LEVITZKI RADICAL FOR CERTAIN VARIETIES

DAVID POKRASS

Let A be a nonassociative algebra. We let A^n denote the subalgebra generated by all products of n elements from A. Inductively we define $A^{(0)} = A$ and $A^{(n+1)} = (A^{(n)})^2$. We say that A is nilpotent if, for some n, $A^n = \{0\}$. A is solvable if $A^{(n)} = \{0\}$ for some n. An algebra is locally nilpotent (locally solvable) if each finitely generated subalgebra is nilpotent (solvable). In this paper \mathscr{V} will always be some variety of algebras defined by a set of homogeneous identities. We say that local nilpotence is a radical property in \mathscr{V} if each $A \in \mathscr{V}$ contains a maximal locally nilpotent ideal L, and A/L has no non-zero locally nilpotent ideals. The ideal L is then called the Levitzki radical of A.

The symbols L_x and R_x will be used to denote the left and right multiplication operators on A ($a \rightarrow xa$, and $a \rightarrow ax$). The letter S will be used to mean either L or R. Thus, S_xS_y could have four meanings. If B is any subset of an algebra A we let B^* be the algebra generated by all maps (on A) of the form L_b or R_b where $b \in B$.

Our purpose is to show that local nilpotence is a radical property in some particular varieties. Let us agree that a variety has property * if

*For each finitely generated algebra $A \in \mathscr{V}$ there exists a natural number m such that $A^m \subseteq A^{(2)}$.

LEMMA 1. (Anderson) Let \mathscr{V} be a variety with property *. Then if B is any finitely generated algebra in \mathscr{V} , $B^{(n)}$ is also finitely generated for each n.

Proof. See [1, p. 30].

LEMMA 2. Let \mathscr{V} be a variety with property *. Then for each finitely generated $A \in \mathscr{V}$ and for each integer $n \geq 1$, there exists an integer p = p(A, n) such that $A^p \subseteq A^{(n)}$.

Proof. Consider the statement: For each finitely generated $B \in \mathscr{V}$ there is an integer p = p(B) such that $B^p \subseteq B^{(n)}$. We will show by induction that the statement is valid for each n. The statement holds trivially for n = 1, and by property * it is true for n = 2. We may assume then that it holds for some $n \ge 3$. Let A be finitely generated. By Lemma 1 A^2 is also finitely generated. By our induction assumption we must have a number k such that $(A^2)^k \subseteq (A^2)^{(n)} = A^{(n+1)}$. Since A is finitely generated we may consider a finitely generated free algebra $F \in \mathscr{V}$ having A as a homomorphic image. By property * there is an m such that $F^m \subseteq F^2F^2$. Let $p = 2^{k-2}m$. We will show $A^p \subseteq A^{(n+1)}$

Received March 31, 1978.

DAVID POKRASS

which will complete the induction. Let $x_1, x_2, \ldots, x_p \in A$ and let $x = x_1x_2 \ldots x_p$ be some product. Since $p \ge m$ we have $x = \sum (ab)(cd)$ where a, b, c and d are words in the x_i 's with $\deg(ab)(cd) = p$. Define $u_1 = ab$ or cd depending on which has the larger degree. (If the degrees are the same choose either one). We may write $x = \sum u_1 S_{v_1}$ where S = L or R, $\deg v_1 \ge 2$, and $\deg u_1 \ge p/2 = 2^{k-3}m \ge m$. We may repeat this process to the term u_1 . Continuing, we arrive at $x = \sum u_i S_{v_i} S_{v_{i-1}} \ldots S_{v_1}$ where each v_j has degree at least 2, and $\deg u_i \ge 2^{k-i-2}m$. We continue this as long as $i \le k - 2$, for then $\deg u_i \ge m$. When i = k - 2 we shall have $x = \sum u_{k-2} S_{v_{k-2}} \ldots S_{v_1}$ where $\deg u_{k-2} \ge m$. A final application shows that

 $x = \sum u_{k-1} S_{v_{k-1}} \dots S_{v_1} \in (A^2)^k \subseteq A^{(n+1)}.$

The conclusions of the following theorem are the same as those of Theorems 1 and 2 in [3]. However, our hypotheses are weaker: we do not assume that if $A \in \mathscr{V}$ then $A^{(n)}$ is an ideal of A.

THEOREM 1. Let \mathscr{V} be a variety with property *. Then each finitely generated solvable algebra is nilpotent. Furthermore, local nilpotence is a radical property in \mathscr{V} .

Proof. The first claim follows directly from Lemma 2. Using Lemma 1 we may mimic Lemma 70 in [2] to show that if I is an ideal of A then the local solvability of A follows from I and A/I being locally solvable. The proof of Theorem 49 [2] may be followed verbatim to show that each $A \in \mathcal{V}$ has a Levitzki radical.

Let $s \ge 2$ be a natural number. \mathscr{V} is called an *s*-variety if whenever J is an ideal in $A \in \mathscr{V}$, J^s is also an ideal in A.

COROLLARY. An s-variety \mathscr{V} has property * if and only if local nilpotence is a radical property in \mathscr{V} .

Proof. One direction of the statement is contained in Theorem 1. On the other hand assume \mathscr{V} is an *s*-variety in which local nilpotence is a radical property. Let $A \in \mathscr{V}$ be finitely generated. Consider $\overline{A} = A/(A^s)^s$. It can be shown that \overline{A} is solvable. As it is observed in [1, p. 31] whenever local nilpotence is a radical property in a variety, solvability implies local nilpotence. Then \overline{A} must be locally nilpotent. Since \overline{A} is finitely generated it must be nilpotent. Therefore there is an *m* such that $A^m \subseteq (A^s)^s \subseteq A^{(2)}$. \mathscr{V} has property *.

Generalized alternative algebras I. In this section we will concern ourselves with a variety of algebras which satisfy the following identities:

- (1) ([w, x], y, z) + (w, x, yz) = y(w, x, z) + (w, x, y)z
- (2) (wx, y, z) + (w, x, [y, z]) = w(x, y, z) + (w, y, z)x
- (3) (x, x, x) = 0.

1006

LEVITZKI RADICAL

Such algebras were studied in [5, 6] under the name generalized alternative algebras I. For convenience let us call algebras satisfying (1)-(3) GAI algebras. We mention that alternative algebras are GAI algebras. However, the variety of GAI algebras does not seem to be an s-variety. We will always assume that our algebras have characteristic $\neq 2$. A will denote a GAI algebra and B will denote the ideal A^2 . We will use $\langle B^3 \rangle$ to mean the ideal generated by B^3 . For elements x, y, $z \in A$ we define J(x, y, z) to be the linear span in A^* of the set

 $\{S_{(\pi x \pi y)\pi z}, S_{\pi x (\pi y \pi z)}, S_{\pi x \pi y} S_{\pi z}, S_{\pi x} S_{\pi y \pi z}\},\$

where S = L or R and π is a permutation of x, y, z. By expanding (1) it follows that

- (4) $L_a L_b L_c \equiv L_b L_c L_a \mod J(a, b, c)$
- (5) $R_a L_b L_c \equiv L_b L_c R_a \mod J(a, b, c)$

(6)
$$R_a L_b R_c \equiv R_b R_a R_c + L_b R_c L_a - R_c L_b L_a \mod J(a, b, c).$$

A linearization of (3) gives

(7)
$$0 = L_{ab} - L_b L_a + L_a R_b - R_b L_a + L_b R_a - R_a L_b + L_{ba} - L_a L_b + R_a R_b - R_{ab} + R_b R_a - R_{ba}.$$

We shall make use of the fact that identities (1)-(3) are "symmetric". Therefore if an identity holds in A^* , the L's and R's may be interchanged to produce another identity. The next lemma shows how a subscript may be moved to the left.

LEMMA 3. Each word of the form $S_aS_bS_c$ may be rewritten as a sum of words each of the form $\pm S_bS_aS_c$ or $\pm S_bS_cS_a$ modulo J(a, b, c).

Proof. The eight cases to consider are: 1. $L_aL_bL_c$, 2. $R_aR_bR_c$, 3. $R_aL_bL_c$, 4. $L_aR_bR_c$, 5. $R_aL_bR_c$, 6. $L_aR_bL_c$, 7. $L_aL_bR_c$, and 8. $R_aR_bL_c$. Cases 1 and 3 are valid by relations (4) and (5). By symmetry cases 2 and 4 are also valid. Case 5 is handled as follows: $R_aL_bR_c$ can be replaced by the right hand side of (6) which contains three terms. The first two of these are of the desired form. The last term, $-R_cL_bL_a$, may be transformed to $-L_bL_aR_c$ by (5). Case 6 then follows by symmetry. Next we deal with case 7. By multiplying (7) on the right by R_c we get

$$L_a L_b R_c \equiv -L_b L_a R_c - R_b L_a R_c + L_b R_a R_c + R_b R_a R_c + L_a R_b R_c - R_a L_b R_c + R_a R_b R_c.$$

The last three terms are then transformed using cases 4, 5, and 2 respectively. By symmetry we also have case 8 and the proof is complete.

LEMMA 4. Assume A has characteristic $\neq 2$. Then each map of the form $S_a S_a S_a$ is in J(a, a, a).

Proof. The following identities are valid in A (see equations 1.10, 1.7, and 1.8 respectively in [5]):

- $(8) \quad (a^2, a, b) = 2(a, a, ba)$
- $(9) \quad (a, a, ba) = (a, a, b)a$
- (10) (a, ab, a) = a(a, b, a).

By characteristic $\neq 2$, (8) implies $R_a L_a L_a \in J(a, a, a)$. Now (9) and symmetry imply $L_a R_a R_a$, $L_a L_a R_a$, $R_a R_a L_a \in J(a, a, a)$. Now (10) implies $L_a R_a L_a \in$ J(a, a, a) and so $R_a L_a R_a$ is in J(a, a, a) as well. In (7) we let a = b and multiply the equation by L_a . It follows that $L_a L_a L_a \in J(a, a, a)$. Symmetry now shows $R_a R_a R_a \in J(a, a, a)$ completing the proof.

LEMMA 5. Any word of the form $S_a S_{x_1} \dots S_{x_k} S_a$ may be written as a sum of words each of the form $\pm S_{y_1} S_{y_2} \dots S_{y_k} S_a S_a$ plus terms which contain factors from B^* .

Proof. We induct on k, the case for k = 0 being trivial. When k = 1 the result follows by setting a = c in Lemma 3. Now assume the result for all values less than k where $k \ge 2$. If $T = S_a S_{x_1} S_{x_2} \dots S_{x_k} S_a$ we may apply Lemma 3 to rewrite T as a sum of terms each of the form $\pm S_{x_1} S_a S_{x_2} \dots S_{x_k} S_a$ or $\pm S_{x_1} S_{x_2} S_a \dots S_{x_k} S_a$ plus terms involving factors from B^* . By our induction assumption we are done.

LEMMA 6. Let A have characteristic $\neq 2$ and be generated by the set $\{x_i\}_{i=1}^n$. Then every product of 2n + 1 S's is a sum of terms each containing a factor $S_b \in B^*$.

Proof. Let $T = S_{a_1}S_{a_2} \dots S_{a_{2n+1}}$. Obviously we may assume each a_i is one of the generators. Then there is some $a \in \{x_i\}_{i=1}^n$ which must occur at least three times in $a_1, a_2, \dots, a_{2n+1}$. Hence T contains a subword of the form $S_a \dots S_a \dots S_a$. We may apply Lemma 5 to rewrite this as $\sum \pm S_a \dots S_a S_a$ modulo terms with factors from B^* . Another application of Lemma 5 shows that each $S_a \dots S_a S_a$ may be written as $\sum \pm S \dots S_a S_a S_a$ modulo the extra terms. By Lemma 4 each of these last terms is a sum of terms each containing a factor from B^* . This completes the proof.

LEMMA 7. Let $T = S_{a_1}S_{a_2} \dots S_{a_k}$ where two of the a_i 's are elements of B. Then $BT \subseteq \langle B^3 \rangle$.

Proof. We first make some observations. It is shown in [6, p. 144] that $(B^2A)B, B(AB^2) \subseteq B^3$. By (1) we get that

$$(w(b_1b_2))b_3 = - (w, b_1, b_2)b_3 + ((wb_1)b_2)b_3 = b_2(w, b_1, b_3) - ([w, b_1], b_2, b_3) - (w, b_1, b_2b_3) + ((wb_1)b_2)b_3.$$

This shows that $(AB^2)B \subseteq B(AB^2) + \langle B^3 \rangle \subseteq \langle B^3 \rangle$. By symmetry we also get $B(B^2A) \subseteq \langle B^3 \rangle$.

1008

Since both *B* and $\langle B^3 \rangle$ are ideals it suffices to prove the lemma for the case where a_1 and a_k are the elements of *B*. Assume then that

$$T = S_b S_{a_2} S_{a_3} \dots S_{b'}$$

where $b, b' \in B$. We shall induct on k, the number of S's appearing. When k = 2, $T = S_b S_{b'}$ and the result is obvious. Let k = 3 so that $T = S_b S_{a_2} S_{b'}$. By Lemma 3

$$T = \sum \pm S_{a_2} S_b S_{b'} + \sum + S_{a_2} S_{b'} S_b$$

plus terms in $J(b, a_2, b')$. It is clear that the terms $\pm S_{a_2}S_bS_{b'}$, $\pm S_{a_2}S_{b'}S_b$ all map B into $\langle B^3 \rangle$. The above paragraph shows that any term in $J(b, a_2, b')$ will map B into $\langle B^3 \rangle$. Now assume k > 3 and that the lemma holds for each value smaller than k. We have

$$T = S_b S_{a_2} S_{a_3} \dots S_{b'}.$$

Applying Lemma 3 to the first 3 factors in T shows

$$BT \subseteq BS_{a_2}S_bS_{a_3}\ldots S_{b'} + BS_{a_2}S_{a_3}S_b\ldots S_{b'} + BW\ldots S_{b'}$$

where $W \in J(b, a_2, a_3)$. W is a sum of terms each having either 1 or 2 S's and at least one of the S's of the form $S_{b''}, b'' \in B$. By induction we are done.

THEOREM 2. Let \mathscr{V} be a variety of GAI algebras with characteristic $\neq 2$. Then local nilpotence is a radical property, and each finitely generated solvable $A \in \mathscr{V}$ is nilpotent.

Proof. By Theorem 1 we need only show \mathscr{V} has property *. So let A be any finitely generated algebra in \mathscr{V} , generated by $\{x_i\}_{i=1}^n$. By Lemma 6 each product of 2n + 1 S's is a sum of terms with each term having a factor from B^* . Therefore each product of 4n + 2 S's must be a sum with each term containing 2 factors from B^* . By Lemma 7 we have any product of 4n + 2 S's maps B into $\langle B^3 \rangle$. This implies any product of 4n + 3 S's maps A into $\langle B^3 \rangle$. By Lemma 7 in $[\mathbf{6}]$ we have $\langle B^3 \rangle \subseteq B^2 = A^{(2)}$. Setting p = 4n + 3 we have $A(A^*)^p \subseteq A^{(2)}$. Thus $A^{2p} \subseteq A^{(2)}$ completing the proof.

As a corollary we may generalize Theorem 1.3 in [5].

COROLLARY. Let A be a GAI nilalgebra with characteristic $\neq 2, 3$. If A has the ascending chain condition on subalgebras then A is nilpotent.

Proof. A is finitely generated. By Theorem 2 we need to show A is solvable. Letting J be the maximal solvable ideal in A, a result of [4] implies A/J is alternative. Since A/J is alternative, nil and has ACC on right ideals a result of [9] shows A/J is nilpotent. Hence A is solvable.

DAVID POKRASS

Algebras with (a, b, c) = (c, a, b). In this section we consider another generalization of the alternative law by studying algebras of characteristic $\neq 2, 3$ which satisfy

 $(11) \quad (a, b, c) = (c, a, b).$

From [7, eq. 4] we know such algebras satisfy

(12) (((a, x, x), x, x), x, x) = (a, (x, x, x), (x, x, x))/9.

THEOREM 3. Let \mathscr{V} be a variety of algebras satisfying (11) having characteristic $\neq 2, 3$. Then local nilpotence is a radical property in \mathscr{V} and the finitely generated solvable algebras are nilpotent.

Proof. We show \mathscr{V} has a property *. Let A be finitely generated. \mathscr{V} is a 2-variety [8]. Since $A^{(2)}$ is an ideal, by passing to the quotient ring it is sufficient to show that (ab)(cd) = 0 implies A is nilpotent. We assume then that A is generated by $\{x_i\}_{i=1}^n$ and $A^{(2)} = \{0\}$. Letting $B = A^2$, we claim any map of the form $T = S_{a_1}S_{a_2} \dots S_{a_{11n+1}}$ is a sum of terms each containing a factor $S_b, b \in B$. To show this we may assume each a_i is a generator. Hence there is some x_j which occurs at least 12 times in the sequence $a_1, a_2, \dots, a_{11n+1}$. Identity (11) easily implies the following relations, where \equiv means "congruent modulo terms with factors from B^* ":

(i)
$$L_x L_y \equiv -R_y R_x$$
, (ii) $R_x R_y \equiv -L_y L_x$, (iii) $R_x L_y \equiv L_y R_x - R_x R_y$
 $\equiv L_y R_x + L_y L_x$, (iv) $L_x R_y \equiv R_y L_x + R_y R_x$

From these relations it follows that we may "move" the factors S_{x_j} to the left to get

$$T = \sum S_{x_j}^1 S_{x_j}^2 \dots S_{x_j}^{12} S_{x_j} \dots S + \text{terms containing a } B^* \text{ factor.}$$

There are either at least 6 factors L_{x_j} or at least 6 factors R_{x_j} in the subword $S_{x_j}S_{x_j}\ldots S_{x_j}$. Without loss of generality assume R_{x_j} occurs 6 times. Using (iv) we see that

 $L_{x_j}R_{x_j} \equiv R_{x_j}L_{x_j} + R_{x_j}R_{x_j}.$

Therefore we may move the R_{x_i} 's to the left and get

 $T = \sum R_{x_i}^6 S \dots S + \text{terms with } B^* \text{ factors.}$

However (12) shows that even $R_{x_j}^6$ is a sum of terms with factors from B^* . We have shown then that every product of 11n + 1 S's is a sum with each term having a factor from B^* . Since $A^{(2)} = \{0\}$ each product of 11n + 2 S's is the zero map. Therefore A^* is nilpotent and A must also be nilpotent.

Sterling has shown that the semiprime algebras satisfying (11) are alternative. Using this fact and the same proof as in our previous corollary we generalize Theorem 2 in [8].

https://doi.org/10.4153/CJM-1979-092-0 Published online by Cambridge University Press

LEVITZKI RADICAL

COROLLARY. Let A be a nilalgebra satisfying (11) having characteristic $\neq 2, 3$. If A has the ascending chain condition on subalgebras then A is nilpotent.

References

- 1. T. Anderson, The Levitzki radical in varieties of algebras, Math. Ann. 194 (1971), 27-34.
- 2. N. Divinsky, Rings and radicals (University of Toronto Press, 1965).
- 3. G. V. Dorofeev, A locally nilpotent radical of nonassociative rings, Algebra and Logic 10 (1971), 219-224.
- R. Hentzel and G. M. P. Cattaneo, Semi-prime generalized right alternative rings, J. of Algebra 43 (1976), 14-27.
- 5. H. F. Smith, The Wedderburn principal theorem for a generalization of alternative algebras, Trans. Amer. Math. Soc. 198 (1974), 139–154.
- 6. ——— The Wedderburn principal theorem for generalized alternative algebras I, Trans. Amer. Math. Soc. 212 (1975), 139–148.
- 7. N. J. Sterling, Rings satisfying (x, y, z) = (y, z, x), Can. J. Math. 20 (1968), 913-918.
- 8. D. J. Pokrass, Some radical properties of rings with (a, b, c) = (c, a, b), Pacific J. of Math. 76 (1978), 479-483.
- 9. K. A. Zevlakov, Nil-ideals of an alternative ring satisfying a maximal condition, Algebra i Logika 6 (1967), 19–26.

Emory University, Atlanta, Georgia