
Appendix A
A brief résumé of second quantization

Second quantization provides an economic representation of quantum mechanics which
includes automatically the statistics fulfilled by the particles composing the system. This
appendix summarizes some of the basic results for fermions and bosons.

A.1 Fermions

Let us consider a system of n identical fermions and let�(	r1, 	r2, . . . , 	rn) denote the exact
wavefunction of the system. Let us introduce the state 
(	r1, 	r2, . . . , 	rn), a member of
a complete set of n-particle wavefunctions. It is constructed as a properly symmetrized
product of one-particle wavefunctions ϕν(	r ), which form a complete orthonormal set∫

ϕ∗ν (	r )ϕν ′ (	r ) d3r = δ(ν, ν ′), (A.1)

∑
ν

ϕ∗ν (	r ′)ϕν(	r ) = δ(	r − 	r ′). (A.2)

The function 
(	r1, 	r2, . . . , 	rn), in the case of fermions, is given by the determinant of
the single-particle wavefunctions


(	r1, 	r2, . . . , 	rn) = det√
n!

(ϕν1 (	r1)ϕν2 (	r2) · · ·ϕνn (	rn)). (A.3)

The function � is thus a linear combination of determinants.
We now introduce the creation and annihilation fermion operators a†

ν and aν respec-
tively, acting on the fermion vacuum state |0〉F. These operators satisfy the anticommu-
tation relations

{aν, a†
ν ′ } = aνa

†
ν ′ + a†

ν ′aν = δ(ν, ν ′) (A.4)

and

{aν, aν ′ } = {a†
ν, a

†
ν ′ } = 0. (A.5)
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This choice restricts the occupation number of the states ν to 0 or 1 as required by Fermi
statistics and to antisymmetric normalized states. Acting with the creation operator a†

j
on the vacuum one creates a single-particle state

a†
j |0〉F = | j〉, (A.6)

where the r -representation coincides with the single-particle wavefunction

〈	r | j〉 = ϕ j (	r ).

The orthonormalization condition

〈 j | j ′〉 = F〈0|a j a
†
j ′ |0〉F = F〈0|δ( j, j ′)− a†

j ′a j |0〉F
= δ( j, j ′) ≡ F〈0|a j a

†
j ′|0〉F , (A.7)

where the relation given by equation (A.4) has been used together with

a j |0〉F = 0, (A.8)

and

F〈0|0〉F = 1. (A.9)

The symbol in the last term of equation (A.7) denotes a contraction. According to Wick’s
theorem, to calculate overlaps or matrix elements involving a† and a, one should carry
out all possible contractions between creation and annihilation operators, introducing a
minus sign each time that in the contraction one jumps over an odd number of operators,
and a plus sign otherwise.

A two-particle state in this representation reads

a†
j a†

j ′ |0〉F = | j, j ′〉. (A.10)

Making use of the anticommutation relation (A.5) one can show that

| j, j ′〉 = −| j ′, j〉, (A.11)

i.e. the two-particle state is antisymmetric. Consequently,

| j, j〉 = 0, (A.12)

i.e. no two fermions can occupy the same quantal state, as required by the Pauli principle.
The orthonormalization condition of the state | j, j ′〉 is given by the relation

〈 j1, j2| j ′1, j ′2〉 = F〈0| a j2 a j1 a†
j ′1

a†
j ′2
|0〉F (A.13)

= δ( j2, j ′2) δ( j1, j ′1)− δ( j1, j ′2) δ( j ′1, j2). (A.14)

This result can also be obtained directly without using Wick’s theorem by making re-
peated use of the anticommutation relation given in equation (A.4). Equations (A.11),
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(A.12) and (A.14) indicate that

〈	r , 	r ′| j1 j2〉 = 1√
2

∣∣∣∣∣ϕ j1 (	r ) ϕ j2 (	r )

ϕ j1 (	r ′) ϕ j2 (	r ′)

∣∣∣∣∣ . (A.15)

Let us now calculate the matrix element of a two-body interaction

〈 j1 j2|v| j ′1 j ′2〉a =
1

2

∫
d3r d3r ′

∣∣∣∣∣ϕ j1 (	r ) ϕ j2 (	r )

ϕ j1 (	r ′) ϕ j2 (	r ′)

∣∣∣∣∣
∗
v(|	r − 	r ′|)

∣∣∣∣∣ϕ j ′1 (	r ) ϕ j ′2 (	r )

ϕ j ′1 (	r ′) ϕ j ′2 (	r ′)

∣∣∣∣∣
=

∫
d3r d3r ′ϕ∗j1 (	r )ϕ∗j2 (	r ′)v(|	r − 	r ′|)ϕ j ′1 (	r )ϕ j ′2 (	r ′)

−
∫

d3r d3r ′ϕ∗j1 (	r )ϕ∗j2 (	r ′)v(|	r − 	r ′|)ϕ j ′2 (	r )ϕ j ′1 (	r ′). (A.16)

Note that this matrix element changes sign each time two particles are exchanged either
in the initial or in the final states. For example,

〈 j2 j1|v| j ′1 j ′2〉a =
∫

d3rd3r ′ϕ∗j2 (	r )ϕ∗j1 (	r ′)v(|	r − 	r ′|)ϕ j ′1 (	r )ϕ j ′2 (	r ′)

−
∫

d3rd3r ′ϕ∗j2 (	r )ϕ∗j1 (	r ′)v(|	r − 	r ′|)ϕ j ′2 (	r )ϕ j ′1 (	r ′)

=
∫

d3rd3r ′ϕ∗j1 (	r )ϕ∗j2 (	r ′)v(|	r − 	r ′|)ϕ j ′2 (	r )ϕ j ′1 (	r ′)

−
∫

d3rd3r ′ϕ∗j1 (	r )ϕ∗j2 (	r ′)v(|	r − 	r ′|)ϕ j ′1 (	r )ϕ j ′2 (	r ′)
= −〈 j1 j2|v| j ′1 j ′2〉a,

where in going from the first to the second expression one has exchanged 	r to 	r ′.
Consequently,

〈 j1 j2|v| j ′1 j ′2〉a = −〈 j1 j2|v| j ′2 j ′1〉a
= −〈 j2 j1|v| j ′1 j ′2〉a = 〈 j2 j1|v| j ′2 j ′1〉a .

(A.17)

We now proceed to express operators in second quantization. Because a one-body
operator can change, at most, the state of motion of a single particle it must be bilinear
in the creation and destruction operators. Similarly, a two-body interaction which can
change the state of motion of two particles simultaneously must be a quartic function of
the creation and annihilation operators. In particular the Hamiltonian, sum of a kinetic
term and a two-body interaction can be written in second quantization as

H =
∑
j1 j2

〈 j1|T | j2〉a†
j1

a j2 +
1

4

∑
j1 j2
j3 j4

〈 j1 j2|v| j3 j4〉aa†
j2

a†
j1

a j3 a j4 . (A.18)

In Fig. A.1 we schematically display the action of the second term on a pair of particles.
The matrix element 〈 j1 j2|v| j3 j4〉a has been defined in equation (A.16).

We now proceed to derive the Hartree–Fock equation associated with H , which means
to extract the one-body Hartree–Fock Hamiltonian. For this purpose we have to carry
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Figure A.1. (a) Scattering of two nucleons through the bare NN interaction. (b) (1) and (3):
contributions to the (direct) Hartree potential (see equations (A.20) and (A.22) as well as
(A.28)). (2) and (4): contributions to the (exchange) Fock potential (see equations (A.21),
(A.23) and (A.30)).

out single contractions in the second term of H . The first term is already bilinear in the
creation and annihilation operators. The four possible contractions are

a†
j2

a†
j1

a j3 a j4

©1
©2

©3
©4

, (A.19)
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leading to the four contributions (see Fig. A.1)

©1 = 1

4

∑
j1 j3

∑
i

(εi ≤ εF)

〈 j1 i |v| j3 i〉a a†
j1

a j3 , (A.20)

©2 = −1

4

∑
j1 j4

∑
i

(εi ≤ εF)

〈 j1i |v|i j4〉a a†
j1

a j4 , (A.21)

©3 = 1

4

∑
j2 j4

∑
i

(εi ≤ εF)

〈i j2|v|i j4〉a a†
j2

a j4 , (A.22)

©4 = −1

4

∑
j2 j3

∑
i

(εi ≤ εF)

〈i j2|v| j3i〉a a†
j2

a j3 . (A.23)

Making use of the relations given in equation (A.17), one notes that all the contributions
are equal, their sum being ∑

j1 j2

∑
i

(εi ≤ εF)

〈 j1 i |v| j2 i〉a a†
j1

a j2 . (A.24)

Note that i runs only over occupied states, i.e. εi ≤ εF. This is because to annihilate a
particle (e.g. in the contraction ©1 that is the state j3) the corresponding quantal state
should be occupied.

Equating the sum of the kinetic energy term (see equation in terms of (A.18)) and of
the potential term (equation (A.24)) to a diagonal, single-particle energy, provides the
mean-field Schrödinger equation∑

j1 j2

(
〈 j1|T | j2〉 +

∑
i

(εi ≤ εF)

〈 j1 i |v| j2 i〉a
)

a†
j1

a j2 =
∑
j1 j2

ε j1 a†
j1

a j2δ( j1, j2), (A.25)

that is ∫
d3r ′′ϕ∗j ′ (	r ′ ′)Tϕ j (	r ′ ′)

+
∑

i
(εi ≤ εF)

∫
d3r ′d3r ′′ϕ∗j ′ (	r ′ ′)ϕ∗i (	r ′)v(|	r ′ ′ − 	r ′|)ϕ j (	r ′ ′)ϕi (	r ′)

−
∑

i
(εi ≤ εF)

∫
d3r ′d3r ′′ϕ∗j ′ (	r ′ ′)ϕ∗i (	r ′)v(|	r ′ ′ − 	r ′|)ϕ j (	r ′)ϕi (	r ′ ′)

= ε jδ( j, j ′) (A.26)
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Multiplying from the left by  j ′ϕ j ′ (	r ), one obtains the Hartree–Fock equation in the
r -representation,(

T +U (r )
)
ϕ j (	r )+

∫
d3r ′Ux (|	r − 	r ′|)ϕ j (	r ′) = ε jϕ j (	r ), (A.27)

where

U (r ) =
∫

d3r ′ ρ(r ) v(|	r − 	r ′|) (A.28)

is the Hartree potential associated with processes depicted in graphs (1) and (3) of
Fig. A.1 (see also equations (A.20) and (A.22)). In this expression

ρ(r ) =
∑

i
(εi ≤ εF)

|ϕi (	r )|2, (A.29)

is the density of the system. The term

Ux = −
∑

i
(εi ≤ εF)

ϕ∗i (	r ′) v(|	r − 	r ′|)ϕi (	r ) (A.30)

is the Fock (exchange) potential and has its origin on the Pauli principle (graphs (2) and
(4) of Fig. A.1 and equations (A.21) and (A.23)). This term eliminates contributions to
the mean field arising from the interaction of a fermion with itself. To see this let us
neglect for a moment the exchange potential. Then equation (A.26) can be written as

− �
2

2m
ϕ j (	r )+

∑
i

(εi ≤ εF)

∫
d3r ′ ϕ∗i (	r ′)v(|	r − 	r ′)|ϕi (	r ′)ϕ j (	r ) = ε j ϕ j (	r ). (A.31)

However, because we are dealing with fermions, the product wavefunction ϕi (	r ′)ϕ j (	r )
has to be replaced by ϕi (	r ′)ϕ j (	r ) − ϕi (	r ′)ϕ j (	r ), thus leading to equation (A.27). Con-
sequently, all contributions to the mean field from terms with j = i vanish.

Once diagonalized, the Hartree–Fock Hamiltonian can be written in second quanti-
zation as

Hsp =
∑
ν ′
εν ′ a

†
ν ′ aν ′ . (A.32)

where

Nν = a†
νaν (A.33)

When applied to the state

|ν〉 = a†
ν |0〉F, (A.34)
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one obtains

Hsp|ν〉 =
∑
ν ′
εν ′ a

†
ν ′ aν ′ a

†
ν |0〉F =

∑
ν ′
εν ′ a

†
ν ′
(
δ(ν, ν ′)− a†

ν aν ′
)|0〉F

= εν a†
ν |0〉F = εν |ν〉, (A.35)

making use of the fact that

aν ′ |0〉F = 0. (A.36)

A.2 Particles and holes

The ground (vacuum) state of Hartree–Fock theory can be written, in second quantization,
as

|0〉HF =
∏

i
(εi ≤ εF)

a†
i |0〉F (

∑
i

(εi ≤ εF)

1 = A), (A.37)

where i runs over the quantum numbers of all the occupied states. Assuming the state
|0〉HF to have an even number of particles, in particular to correspond to a closed-shell
system, the total magnetic quantum number is

MF =
∑

i

mi = 0. (A.38)

If one annihilates a particle in the state i with magnetic quantum number mi , the resulting
hole state

ai |0〉HF (A.39)

has projection

Mi =
∑
i ′ �=i

mi ′ = −mi . (A.40)

This is because adding a particle with projection mi to this state, one obtains a state
with zero projection, as expressed by the relation given in equation (A.40). Because the
angular momentum projection of the hole state (A.39) is opposite to that of the angular
momentum of the corresponding particle state and because the third component of the
angular momentum changes sign under time reversal it is possible to relate the creation
operator of a hole in a given quantal state to the annihilation operator of a particle in the
corresponding time-reversal state.

To be more explicit, the time reversal operator τ acting on a single-particle state | jm〉
with angular momentum quantum numbers ( j,m) changes the sign of the projection of
the angular momentum leading to

τ | jm〉 = (−1)p−m | j − m〉 .
The m-dependence of the phase is necessary to maintain the correct angular momentum
transformation properties but the phase p can be chosen in various ways. Bohr and
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Mottelson (1969) choose p = j but other choices are possible. The operation

b†
jm |0〉HF = (−1) j−m a j−m |0〉HF

creates a hole state with angular momentum quantum numbers ( j,m).
More generally, one can define the creation operator of a hole as

b†
i = aı̃ , (A.41)

where |ı̃〉 = τ |i〉 is the time reverse of the state |i〉. The associate hole state is

|i−1〉 = b†
i |0〉HF = aı̃ |0〉HF (εi ≤ εF) . (A.42)

Implicit in equations (A.41) and (A.42) is the requirement that the same phase factors
should be used in the definition of the hole creation operator as for the time-reversal
operator. Note that

b†
ν̃ = a ˜̃ν = −aν (A.43)

because τ 2 = −1.
The economy associated with the concepts of particles and holes is evident. Instead of

having to explicitly describe the motion of all the i ′ �= i particles present in the Hartree–
Fock ground states, one needs to concentrate on the degrees of freedom of the single
one which is missing in describing the behaviour of the hole state |i−1〉. Although not
mentioned explicitly, this approach has already been used in dealing with particle states.
In fact, in describing the state

|k〉 = a†
k |0〉HF (εk > εF), (A.44)

one does not talk about all the A + 1 nucleons participating in this state (A are packed
in |0〉HF) but only about the single-particle state k.

Let us now write the single-particle operator F̂ in terms of creation and annihilation
operators of particles and of holes, i.e.

F̂ =
∑
ν1ν2

〈ν1|F |ν2〉a†
ν1

aν2

=
∑

ν1ν2>νF

〈ν1|F |ν2〉a†
ν1

aν2 +
∑

ν1ν2≤νF

〈ν1|F |ν2〉(−bν̃1 )(−b†
ν̃2

)+ · · · , (A.45)

where the relation (A.42) has been used. The sum ν1ν2 > νF is over single-particle states
with energies larger than εF, while ν1ν2 ≤ νF implies states lying below or at εF. One
can then write

F̂ =
∑
ν1ν2>νF

〈ν1|F |ν2〉a†
ν1

aν2 −
∑
ν1ν2≤νF

〈ṽ1|F |ν̃2〉b†
ν2

bν1 + · · · . (A.46)

The dots in equations (A.45) and (A.46) refer to terms which create or annihilate particle–
hole states.

Consequently

〈ν1|F̂ |ν2〉 = 〈ν1|F |ν2〉 =
∫

d3r ϕ∗ν1
(	r ) F(	r )ϕν2 (	r ), (A.47)
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while

〈ν−1
1 |F̂ |ν−1

2 〉 = −〈ν̃2|F |ν̃1〉 = −〈ν2|τ−1 Fτ |ν1〉 = −〈ν1|(τ−1 Fτ )†|ν2〉. (A.48)

Many single-particle operators have the time-reversal transformation property (Bohr and
Mottelson (1969), Section 3-1b)

(τ−1 Fτ )† = −cF, (A.49)

where c = ±1. For example, time-even operators like the coordinate operator r̂ transform
according to equation (A.49) with c = −1 while time-odd operators like the momentum
p̂ and angular momentum l̂ have c = 1 (see Bortignon et al. (1983)). If an operator has
the time-reversal transformation property (A.49) then the hole and particle state matrix
elements are related by

〈ν−1
1 |F̂ |ν−1

2 〉 = c〈ν1|F |ν2〉. (A.50)

As explained earlier, this result depends on a consistent definition of the phases in the
time-reversal transformation and particle–hole conjugation (see discussions following
equations (3.90) and (8.71)).

A.3 Bosons

In the case of particles fulfilling Bose–Einstein statistics we introduce the boson operators
�†
α , �α which create and annihilate a boson in a state α, and respect the commutation

relations

[�α, �
†
α′ ] = �α�†

α′ − �†
α′�α = δ(α, α′) (A.51)

and

[�α, �α′ ] = [�†
α, �

†
α′ ] = 0. (A.52)

Calling |0〉B the normalized boson vacuum state, i.e.

B〈0|0〉B = 1, (A.53)

one obtains, by definition,

�α|0〉B = 0. (A.54)

The one-phonon state is defined as

�†
α|0〉B = |nα = 1〉, (A.55)

where nα indicates the number of phonons in the quantal state α. This state is normalized.
In fact

〈nα = 1|nα′ = 1〉 = B〈0|�α�†
α′ |0〉B

= B〈0|
(
δ(α, α′)+ �†

α′�α
)|0〉B = B〈0|�α�†

α′ |0〉 = δ(α, α′).
(A.56)
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The last step in equation (A.56) contains a contraction between the boson creation and
annihilation operators. It is the analogue of the contraction between fermion operators
in equation (A.7). There is the Wick theorem for bosons which is the same as the one
for fermions except that there are no sign changes when operators are interchanged. The
commutation relation given in equation (A.51) implies that

�†
α�

†
α|0〉B �= 0, (A.57)

i.e. bosons can occupy the same quantal state. Let us now work out the orthonormalization
of this two-phonon state by carrying out all contractions

B〈0|�α′�α′�†
α�

†
α |0〉B = δ(α, α′) δ(α, α′)+ δ(α, α′) δ(α, α′) = 2δ(α, α′). (A.58)

Consequently, the two-boson state

|nα = 2〉 = 1√
2
�†
α�

†
α|0〉B (A.59)

is a normalized state. Note that

�†
α|n = 1〉 = �†

α�
†
α|0〉B =

√
2 |nα = 1〉 (A.60)

and, in general,

�†
α|nα = N 〉 = √N + 1 |nα=N + 1〉. (A.61)

We will now write the harmonic oscillator Hamiltonian in second quantization as
originally done by Dirac (1935),

H =
∑
α′

�ωα′
(
�
†
α′�α′ + 1

2

)
. (A.62)

The energy of the ground state (vacuum state) is

H |0〉B = E0, (A.63)

where

E0 = 1

2

∑
α′

�ωα′ . (A.64)

It receives a 1
2 �ωα contribution (zero-point fluctuation) for each degree of freedom of

the system.
The one-phonon state has an energy

H |nα = 1〉 =
∑
α′

�ωα′
(
�
†
α′�α′ +

1

2

)
�†
α|0〉B =

∑
α

�ωα′�
†
α′�α′�

†
α |0〉B + E0�

†
α|0〉B

= (
�ωα + E0

)|nα = 1〉. (A.65)
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We will now calculate the commutator

[H, �†
α] =

∑
α

�ωα′ [�
†
α′�α′ , �

†
α]. (A.66)

Making use of the relation

[AB,C] = A[B,C]+ [A,C]B, (A.67)

one obtains

[H, �†
α] =

∑
α′

�ωα′
(
�
†
α′ [�α′ , �

†
α]+ [�†

α′ , �
†
α]�α′

) =∑
α′

�ωα′�
†
α′δ(α, α

′) = �ωα�
†
α.

(A.68)

That is, this expression provides a relation to determine the eigenvalues of a Hamiltonian
H in the harmonic approximation. Of course this approximation becomes exact if H is
the Hamiltonian describing a harmonic oscillator.

A.4 Quasi-bosons

Making use of the relations given in equation (A.67) and those relating commutators to
anticommutators,

[A, BC] = −B{A,C} + {A, B}C, (A.69)

one can calculate

[aν̄aν, a
†
ν ′a

†
ν̄ ′ ] = aν̄[aν, a

†
ν ′a

†
ν̄ ′ ]+ [aν̄ , a

†
ν ′a

†
ν̄ ′ ]aν

= aν̄
(
−a†

ν ′ {aν, a†
ν̄ ′ } + {aν, a†

ν ′ }a†
ν̄ ′

−a†
ν ′ {aν̄ , a†

ν̄ ′ } + {aν̄ , a†
ν ′ }a†

ν̄ ′

)
aν

= aν̄
(
δ(ν, ν ′)a†

ν̄ − a†
νδ(ν, ν

′)
)

aν

= δ(ν, ν ′) (1− Nν − Nν̄) , (A.70)

where Nν = a†
νaν , and where it has been assumed that ν and ν̄ ′ are two different quantal

states, one of the class with positive angular momentum projection and the other with
negative m-value. If this commutator is applied to the vacuum state one obtains

[aν̄aν, a
†
ν ′a

†
ν̄ ′ ]|0〉 = δ(ν, ν ′)|0〉. (A.71)

Consequently, under certain circumstances, a couple of fermions behave like a (quasi-)
boson (see equation (5.12)). Making use of (A.70) one obtains

[P, P†] = δ(ν, ν ′)�
(

1− N̂

�

)
, (A.72)
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where

P =
∑
ν>0

a†
νa

†
ν̂ ,

2� is the number of degenerate single fermion states and N̂ =∑
ν a†

νaν =∑
ν>0

(
a′νaν + a†

ν̄aν̄
)

is the operator number of particles. It is then clear that the last

factor in equation (A.72) arises from the Pauli principle acting between fermions.

https://doi.org/10.1017/9781009401920.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401920.013



