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A RIGHT CONTINUOUS RIGHT WEAKLY SI-RING IS SEMISIMPLE

DINH VAN HUYNH AND NGUYEN VAN SANH

It is shown that a projective CS right module M over a ring R is a direct sum
of uniform modules of composition lengths at most 2 if (i) every finitely gener-
ated direct summand of M is continuous and (ii) every non-zero M-singular right
R-module contains a non-zero M-injective submodule. In particular, a right con-
tinuous ring R is semisimple if R is right weakly SI, that is, if every non-zero
singular right R-module contains a non-zero injective submodule.

1. INTRODUCTION

Right (left) Sl-rings, that is, rings all of whose singular right (left) modules are
injective, were introduced and investigated in detail by Goodearl [9]. Since then SI-
rings have drawn much attention from several authors, see for example, {7, 10, 13, 14,
15, 16, 17, 20). In a similar way, SI-modules have been defined and considered in {20]
and [10] where corresponding properties were obtained.

A weaker form of SI-rings and SI-modules was considered recently in [15]: A right
R-module M is called weakly SI (briefly, WSI) if every non-zero M-singular right R-
module contains a non-zero M-injective submodule. A ring R is called a right WSI-ring
if Rp is WSIL

As shown in [15], WSI-modules have some properties similar to those of SI-modules.
However, in general the structure of them still remains unknown. It is clear that any
right semiartinian right V-ring is right WSI. By [2], {3, Theorem 2.2} or [6, Corollary
21] there exists a right semiartinian right V-ring R such that the right Loewy series of
R has (Loewy) length at least 3. By [9, Theorem 3.11] such a ring R is not right SI.
Hence right WSI-rings are not necessarily right SI, in general. On the other hand, a
right PCI-domain constructed in [5] is right SI, and so it is right WSI but not right semi-
artinian. This means that right WSI-rings need not be right semiartinian. Therefore
WSI-modules and WSI-rings seem to be interesting subjects in the area.

The purpose of this note is to prove the following results. For the definition of the
category o{M] we refer to the next section.
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THEOREM 1. Let M be a WSI right R-module which is projective in o[M].
Then M is M-nonsingular. Assume furthermore that M is CS, then

(a) M is adirect sum of finitely generated modules M;, where each M; has either
zero socle or M; is a semiartinian module and M; = M;/Soc(M;) is a V-module, that
is, every simple module in o[M;] is M;-injective.

(b) If every finitely generated direct summand of M is quasi-continuous, then
M is quasi-continuous and M = .-?nU‘ where each U; is a finitely generated uniform

submodule of M. Moreover, if Soc(U;) # 0 for some i € Q, then U; has composition
length < 2, and each U; with Soc(U;) = 0 is a fully invariant submodule of M.
Therefore, in this case, M is a direct sum of a fully invariant SI-submodule with essential
socle and fully invariant uniform submodules with zero socles.

(¢) If every finitely generated direct summand of M is continuous, then M is a
continuous SI-module which is a direct sum of uniform submodules with composition
lengths < 2. Moreover, in this case, if Ng is a finitely generated direct summand of
M, then Endg(N) is a semisimple ring.

The following consequence of Theorem 1 improves [6, Lemma 10] which stated that

a right self-injective ring R is semisimple if every non-zero right R-module contains a

non-zero injective submodule.
COROLLARY 2. Any right continuous right WSI-ring is semisimple.
For quasi-continuous rings we have:

COROLLARY 3. Every right quasi-continuous right WSI-ring is the ring direct
sum of a semisimple ring and finitely many right Ore domains which are not divi-
sion rings. In particular, any right quasi-continuous, right semiartinian right V-ring is
semisimple.

The last statement of Corollary 3 gives the possibility of producing several von
Neumann regular right V-rings with zero right socle.

The following result is an easy consequence of (a) in Theorem 1.

COROLLARY 4. A right CS right WSI-ring R has a ring direct decomposition
R = A® B where A is a right semiartinian ring such that A/Soc(A,) is a right V-ring
and Soc(Bg) = 0.

2. PRELIMINARIES

Throughout this note all rings are associative with identity and all modules are
unitary modules.

For a module M over a ring R we write Mg to indicate that M is a right R-
module. The socle and the Jacobson radical of M are denoted respectively by Soc(M)
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and J(M). A module M is called semisimple if M = Soc(M), and a ring R is said
to be a semisimple ring if Rg is semisimple, or equivalently, if R is a semiprime right
(or left) Artinian ring. A submodule N of a module Mg is called a fully invariant
submodule of M if for each f € Endr(M), f(N)C N.

For a given module My we consider the following properties:

(C1) Every submodule of M is contained essentially in a direct summand of
M.

(C2) If A and B are direct summands of M with AN B =0, then A® B is
also a direct summand of M.

(Cs) ¥ C is a submodule of M isomorphic to a direct summand of M, then
C is itself a direct summand of M.

A module My is said to be a CS-module if it satisfies (C); M is called quasi-
continuous if M satisfies (C1) and (C;) and finally, if M satisfies (C;) and (Cs) then
M is said to be a continuous module. We have the following implications:

injective = quasi-injective = continuous = quasi-continuous = CS.

In general these classes are distinct.

A ring R is called right CS (right quasi-continuous, right continuous) if Rp is
CS (quasi-continuous, continuous). For a detailed study of these classes of rings and
modules we refer to Dung-Huynh-Smith-Wisbauer {7] and Mohamed-Miiller [11].

For a module Mg (over a ring R) we denote by o[M] the full subcategory of Mod-
R (the category of all right R-modules) whose objects are submodules of M-generated
modules (see Wisbauer [19]). A module P € o[M] is called projective in o[M] if P
is N-projective for every N € o[M]. A module Ug is called M-singular if there is a
module A € o[M] containing an essential submodule E such that U ~ A/E. Hence
any M-singular module is contained in o{M]. For M = R the notion of R-singularity
is identical to the usual definition of singular R-modules in Mod- R (see Goodearl [9]).

The class of M-singular right R-modules is closed under taking submodules, homo-
morphic images and direct sums (for example, [19, 17.3, 17.4]). Hence any N € o[M]
contains a largest M-singular submodule which is denoted by Zp(N). If Zp(N) =0,
then N is called M-nonsingular.

A module M is called an SI-module if every M-singular module is M-injective,
and M is called weakly SI (briefly WSI) if every non-zero M-singular module contains
a non-zero M-injective submodule. Clearly, any SI-module is WSI. However, in general
the converse is not true, as mentioned in the Introduction. A ring R is right WSI if
Rp is a WSI-module.

The texts by Anderson - Fuller [1}, Chatters - Hajarnavis [4], Faith [8], Goodearl
[9], Mohamed - Miller [11], Stenstrom [18] and Wisbauer [19] are general references
for module and ring theoretic notions not defined in this note.
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3. THE PROOFS

The following special case of a recent result of Osofsky [12, Theorem B] is the key
lemma of our proof of Theorem 1.
LEMMA 4. Let Mg be a finitely generated, quasi-continuous and quasi-projective

module such that no non-zero element of Endg(M) has essential kernel. Then for each

set {e;}2, of orthogonal idempotents e; in Endr(M) with ® e;M essential in M,
i=1

the factor module M / (.§1e;M) cannot contain a non-zero quasi-continuous direct
1=

summand.

PRrRoOOF OF THEOREM 1: Let Mg be a WSI-module such that M is projective in
o[M], where R is a ring.

I Zy(M) # 0, then Zp(M) contains a non-zero M-injective submodule N.
Hence N is a direct summand of M, and therefore N is projective in ¢[M], a contra-
diction. Thus Zp(M) = 0, that is, M is M-nonsingular.

From now on we assume in addition that M is a CS-module.

CLAIM 1. Any finitely generated submodule U of M is essential in a finitely generated
direct summand of M.

In fact this claim can be derived from (7, Proposition 2.7], however we give a proof
here (with a similar argument) for the sake of completeness. Since M is CS, there is a
direct summand U* of M such that U is essential in U*. (We assume U # 0, since
for U = 0 the statement is clear). To verify Claim 1 we shall show that U is finitely
generated.

Clearly, U* is projective in o[M] and M-nonsingular. Let {z, A € A} be a
generating set of U™, that is,

U* = T z)\R.
A€A

Then there exists an epimorphism g from & z,R onto Ug. Since U™ is projective
A€A
in o[M] and @ z R € o[M], the map g splits (see [19, 18.3]), that is, there exists a
AEA

submodule H of /\G) z)yR with H ~U* and
€A

1 R=H @ Ker(g).
1) 8,2 ® Ker(g)

It is clear that H also contains a finitely generated essential submodule K (since

H ~U") Let K =y1R+...4+ ynR (y;i € H) and for each g € A let e, be the

canonical projection of '\GBA:B AR onto z,R. Since for each z € H, e,(z) # 0 only for
€

finitely many u € A, the set

I'={y€A, e (y;) #0for somey;, 1 <i<n}
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is finite. Hence for every A € A\ T, es(K) = 0. This shows that K is contained in
Ker(e)) for each A € A\T'. Therefore for such A, ex(H) is an M-singular submodule
of zyR. But )R C M and M is M-nonsingular. It follows that ex(H) = 0 for all
A€ A\T. Hence

HC & =z,R
Yer

This together with (1) shows that H is a direct summand of @rz.,R, and so Hp is
Y€

finitely generated. Thus Uy is finitely generated, as desired.

(a) Since M is projective in o[M], by Kaplansky’s Theorem (see [19, 8.10, 18.4])
M is a direct sum of countably generated modules. Hence to prove (a), we may assume
that M is countably generated, say

oo
M= TR

Note that M is M-nonsingular as shown before Claim 1. Now let M; be a maximal
essential extension of z; R in M. By hypothesis we have

By Claim 1, M; is finitely generated. Assume inductively that for some positive integer
2 1, we already found finitely many independent submodules My,..., M, each of
which is finitely generated and

M=M®o& -oM)®M,

such that z;R+---+z, RC M; & --- ® M,,. Let = be the projection of M onto M,
and let z},,, = m(zn4+1). Since M, is also a CS and WSI-module which is projective
in o[M], we may use the first step above to find a finitely generated direct summand
M,y of M), such that z] ;R is essential in My,4;. Thus

M=M& & Mpt19M,
with 21R+ -+ 2,41 R C M; @ --- ® Mp41. This induction argument shows that
M contains an mdependent set {M }eo, of finitely generated submodules such that
ig z;R C 69 M;. Therefore M = GB M; as desired.
B Put M = G}M where each M is finitely generated and let S; be the socle of

M;. Assume tha.t for some 1 € I, S; # 0. Since M is CS we have M; = A; ® B; where
Soc(B;) = 0 and S; is essential in A;. Hence 4; = A;/S; is an M-singular module.
Therefore each non-zero subfactor of 4; contains a non-zero M -injective submodule.
Moreover, since S; is a fully invariant submodule of A;, 4; is quasi-projective. Hence
we may use the main result of [6] to see that A; is a semiartinian V-module, and it
follows that A; is semiartinian. This fact verifies (a).

(b) Assume that every finitely generated direct summand of M is quasi-continuous.
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CLAIM 2. Any finitely generated submodule of M has finite uniform dimension.

Let V be a finitely generated submodule of M. Then V is an essential submodule
of a finitely generated direct summand V* of M by Claim 1. Assume on the con-
trary that V does not have finite uniform dimension. Then V contains an infinite

independent set {V;}¢2; of non-zero submodules V;. Put W = @ V;. Since V* is
also a CS-module, W is contained as an essential submodule in a d'j:éct summand W*
of V*. Clearly W* is finitely generated and a direct summand of M. Hence W* is
quasi-continuous. Moreover W* is projective in o[M].

Let V;* be a maximal essential extension of V; in W* for each ¢ = 1,2,... .

- 0 . . m 0 .
Then, since W™* is quasi-continuous, any finite direct sum V:* is a direct summand
y y . 3

=1

of W*. Let e; be the canonical projection of W* onto V;*. Then {e;}2, is a family
of orthogonal idempotents in S = Endr(W*) with e;W* = V;* and so a:e,'W* is
i=1

essential in W*. Note that & e;W* £ W* | since W* is finitely generated, and that
i=1

for each 0 # f € S, Ker(f) is not essential in W* since W* is M-nonsingular. Now

we may apply Lemma 4 to see that the non-zero M-singular module W* / ( 5 e,-W*)

=1
does not contain a non-zero M-injective submodule. However this is a contradiction to

the assumption that M is WSI. Thus V must have finite uniform dimension, proving
Claim 2.

Now by (a) M is a direct sum of finitely generated modules. Then from the
assumption of (b) and Claim 2 it is easy to derive a decomposition of M as a direct
sum of finitely generated uniform modules U; :

2 M= oU;.
@ &
Next we show that M is quasi-continuous. By [11, Theorem 2.13]}, it is enough
to show that each M(€2\?) in (2) is Ui-injective, where M(Q2\ ¢) = GB\ Uj. Let V
jEn\i

be a submodule of U; and g be a non-zero homomorphism of V' to M(2\2). Since
M(Q\ i) is M-nonsingular, Ker(g) must be zero, that is, V ~ g(V), in particular
g(V) is a uniform submodule of M(2\4). Since M is M-nonsingular, the closure of
any uniform submodule H in M equals the closure of any non-zero cyclic submodule of
H. Hence we may use Claim 1 to see that g(V) is an essential submodule of a finitely
generated direct summand W of M(Q2\i). We have M(Q2\i) = W @ M’ for some
submodule M' of M(2\i). Hence U; ® W is a finitely generated direct summand
of M. By assumption, U; @ W is quasi-continuous and so W is U;-injective by [11,
Corollary 2.14). Since g(V) C W, it follows that g can be extended to a homomorphism
from U; to W. This implies the Uj-injectivity of M(Q\ 1).
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Assume now that in (2) there is a U; (j € Q) such that Soc(U;) # 0. If Uj is
simple then we are done. Assume that U; is not simple. Let S; = Endgr(U;). If there
is a non-zero element f € S; such that f(U;) is small in U; then f(U;) is contained
in each maximal submodule of Uj, that is, f(U;) C J(U;). Since Soc(Uj;) is contained
in each non-zero submodule of U;, we also have Soc(U;) C J(U;). On the other hand,
since Uj is a finitely generated quasi-projective WSI-module, J(U;) C Soc(U;) by [15,
Proposition 4]. Hence J(U;) = Soc(U;). It follows that f(U;) = Soc(U;). From this we
must have Ker(f) # 0, since Uj is not simple. This implies that f(U;) is M-singular,
a contradiction. Thus for each 0 # f € Sj, f(U;) is not small in U;. By [19, 22.2] we
have J(S;) =0, and

(3) S; ~ Endg(U;/J(Uj;)).

Furthermore, since each non-zero element of S; must have zero kernel, S; is a
domain, in particular S; has only one non-zero idempotent. Hence by (3) we see
that U;/J(U;) is indecomposable. On the other hand, any non-zero submodule of
the M-singular module U;/J(U;) contains a non-zero Uj-injective submodule. Thus
U;/J(U;) has to be simple. Since J(U;) (= Soc(U;)) is a minimal submodule of Uj;,
U; has composition length 2, proving the first statement'in the second part of (b).

To prove the next assertion of (b) we write (2) in the form

e-(8)ea
a€fly €3

where any U, and Up are uniform (finitely generated) and Soc(Uq) # 0, Soc(Ug) = 0

(a € Q41,8 € 3). Clearly, 6?7 U, and ﬂe?'l Up are fully invariant submodules of M.
a€lly €ll;

Therefore to end this part we need only to show that each Ug is a fully invariant

submodule of U = @ Ug. Since U is M-nonsingular, it is easy to see that for any
BEN,

0 # f € Endg(U), f(Ug) C Up or f(Ug)NUg = 0. Now assume that f(Ug)NUsg =0
for some B € Q,. Since (f|Ug) is a monomorphism, f(Ug) ~ Ug, and since M
is M-nonsingular we may use Claim 1 (as explained above) to see that the uniform
submodule f(Ug) is an essential submodule of a finitely generated direct summand

V of @\ﬁU..,. Hence Ug @ V is a direct summand of M, and so Ug @ V is quasi-
v€EN,

continuous. Therefore Ug is V-injective; consequently, Ug is f(Up)-injective. It follows
that Ug is quasi-injective.

On the other hand, since Ug is a finitely generated quasi-projective WSI-module
with zero socle, each simple module F in o[Up] is Ug-injective [15, Proposition 4].
Hence each such E is Ug -generated and so Ug is a generator of ¢{Ug] by [19, 18.5].
Therefore o{Ug] is Morita-equivalent to Mod-T where T = Endgr(Up) (see [19, 46.2]).
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Note that T is a domain. Since Ug is quasi-injective, T is a right self-injective domain.
It follows that T is a division ring. Then by the above Morita-equivalence, Ug must
be simple, a contradiction. Thus we only have f(Ug) C Ug, proving the fact that each
Ug is a fully invariant submodule of M.

By a standard argument we see that 6% U, is an SI-module and therefore the
a€lly

proof of (b) is complete.

(c) We assume now that each finitely generated direct summand of M is continuous.
It follows that M has a decomposition of the form (2) such that each U; is continuous.
By (b), M is quasi-continuous. Hence by [11, Theorem 3.16], M is continuous.

To finish the first statement of (c) it is enough to show that Soc(U;) # 0 for each
i € Q. Suppose there is a U; (i € ) with Soc(U;) = 0, and let S; = Endgr(U;).
By the argument in the proof of (b), ¢[U;] is Morita - equivalent to Mod-§;. On the
other hand, since U; is uniform, continuous and M-nonsingular, for each 0 # f € S;,
Ker(f) = 0 and f(U;) = Ui, that is, f is an isomorphism, proving that §; is a division
ring. By the previous Morita-equivalence, U; must be a simple module, a contradiction
to Soc(U;) = 0. Thus each U; (i € Q) has non-zero socle as desired. By (b), M is an
SI-module.

Now assume that N is a finitely generated direct summand of M. By Claim 2, N
has finite uniform dimension. Moreover, since N is then continuous and M-nonsingular,
it is easy to see that for each f € Endp(N), Ker(f) and Im(f) are direct summands of
N . Therefore Endg(N) is a (von Neumann) regular ring. Since N has finite uniform
dimension, Endr(N) cannot have an infinite set of orthogonal idempotents. Thus
Endg(N) is a semisimple ring. 1

The statement of Corollary 2 follows directly from (c) of Theorem 1.

PRroOF oF COROLLARY 3: Let R be a right quasi-continuous right WSI-ring. By
Theorem 1 we have a ring direct decomposition:

(4) R=A®B

where A is a direct sum of finitely many uniform right ideals with composition lengths
at most 2 and B is a direct sum of finitely many fully invariant uniform right ideals
B; of R with zero socles. It follows that B is a direct sum of right Ore domains. Now
express A in the form: A = A, ®...® A, where each 4; is uniform and of composition
length < 2. Assume that, for example, 4; is not simple and let S; be the minimal
submodule of A4;. Since §; is projective (see [15, Corollary 5]) and cyclic, there is a
minimal right ideal T of A with T ~ S} and A =T @ P for some right ideal P of A.
Since A is right quasi-continuous, T is P-injective (see {11, Corollary 2.14]). Moreover,
since TN A, = 0, A; is embedded in P, and so T is A;-injective. But T' ~ S;, and
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so 51 is Aj-injective, hence §) is a direct summand of A;, a contradiction. Thus 4
is a semisimple ring. I
Concerning (a) of Theorem 1 we would like to ask the question:

(@1) Is a finitely generated CS, quasi-projective WSI-module a direct sum of
uniform modules?

If the answer for (Q,) is yes, it follows that a right CS right WSI-ring is the ring
direct sum of a right Artinian ring and a semiprime right Goldie ring. Indeed, let R bea
right CS right WSI-ring such that Ry has finite uniform dimension. Then by Corollary
4, R has a ring direct sum R = A ® B where A is semiartinian and Soc(Bgp) = 0.
Since Rgp has finite uniform dimension, Soc(A44) is finitely generated, and so by the
argument for proving (b) of Theorem 1 we easily see that A4 is a direct sum of finitely
many uniform right ideals of composition lengths at most 2; in particular A is right
Artinian. Since B is also right WSI, B is right nonsingular (see [15]). From this and
since Bp has finite uniform dimension, the maximal right quotient ring Qmq.z of B
is semisimple by [18, Theorem XII.2.5]. Then by [18, Proposition XV.3.3] and since
J(B) C Soc(Bg) = 0 (see [15]), Q@maz is also the classical right quotient ring of B.
Hence B is a semiprime right Goldie ring.

We should note also that if the answer of (@Q;) were yes, we would have the in-
teresting consequence that any right CS, right semiartinian right V-ring is semisimple.
From this surprising conclusion we have the feeling that the answer to (Q1) might be
no.

Furthermore, to our knowledge, it is unknown whether or not a ring as in Corollary
3 is right Noetherian. More generally we would like to ask the question:

(Q2) Is a semiprime right Goldie right WSI-ring necessarily right Noetherian?

It is clear that any right WSI-ring with right Krull dimension is right Noetherian
right SI. If we add to (a) of Theorem 1 the condition that M/J(M) is an SI-module,
then by the arguments presented above we obtain that M is SI and it is a direct sum
of Noetherian uniform modules each of which is of composition length < 2 or of zero
socle. For M = R we get the fact that a right CS right WSI-ring is right Noetherian
(and right SI) if and only if R/J(R) is right SI.
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