LEVITZKI RADICAL FOR CERTAIN VARIETIES

DAVID POKRASS

Let A be a nonassociative algebra. We let A^{n} denote the subalgebra generated by all products of n elements from A. Inductively we define $A^{(0)}=A$ and $A^{(n+1)}=\left(A^{(n)}\right)^{2}$. We say that A is nilpotent if, for some $n, A^{n}=\{0\} . A$ is solvable if $A^{(n)}=\{0\}$ for some n. An algebra is locally nilpotent (locally solvable) if each finitely generated subalgebra is nilpotent (solvable). In this paper \mathscr{V} will always be some variety of algebras defined by a set of homogeneous identities. We say that local nilpotence is a radical property in \mathscr{V} if each $A \in \mathscr{V}$ contains a maximal locally nilpotent ideal L, and A / L has no non-zero locally nilpotent ideals. The ideal L is then called the Levitzki radical of A.

The symbols L_{x} and R_{x} will be used to denote the left and right multiplication operators on $A(a \rightarrow x a$, and $a \rightarrow a x)$. The letter S will be used to mean either L or R. Thus, $S_{x} S_{y}$ could have four meanings. If B is any subset of an algebra A we let B^{*} be the algebra generated by all maps (on A) of the form L_{b} or R_{b} where $b \in B$.

Our purpose is to show that local nilpotence is a radical property in some particular varieties. Let us agree that a variety has property $*$ if
*For each finitely generated algebra $A \in \mathscr{V}$ there exists a natural number m such that $A^{m} \subseteq A^{(2)}$.

Lemma 1. (Anderson) Let \mathscr{V} be a variety with property *. Then if B is any finitely generated algebra in $\mathscr{V}, B^{(n)}$ is also finitely generated for each n.

Proof. See [1, p. 30].
Lemma 2. Let \mathscr{V} be a variety with property *. Then for each finitely generated $A \in \mathscr{V}$ and for each integer $n \geqq 1$, there exists an integer $p=p(A, n)$ such that $A^{p} \subseteq A^{(n)}$.

Proof. Consider the statement: For each finitely generated $B \in \mathscr{V}$ there is an integer $p=p(B)$ such that $B^{p} \subseteq B^{(n)}$. We will show by induction that the statement is valid for each n. The statement holds trivially for $n=1$, and by property * it is true for $n=2$. We may assume then that it holds for some $n \geqq 3$. Let A be finitely generated. By Lemma $1 A^{2}$ is also finitely generated. By our induction assumption we must have a number k such that $\left(A^{2}\right)^{k} \subseteq$ $\left(A^{2}\right)^{(n)}=A^{(n+1)}$. Since A is finitely generated we may consider a finitely generated free algebra $F \in \mathscr{V}$ having A as a homomorphic image. By property * there is an m such that $F^{m} \subseteq F^{2} F^{2}$. Let $p=2^{k-2} m$. We will show $A^{p} \subseteq A^{(n+1)}$

[^0]which will complete the induction. Let $x_{1}, x_{2}, \ldots, x_{p} \in A$ and let $x=x_{1} x_{2} \ldots x_{p}$ be some product. Since $p \geqq m$ we have $x=\sum(a b)(c d)$ where a, b, c and d are words in the x_{i} 's with $\operatorname{deg}(a b)(c d)=p$. Define $u_{1}=a b$ or $c d$ depending on which has the larger degree. (If the degrees are the same choose either one). We may write $x=\sum u_{1} S_{v_{1}}$ where $S=L$ or R, deg $v_{1} \geqq 2$, and $\operatorname{deg} u_{1} \geqq p / 2=2^{k-3} m \geqq m$. We may repeat this process to the term u_{1}. Continuing, we arrive at $x=\sum u_{i} S_{v_{i}} S_{v i-1} \ldots S_{v 1}$ where each v_{j} has degree at least 2 , and $\operatorname{deg} u_{i} \geqq 2^{k-i-2} m$. We continue this as long as $i \leqq k-2$, for then deg $u_{i} \geqq m$. When $i=k-2$ we shall have $x=\sum u_{k-2} S_{v_{k}-2} \ldots S_{v 1}$ where $\operatorname{deg} u_{k-2} \geqq m$. A final application shows that
$$
x=\sum u_{k-1} S_{v_{k-1}} \ldots S_{v 1} \in\left(A^{2}\right)^{k} \subseteq A^{(n+1)}
$$

The conclusions of the following theorem are the same as those of Theorems 1 and 2 in [3]. However, our hypotheses are weaker: we do not assume that if $A \in \mathscr{V}$ then $A^{(n)}$ is an ideal of A.

Theorem 1. Let $\sqrt[V]{ }$ be a variety with property *. Then each finitely generated solvable algebra is nilpotent. Furthermore, local nilpotence is a radical property in V.

Proof. The first claim follows directly from Lemma 2. Using Lemma 1 we may mimic Lemma 70 in [$\mathbf{2}$] to show that if I is an ideal of A then the local solvability of A follows from I and A / I being locally solvable. The proof of Theorem 49 [2] may be followed verbatim to show that each $A \in \mathscr{V}$ has a Levitzki radical.

Let $s \geqq 2$ be a natural number. \mathscr{V} is called an s-variety if whenever J is an ideal in $A \in \mathscr{V}, J^{s}$ is also an ideal in A.

Corollary. An s-variety \sqrt{V} has property $*$ if and only if local nilpotence is a radical property in \mathscr{V}.

Proof. One direction of the statement is contained in Theorem 1. On the other hand assume \mathscr{V} is an s-variety in which local nilpotence is a radical property. Let $A \in \mathscr{V}$ be finitely generated. Consider $\bar{A}=A /\left(A^{s}\right)^{s}$. It can be shown that \bar{A} is solvable. As it is observed in [1, p. 31] whenever local nilpotence is a radical property in a variety, solvability implies local nilpotence. Then \bar{A} must be locally nilpotent. Since \bar{A} is finitely generated it must be nilpotent. Therefore there is an m such that $A^{m} \subseteq\left(A^{s}\right)^{s} \subseteq A^{(2)} . \mathscr{V}$ has property *.

Generalized alternative algebras I. In this section we will concern ourselves with a variety of algebras which satisfy the following identities:

$$
\begin{align*}
& ([w, x], y, z)+(w, x, y z)=y(w, x, z)+(w, x, y) z \tag{1}\\
& (w x, y, z)+(w, x,[y, z])=w(x, y, z)+(w, y, z) x \\
& (x, x, x)=0 .
\end{align*}
$$

Such algebras were studied in $[\mathbf{5}, \mathbf{6}$] under the name generalized alternative algebras I. For convenience let us call algebras satisfying (1)-(3) GAI algebras. We mention that alternative algebras are GAI algebras. However, the variety of GAI algebras does not seem to be an s-variety. We will always assume that our algebras have characteristic $\neq 2$. A will denote a GAI algebra and B will denote the ideal A^{2}. We will use $\left\langle B^{3}\right\rangle$ to mean the ideal generated by B^{3}. For elements $x, y, z \in A$ we define $J(x, y, z)$ to be the linear span in A^{*} of the set

$$
\left\{S_{(\pi x \pi y) \pi z}, S_{\pi x(\pi y \pi z)}, S_{\pi x \pi y} S_{\pi z}, S_{\pi x} S_{\pi y \pi z}\right\}
$$

where $S=L$ or R and π is a permutation of x, y, z. By expanding (1) it follows that

$$
\begin{align*}
& L_{a} L_{b} L_{c} \equiv L_{b} L_{c} L_{a} \bmod J(a, b, c) \tag{4}\\
& R_{a} L_{b} L_{c} \equiv L_{b} L_{c} R_{a} \bmod J(a, b, c) \tag{5}\\
& R_{a} L_{b} R_{c} \equiv R_{b} R_{a} R_{c}+L_{b} R_{c} L_{a}-R_{c} L_{b} L_{a} \bmod J(a, b, c) \tag{6}
\end{align*}
$$

A linearization of (3) gives

$$
\begin{align*}
0=L_{a b}-L_{b} L_{a}+L_{a} R_{b}-R_{b} L_{a}+L_{b} R_{a} & -R_{a} L_{b}+L_{b a}-L_{a} L_{b} \tag{7}\\
& +R_{a} R_{b}-R_{a b}+R_{b} R_{a}-R_{b a} .
\end{align*}
$$

We shall make use of the fact that identities (1)-(3) are "symmetric". Therefore if an identity holds in A^{*}, the L 's and R 's may be interchanged to produce another identity. The next lemma shows how a subscript may be moved to the left.

Lemma 3. Each word of the form $S_{a} S_{b} S_{c}$ may be rewritten as a sum of words each of the form $\pm S_{b} S_{a} S_{c}$ or $\pm S_{b} S_{c} S_{a}$ modulo $J(a, b, c)$.

Proof. The eight cases to consider are: 1. $L_{a} L_{b} L_{c}, 2 . R_{a} R_{b} R_{c}, 3 . R_{a} L_{b} L_{c}$, 4. $L_{a} R_{b} R_{c}, 5 . R_{a} L_{b} R_{c}$, 6. $L_{a} R_{b} L_{c}, 7 . L_{a} L_{b} R_{c}$, and 8. $R_{a} R_{b} L_{c}$. Cases 1 and 3 are valid by relations (4) and (5). By symmetry cases 2 and 4 are also valid. Case 5 is handled as follows: $R_{a} L_{b} R_{c}$ can be replaced by the right hand side of (6) which contains three terms. The first two of these are of the desired form. The last term, $-R_{c} L_{b} L_{a}$, may be transformed to $-L_{b} L_{a} R_{c}$ by (5). Case 6 then follows by symmetry. Next we deal with case 7 . By multiplying (7) on the right by R_{c} we get

$$
\begin{aligned}
L_{a} L_{b} R_{c} \equiv-L_{b} L_{a} R_{c}-R_{b} L_{a} R_{c}+L_{b} R_{a} R_{c} & +R_{b} R_{a} R_{c} \\
& +L_{a} R_{b} R_{c}-R_{a} L_{b} R_{c}+R_{a} R_{b} R_{c} .
\end{aligned}
$$

The last three terms are then transformed using cases 4,5 , and 2 respectively. By symmetry we also have case 8 and the proof is complete.

Lemma 4. Assume A has characteristic $\neq 2$. Then each map of the form $S_{a} S_{a} S_{a}$ is in $J(a, a, a)$.

Proof. The following identities are valid in A (see equations 1.10, 1.7, and 1.8 respectively in [5]):
(9) $(a, a, b a)=(a, a, b) a$
(10) $(a, a b, a)=a(a, b, a)$.

By characteristic $\neq 2$, (8) implies $R_{a} L_{a} L_{a} \in J(a, a, a)$. Now (9) and symmetry imply $L_{a} R_{a} R_{a}, L_{a} L_{a} R_{a}, R_{a} R_{a} L_{a} \in J(a, a, a)$. Now (10) implies $\mathrm{L}_{a} R_{a} L_{a} \in$ $J(a, a, a)$ and so $R_{a} L_{a} R_{a}$ is in $J(a, a, a)$ as well. In (7) we let $a=b$ and multiply the equation by L_{a}. It follows that $L_{a} L_{a} L_{a} \in J(a, a, a)$. Symmetry now shows $R_{a} R_{a} R_{a} \in J(a, a, a)$ completing the proof.

Lemma 5. Any word of the form $S_{u} S_{x_{1}} \ldots S_{x_{k}} S_{a}$ may be written as a sum of words each of the form $\pm S_{y_{1}} S_{y_{2}} \ldots S_{y_{k}} S_{l a} S_{a}$ plus terms which contain factors from B^{*}.

Proof. We induct on k, the case for $k=0$ being trivial. When $k=1$ the result follows by setting $a=c$ in Lemma 3 . Now assume the result for all values less than k where $k \geqq 2$. If $T=S_{l} S_{x_{1}} S_{x_{2}} \ldots S_{x_{k}} S_{a}$ we may apply Lemma 3 to rewrite T as a sum of terms each of the form $\pm S_{x_{1}} S_{t} S_{x_{2}} \ldots S_{x k} S_{n}$ or $\pm S_{x_{1}} S_{x_{2}} S_{a} \ldots S_{x_{k}} S_{a}$ plus terms involving factors from B^{*}. By our induction assumption we are done.

Lemma 6. Let A have characteristic $\neq 2$ and be generated by the set $\left\{x_{i}\right\}_{i=1}^{n}$. Then every product of $2 n+1 S$'s is a sum of terms each containing a factor $S_{b} \in B^{*}$.

Proof. Let $T=S_{a_{1}} S_{a_{2}} \ldots S_{a_{2 n+1}}$. Obviously we may assume each a_{i} is one of the generators. Then there is some $a \in\left\{x_{i}\right\}_{i=1}^{n}$ which must occur at least three times in $a_{1}, a_{2}, \ldots, a_{2 n+1}$. Hence T contains a subword of the form $S_{a} \ldots$ $S_{a} \ldots S_{a}$. We may apply Lemma 5 to rewrite this as $\sum \pm S_{a} \ldots S_{u} S_{n}$ modulo terms with factors from B^{*}. Another application of Lemma 5 shows that each $S_{a} \ldots S_{a} S_{a}$ may be written as $\sum \pm S \ldots S_{a} S_{a} S_{a}$ modulo the extra terms. By Lemma 4 each of these last terms is a sum of terms each containing a factor from B^{*}. This completes the proof.

Lemma 7. Let $T=S_{n 1} S_{a_{2}} \ldots S_{a k}$ where two of the a_{i} 's are elements of B. Then $B T \subseteq\left\langle B^{3}\right\rangle$.

Proof. We first make some observations. It is shown in [6, p. 144] that $\left(B^{2} A\right) B, B\left(A B^{2}\right) \subseteq B^{3}$. By (1) we get that

$$
\begin{aligned}
\left(w\left(b_{1} b_{2}\right)\right) b_{3}=- & \left(w, b_{1}, b_{2}\right) b_{3}+\left(\left(w b_{1}\right) b_{2}\right) b_{3}=b_{2}\left(w, b_{1}, b_{3}\right) \\
& -\left(\left[w, b_{1}\right], b_{2}, b_{3}\right)-\left(w, b_{1}, b_{2} b_{3}\right)+\left(\left(w b_{1}\right) b_{2}\right) b_{3} .
\end{aligned}
$$

This shows that $\left(A B^{2}\right) B \subseteq B\left(A B^{2}\right)+\left\langle B^{3}\right\rangle \subseteq\left\langle B^{3}\right\rangle$. By symmetry we also get $B\left(B^{2} A\right) \subseteq\left\langle B^{3}\right\rangle$.

Since both B and $\left\langle B^{3}\right\rangle$ are ideals it suffices to prove the lemma for the case where a_{1} and a_{k} are the elements of B. Assume then that

$$
T=S_{b} S_{n 2} S_{n 3} \ldots S_{b^{\prime}}
$$

where $b, b^{\prime} \in B$. We shall induct on k, the number of S^{\prime} s appearing. When $k=2, T=S_{b} S_{b^{\prime}}$ and the result is obvious. Let $k=3$ so that $T=S_{b} S_{a_{2}} S_{b^{\prime}}$. By Lemma 3

$$
T=\sum \pm S_{a 2} S_{b} S_{b^{\prime}}+\sum+S_{a 2} S_{b^{\prime}} S_{b}
$$

plus terms in $J\left(b, a_{2}, b^{\prime}\right)$. It is clear that the terms $\pm S_{a_{2} S_{b}} S_{b^{\prime}}, \pm S_{a 2} S_{b^{\prime}} S_{b}$ all map B into $\left\langle B^{3}\right\rangle$. The above paragraph shows that any term in $J\left(b, a_{2}, b^{\prime}\right)$ will map B into $\left\langle B^{3}\right\rangle$. Now assume $k>3$ and that the lemma holds for each value smaller than k. We have

$$
T=S_{b} S_{a 2} S_{a 3} \ldots S_{b^{\prime}} .
$$

Applying Lemma 3 to the first 3 factors in T shows

$$
B T \subseteq B S_{a_{2}} S_{b} S_{a_{3}} \ldots S_{b^{\prime}}+B S_{a_{2}} S_{l_{3}} S_{b} \ldots S_{b^{\prime}}+B W \ldots S_{b^{\prime}}
$$

where $W \in J\left(b, a_{2}, a_{3}\right) . W$ is a sum of terms each having either 1 or $2 S^{\prime}$ s and at least one of the S^{\prime} s of the form $S_{b^{\prime \prime}}, b^{\prime \prime} \in B$. By induction we are done.

Theorem 2. Let \mathscr{V} be a variety of GAI algebras with characteristic $\neq 2$. Then local nilpotence is a radical property, and each finitely generated solvable $A \in \mathscr{V}$ is nilpotent.

Proof. By Theorem 1 we need only show \mathscr{V} has property *. So let A be any finitely generated algebra in \mathscr{V}, generated by $\left\{x_{i}\right\}_{i=1}^{n}$. By Lemma 6 each product of $2 n+1 S$ s is a sum of terms with each term having a factor from B^{*}. Therefore each product of $4 n+2 S$'s mast be a sum with each term containing 2 factors from B^{*}. By Lemma 7 we have any product of $4 n+2 S^{\prime}$ s maps B into $\left\langle B^{3}\right\rangle$. This implies any product of $4 n+3 S$'s maps A into $\left\langle B^{3}\right\rangle$. By Lemma 7 in [6] we have $\left\langle B^{3}\right\rangle \subseteq B^{2}=A^{(2)}$. Setting $p=4 n+3$ we have $A\left(A^{*}\right)^{p} \subseteq A^{(2)}$. Thus $A^{2 p} \subseteq A^{(2)}$ completing the proof.

As a corollary we may generalize Theorem 1.3 in [5].
Corollary. Let A be a GAI nilalgebra with characteristic $\neq 2$, 3. If A has the ascending chain condition on subalgebras then A is nilpotent.

Proof. A is finitely generated. By Theorem 2 we need to show A is solvable. Letting J be the maximal solvable ideal in A, a result of [4] implies A / J is alternative. Since A / J is alternative, nil and has ACC on right ideals a result of [9] shows A / J is nilpotent. Hence A is solvable.

Algebras with $(a, b, c)=(c, a, b)$. In this section we consider another generalization of the alternative law by studying algebras of characteristic $\neq 2,3$ which satisfy
(11) $(a, b, c)=(c, a, b)$.

From [7, eq. 4] we know such algebras satisfy

$$
\begin{equation*}
(((a, x, x), x, x), x, x)=(a,(x, x, x),(x, x, x)) / 9 \tag{12}
\end{equation*}
$$

Theorem 3. Let \mathscr{V} be a variety of algebras satisfying (11) having characteristic $\neq 2,3$. Then local nilpotence is a radical property in \mathscr{V} and the finitely generated solvable algebras are nilpotent.

Proof. We show \mathscr{V} has a property $*$. Let A be finitely generated. \mathscr{V} is a 2 -variety $[8]$. Since $A^{(2)}$ is an ideal, by passing to the quotient ring it is sufficient to show that $(a b)(c d)=0$ implies A is nilpotent. We assume then that A is generated by $\left\{x_{i}\right\}_{i=1}^{n}$ and $A^{(2)}=\{0\}$. Letting $B=A^{2}$, we claim any map of the form $T=S_{u 1} S_{a_{2}} \ldots S_{u_{11 n+1}}$ is a sum of terms each containing a factor $S_{b}, b \in B$. To show this we may assume each a_{i} is a generator. Hence there is some x_{j} which occurs at least 12 times in the sequence $a_{1}, a_{2}, \ldots, a_{11_{n+1}}$. Identity (11) easily implies the following relations, where \equiv means "congruent modulo terms with factors from $B^{* \prime \prime}$:

$$
\text { (i) } \begin{aligned}
L_{x} L_{y} \equiv-R_{y} R_{x}, \text { (ii) } R_{x} R_{y} \equiv-I_{y} L_{x}, \text { (iii) } R_{x} L_{y} \equiv L_{y} R_{x}-R_{x} R_{y} \\
\equiv L_{y} R_{x}+L_{y} L_{x}, \text { (iv) } L_{x} R_{y} \equiv R_{y} L_{x}+R_{y} R_{x} .
\end{aligned}
$$

From these relations it follows that we may "move" the factors $S_{x_{j}}$ to the left to get

$$
T=\sum S_{x_{j}}^{1} S_{x_{j}}^{2} \ldots S_{x j}^{12} S \ldots S+\text { terms containing a } B^{*} \text { factor. }
$$

There are either at least 6 factors $L_{x_{j}}$ or at least 6 factors $R_{x_{j}}$ in the subword $S_{x_{j}} S_{x_{j}} \ldots S_{x_{j}}$. Without loss of generality assume $R_{x_{j}}$ occurs 6 times. Using (iv) we see that

$$
L_{x j} R_{x_{j}} \equiv R_{x_{j}} L_{x_{j}}+R_{x j} R_{x j}
$$

Therefore we may move the $R_{x j}$'s to the left and get

$$
T=\sum R_{x j}^{6} S \ldots S+\text { terms with } B^{*} \text { factors. }
$$

However (12) shows that even $R_{x j}^{6}$ is a sum of terms with factors from B^{*}. We have shown then that every product of $11 n+1 S$'s is a sum with each term having a factor from B^{*}. Since $A^{(2)}=\{0\}$ each product of $11 n+2 S$'s is the zero map. Therefore A^{*} is nilpotent and A must also be nilpotent.

Sterling has shown that the semiprime algebras satisfying (11) are alternative. Using this fact and the same proof as in our previous corollary we generalize Theorem 2 in [8].

Corollary. Let A be a nilalgebra satisfying (11) having characteristic $\neq 2$, 3. If A has the ascending chain condition on subalgebras then A is nilpotent.

References

1. T. Anderson, The Levitzki radical in varieties of algebras, Math. Ann. 194 (1971), 27-34.
2. N. Divinsky, Rings and radicals (University of Toronto Press, 1965).
3. G. V. Dorofeev, A locally nilpotent radical of nonassociative rings, Algebra and Logic 10 (1971), 219-224.
4. I. R. Hentzel and G. M. P. Cattaneo, Semi-prime generalized right alternative rings, J. of Algebra 43 (1976), 14-27.
5. H. F. Smith, The Wedderburn principal theorem for a generalization of alternative algebras, Trans. Amer. Math. Soc. 198 (1974), 139-154.
6. -The Wedderburn principal theorem for generalized alternative algebras I, Trans. Amer. Math. Soc. 212 (1975), 139-148.
7. N. J. Sterling, Rings satisfying $(x, y, z)=(y, z, x)$, Can. J. Math. 20 (1968), 913-918.
8. D. J. Pokrass, Some radical properties of rings with $(a, b, c)=(c, a, b)$, Pacific J. of Math. 76 (1978), 479-483.
9. K. A. Zevlakov, Nil-ideals of an alternative ring satisfying a maximal condition, Algebra i Logika 6 (1967), 19-26.

Emory University, Atlanta, Georgia

[^0]: Received March 31, 1978.

