
when ak and a, are interchanged, except when k or / takes one of the values /
or n + 1 - j . The eigenvalues lk of the Xk must satisfy / , a / 2 s ••• g | t , | g o ,
where h =\n, in tensor or spinor representations, and so, if j / h, /Ji/r must
vanish when applied to a tensor or spinor eigenvector of the Ak such that
/, = /;+i. This and the requirements of symmetry already noted determine
n — 2 factors of ph of the type (a, — ak — 1) where k / j and k^ n + 1 - j . The
additional factor, (a, - arn+i-;), cancels a corresponding factor in the de-
nominator of t, in (48); it is required so that t, does not become singular in
spinor representations. If we again determine the numerical factor with the
help of (50), we obtain

a,-ak

(52)
(n even).

For odd values of n, we are restricted to O(n), and A, has the fixed value
h = \{n — 1) when / = m = h + 1. To determine pm, we note that the vector fm

does not change the eigenvalue of any of the Ak, so that the condition
h g h g • • • g J . ^ O does not impose any restriction (on pm). But tm must not
be singular in any representation, so that pm must possess a factor am - ak

corresponding to every factor in the denominator of tm, which therefore
reduces to a numerical constant. As fm is an 'idempotent' (satisfying the
matrix identity /£ = fm), with a unique 'eigenvector' um satisfying fmum = um,

tm=\ \m=\{n + \)). (53)

When / / m and / / h, f,ip must vanish when applied to a tensor or spinor
eigenvector of the Afc such that /, = /,+,, so that again p, must possess a factor
(a, — a,+, — 1). This and the requirements of symmetry determine n — 3
factors of p,. A factor (a, - am) is clearly needed to cancel a corresponding
factor in the denominator of t,. But in this instance /, cannot become singular
on account of the divisor (a, — an+,-,); the shift to a representation in which
this divisor vanishes must be prevented by a factor (a,-«„+,_, - 2 ) in the
numerator of t,. Hence

a,-ak

(54)
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These results may be used, in conjunction with (44), to confirm the formula
(35); of course, they may also be used to compute tr(a4) and other traces
which can only be determined with much greater labour by earlier methods.
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