ON MAXIMAL SUBSYSTEMS OF ROOT SYSTEMS

NOLAN R. WALLACH

1. Introduction. Let g be a semisimple Lie algebra over an algebraically closed field K of characteristic 0 . Let h be a Cartan subalgebra of g and let Δ be the root system of g with respect to h.

Definition 1.1. A subset Δ_{1} of Δ is called a subsystem of Δ if Δ_{1} satisfies the following two conditions:
(i) if $\alpha \in \Delta_{1}$, then $-\alpha \in \Delta_{1}$.
(ii) if $\alpha, \beta \in \Delta_{1}$, and if $\alpha+\beta \in \Delta$, then $\alpha+\beta \in \Delta_{1}$.

A subsystem Δ_{1} is called maximal if Δ_{1} is a proper subset of Δ and Δ_{1} is not properly contained in any proper subsystem of Δ.

The purpose of this paper is to give a detailed study of the maximal subsystems of Δ. We study maximal subsystems Δ_{1} of Δ from the point of view of how Δ extends Δ_{1}. Some of the results of this paper overlap those of Borel and de Siebenthal (1). Our techniques, however, are different.

In §3 we introduce the concept of the characteristic of a maximal subsystem Δ_{1} of Δ. It turns out to be a prime or 0 depending only on Δ and Δ_{1}. In $\S 4$ we give another characterization of the characteristic of a maximal subsystem of Δ. (We apologize to the reader for overworking the word characteristic, but we feel that the word is apt in this case.) Theorem 3.1 is our main theorem on maximal subsystems of connected root systems.

In §5 we sketch a proof of the statement: If Δ_{1} and Δ_{2} are two maximal subsystems of a connected root system Δ and if Δ_{1} and Δ_{2} have the same structure and characteristic, then there is a rotation σ of Δ such that $\sigma \Delta_{1}=\Delta_{2}$. The proof of this result depends, to some extent, on case-by-case considerations.

In $\S 6$ we give a sketch of how the results of this paper may be used to classify the real forms of a complex semi-simple Lie algebra. The techniques of $\S 6$ are similar to those of S. Murakami (5), and were discovered simultaneously in (7).
2. l - 1 maximal subsystems of Δ. Let g, h, and Δ be as in $\S 1$. Let M be a module over a ring S, and let A be a subset of M. In this paper we shall use the notation $\{A\}_{S}$ for the submodule of M generated by A over S.

For each $X \in g$, let $a d X$ be the linear map of g into g given by $a d X \cdot Y=$ $[X, Y]([\ldots, \ldots]$ is the product in $g)$. Let $\langle X, Y\rangle=\operatorname{trace}(a d X a d Y)$. Then

[^0]it is well known that $\langle\ldots, \ldots\rangle$ is a non-degenerate bilinear form on $g \times g$ and on $h \times h$. Let h^{*} be the dual of h. If $\lambda \in h^{*}$ we define $H_{\lambda} \in h$ by $\left\langle H_{\lambda}, H\right\rangle=$ $\lambda(H)$ for each $H \in h$. On h^{*} we define the bilinear form $\langle. ., \ldots\rangle$ by setting $\langle\lambda, \mu\rangle=\left\langle H_{\lambda}, H_{\mu}\right\rangle, \lambda, \mu \in h^{*}$. It is known that $\langle\ldots, \ldots\rangle$ takes on rational values and is positive definite on $\{\Delta\}_{Q}$ (where Q is the field of rational numbers).

Set $l=\operatorname{dim}\{\Delta\}_{Q}\left(=\operatorname{dim}_{K} h\right)$.
Definition 2.1. A subsystem Δ_{1} of Δ is called l maximal if Δ_{1} is maximal and $\operatorname{dim}\left\{\Delta_{1}\right\}_{Q}=l$.

A subsystem Δ_{1} of Δ is called $l-1$ maximal if $\operatorname{dim}\left\{\Delta_{1}\right\}_{Q}=l-1$ and if whenever Δ_{1} is properly contained in a subsystem Δ_{2} of Δ, then $\operatorname{dim}\left\{\Delta_{2}\right\}_{Q}=l$.

The following lemma can be found in either (1) or (2); we include a proof for the sake of completeness.

Lemma 2.1. Let $\beta_{1}, \ldots, \beta_{s}$ be elements of Δ and let $\gamma=\beta_{1}+\ldots+\beta_{s}$. If $\gamma \neq 0$ and $\gamma \in \Delta$, then $\gamma-\beta_{j} \in \Delta$ for some $j, 1 \leqslant j \leqslant s$.

Proof. Assume that $\gamma-\beta_{i} \notin \Delta$ for $i=1, \ldots, S$. Since

$$
2\left\langle\gamma, \beta_{i}\right\rangle /\left\langle\beta_{i}, \beta_{i}\right\rangle=p_{i}-r_{i},
$$

where p_{i} is the largest non-negative integer such that $\gamma-p_{i} \beta_{i}$ is a root and r_{i} is the largest non-negative integer such that $\gamma+r_{i} \beta_{i}$ is a root, we see that

$$
2\left\langle\gamma, \beta_{i}\right\rangle /\left\langle\beta_{i}, \beta_{i}\right\rangle=-r_{i} \leqslant 0 .
$$

But this implies that

$$
\langle\gamma, \gamma\rangle=\sum_{i=1}^{S}\left\langle\gamma, \beta_{i}\right\rangle \leqslant 0
$$

Since $\langle\gamma, \gamma\rangle>0$, we have a contradiction.
Using Lemma 2.1 we prove
Lemma 2.2. Let Δ_{1} be a subsystem of Δ. If

$$
\beta=\sum_{i=1}^{S} m_{i} \beta_{i}
$$

where $\beta_{i} \in \Delta_{1}$ and $m_{i} \in Z, i=1, \ldots, S(Z$ is the ring of integers $)$ and if $\beta \in \Delta$, then $\beta \in \Delta_{1}$.

Proof. We may assume that $m_{i}>0, i=1, \ldots, S$ (if $m_{j}<0$ replace β_{j} by $-\beta_{j} \in \Delta_{1}$). We prove the lemma by induction on $m=\sum m_{i}$. If $m=1$, then $\beta=\beta_{1} \in \Delta_{1}$. Assume that the result is true for $m=k$. If $m=k+1$, then we apply Lemma 2.1 to see that $\beta-\beta_{j} \in \Delta$ for some β_{j} such that $m_{j} \geqslant 1$. But

$$
\beta-\beta_{j}=\sum\left\{m_{i}-\delta_{i j}\right\} \beta_{i}
$$

($\delta_{i j}$ is the Kronecker delta). Since $\sum\left\{m_{i}-\delta_{i j}\right\}=k, \beta-\beta_{j} \in \Delta_{1}$ by the inductive hypothesis. By the definition of a subsystem we know that

$$
\beta=\left(\beta-\beta_{j}\right)+\beta_{j} \in \Delta_{1} .
$$

Definition 2.2. Let Δ_{1} be a subsystem of Δ (not necessarily a proper subsystem). A subset π_{1} of Δ_{1} is called a fundamental system for Δ_{1} if
(i) the elements of π_{1} are linearly independent,
(ii) if $\alpha \in \Delta_{1}$, then $\alpha=\sum_{\gamma \in \pi_{1}} m_{\gamma} \gamma$ where $m_{\gamma} \in Z$ for all $\gamma \in \pi_{1}$ and the m_{γ} are all either non-negative or non-positive (i.e., $\alpha= \pm \sum_{\gamma \in \pi_{1}}\left|m_{\gamma}\right| \gamma$).

Dynkin's method of constructing fundamental systems for Δ_{1} is as follows:
Let $>$ be a linear order on $\left\{\Delta_{1}\right\}_{Q}$. Let π_{1} be the set of positive roots in Δ_{1} that cannot be written as a sum of two positive roots in Δ_{1}. Such roots are called simple with respect to $>. \pi_{1}$ is a fundamental system for Δ_{1}. (For details see, for example, Jacobson (4).)

The following result gives a relationship between fundamental systems of $l-1$ maximal subsystems of Δ and fundamental systems of Δ.

Lemma 2.3. Let Δ_{1} be an $l-1$ maximal subsystem of Δ. If π_{1} is a fundamental system for Δ_{1}, then there is a fundamental system π for Δ such that $\pi_{1} \subset \pi$.

Proof. Let $\pi_{1}=\left\{\beta_{1}, \ldots, \beta_{l-1}\right\}$. Let $\mu \in\{\Delta\}_{Q}$ be such that μ is linearly independent of π_{1}. Order $\{\Delta\}_{Q}$ lexicographically with respect to the ordered basis $\left\{\mu, \beta_{1}, \ldots, \beta_{l-1}\right\}$. We show that with respect to this order on $\{\Delta\}_{Q}$, $\beta_{1}, \ldots, \beta_{l-1}$ are simple in Δ.

If $\beta_{i}=\gamma+\delta, \gamma, \delta \in \Delta$, and γ, δ are positive, then

$$
\gamma=r \mu+\sum_{j=1}^{l-1} r_{j} \beta_{j}, \quad \delta=s \mu+\sum_{j=1}^{l-1} s_{j} \beta_{j}
$$

where $r, s \geqslant 0 . \gamma+\delta=\beta_{i}$ implies that $r+s=0$ and thus $r=s=0$. Let $\tilde{\Delta}$ be the subsystem of Δ generated by $\left\{\gamma, \delta, \Delta_{1}\right\}$ (i.e., $\left\{\gamma, \delta, \Delta_{1}\right\}_{Q} \cap \Delta$). $\operatorname{Dim}\{\tilde{\Delta}\}_{Q}=\operatorname{dim}\left\{\Delta_{1}\right\}_{Q}=l-1$ implies that $\tilde{\Delta}=\Delta_{1}$ by definition of $l-1$ maximality. Thus $\gamma, \delta \in \Delta_{1}$. But the elements of π_{1} are simple in Δ_{1} with respect to the above order restricted to Δ_{1}. This is a contradiction.

Thus if π is the set of simple roots in Δ with respect to the above order, $\pi_{1} \subset \pi$.

Let π be a fundamental system for Δ and let π_{1} be any subset of π containing $l-1$ elements. Let Δ_{1} be the root system in Δ generated by π_{1}. Clearly Δ_{1} is $l-1$ maximal. Furthermore, Lemma 2.3 asserts that every $l-1$ maximal subsystem is obtained in this manner. Since the Weyl group acts simply transitively on the fundamental systems of Δ, we obtain the immediate

Corollary to Lemma 2.3. Let π be a fixed fundamental system for Δ. Let Δ_{1} be an $l-1$ maximal subsystem in Δ. There is an element σ of the Weyl group of Δ such that $\sigma \Delta_{1} \cap \pi$ is a fundamental system for $\sigma \Delta_{1}$.
3. l maximal subsystems of Δ. Let Δ_{1} be a maximal subsystem of Δ. We wish to determine a relationship between a fundamental system of Δ_{1} and one of Δ. If $\operatorname{dim}\left\{\Delta_{1}\right\}_{Q}=l-1$, then Lemma 2.3 (and its proof) gives a method of
constructing a fundamental system for Δ that extends a fundamental system for Δ_{1}. If $\operatorname{dim}\left\{\Delta_{1}\right\}_{Q}=l$, then the situation is more complicated.

Let us assume for the remainder of this section that Δ_{1} is an l maximal subsystem of Δ and that $\pi_{1}=\left\{\beta_{1}, \ldots, \beta_{l}\right\}$ is a fundamental system for Δ_{1}.

Lemma 3.1. Let $>$ be the lexicographic order on $\{\Delta\}_{Q}$ with respect to the ordered basis $\left\{\beta_{1}, \ldots, \beta_{l}\right\}$. Let γ be the smallest positive root in $\Delta-\Delta_{1}$. Then
(1) γ is simple in Δ with respect to $>$;
(2) if

$$
\gamma=\sum_{i=r}^{l} m_{i} \beta_{i}
$$

with $m_{r}>0$, then for each $\mu \in \Delta-\Delta_{1}$,

$$
\mu=\sum_{i=1}^{l} n_{i} \beta_{i}
$$

with $n_{r} \neq 0$;
(3) $\beta_{r+1}, \ldots, \beta_{l}$ are simple in Δ with respect to $>$.

Proof. If γ were not simple in Δ with respect to $>$, then $\gamma=\delta+\rho$, $\delta, \rho>0, \delta, \rho \in \Delta$. Since $\gamma \in \Delta-\Delta_{1}$, one of δ or ρ must be in $\Delta-\Delta_{1}$ (since Δ_{1} is a subsystem of Δ). This implies that, say, $\delta \in \Delta-\Delta_{1}$. But then $\delta>0$ and $\delta<\gamma$. This is a contradiction and thus γ is simple with respect to \rangle.

Assume that β_{j} is not simple in Δ with respect to $>$ for some $j>r$. Then, as above, $\beta_{j}=\delta+\rho, \delta, \rho>0, \delta, \rho \in \Delta$. If δ and ρ were in Δ_{1}, then β_{j} would not be simple in Δ_{1} with respect to $>$. Thus at least one of δ, ρ is in $\Delta-\Delta_{1}$. Assume that $\delta \in \Delta-\Delta_{1}$. Since $\delta>0, \rho>0, \delta+\rho=\beta_{j}$, and $j>r$, we must have $\delta=\sum_{i>r} m_{i} \beta_{i}, \rho=\sum_{i>r} n_{i} \beta_{i}$. In particular, this implies that $\delta>0$ and $\delta<\gamma$, which is impossible. Thus β_{j} is simple in Δ with respect to $>$ for $j>r$.

Let $V=\left\{\gamma, \beta_{r+1}, \ldots, \beta_{l}\right\}_{Q}$ and let $\widehat{\Delta}=\Delta \cap V$. Then $\widehat{\Delta}$ is a subsystem of Δ and $\left\{\gamma, \beta_{r+1}, \ldots, \beta_{l}\right\}$ is the set of simple roots of $\widehat{\Delta}$ with respect to $>$ restricted to V. Since $\beta_{r} \in \widehat{\Delta}$ and $\beta_{r}>0$, we deduce that

$$
\beta_{r}=t \gamma+\sum_{i>r} t_{i} \beta_{i},
$$

$t>0$ and $t_{i} \geqslant 0, t_{i}, t \in Z, i=r+1, \ldots, l$. By maximality of Δ_{1} in Δ we see that $\left\{\Delta_{1}, \gamma\right\}_{z} \supset \Delta$. By the above expression for β_{r} in terms of $\left\{\gamma, \beta_{r+1}, \ldots, \beta_{l}\right\}$, we see that

$$
\left\{\gamma, \beta_{1}, \ldots, \beta_{r-1}, \beta_{r+1}, \ldots, \beta_{l}\right\}_{Z} \supset \Delta
$$

If $\alpha \in \Delta-\Delta_{1}$, then $\alpha=s \gamma+\sum_{i \neq r} s_{i} \beta_{i}, s_{i}, s \in Z, i=1, \ldots, r-1$, $r+1, \ldots, l$. If $s=0$, then by Lemma $1.2 \alpha \in \Delta_{1}$. Thus $s \neq 0$. Using the above expression for β_{r} we see that

$$
\gamma=(1 / t) \beta_{r}-\sum_{i>r}\left(t_{i} / t\right) \beta_{i} .
$$

Hence

$$
\alpha=(s / t) \beta_{r}+\sum_{i \neq r} r_{i} \beta_{i}
$$

(for some $r_{i} \in Q$) with $s / t \neq 0$. We have thus completed the proof of Lemma 3.1.

Definition 3.1. Let Δ_{1} be an l maximal subsystem of Δ. Let $\pi_{1}=\left\{\beta_{1}, \ldots, \beta_{l}\right\}$ be a fundamental system for Δ_{1}. An element $\beta_{r} \in \pi_{1}$ is called deletable if for each $\alpha \in \Delta-\Delta_{1}, \alpha=\sum m_{i} \beta_{i}$ and $m_{r} \neq 0$.

If β_{τ} is deletable in π_{1}, then let $>$ be the lexicographic order on $\{\Delta\}_{Q}$ given by the ordered basis $\left\{\beta_{r}, \beta_{1}, \ldots, \beta_{r-1}, \beta_{r+1}, \ldots, \beta_{l}\right\}$. Lemma 3.1 tells us that with respect to this order $\beta_{1}, \ldots, \beta_{r-1}, \beta_{r+1}, \ldots, \beta_{l}$ are simple and if γ is the smallest positive element in $\Delta-\Delta_{1}$ with respect to \rangle, then $\left\{\gamma, \beta_{1}, \ldots, \beta_{r-1}\right.$, $\left.\beta_{r+1}, \ldots, \beta_{l}\right\}$ is a fundamental system for Δ. In the course of the proof of Lemma 3.1 we saw that

$$
\gamma=(1 / t) \beta_{r}-\sum_{i \neq r}\left(t_{i} / t\right) \beta_{i}
$$

where $t>0, t_{i} \geqslant 0$, and t, t_{i} are integers $i=1, \ldots, r-1, r+1, \ldots, l$. In the following proposition, we shall show that t is actually a prime that depends only on Δ_{1} and Δ.

Proposition 3.1. Let Δ_{1} be an l maximal subsystem of Δ. Let $\pi_{1}=\left\{\beta_{1}, \ldots, \beta_{l}\right\}$ be a fundamental system for Δ_{1}. If β_{r} is deletable and if $\left\{\gamma, \pi_{1}-\left\{\beta_{r}\right\}\right\}$ is the fundamental system of Δ constructed above, then there is a prime p such that

$$
\Delta_{1}=\left\{\alpha \in \Delta\left|\alpha=s \gamma+\sum_{i \neq r} s_{i} \beta_{i}, p\right| s\right\}
$$

Furthermore, the prime p is the same for each deletable element of π_{1} and every fundamental system of Δ_{1}.

Proof. In the remarks above we see that

$$
\gamma=(1 / t) \beta_{r}-\sum_{i \neq r}\left(t_{i} / t\right) \beta_{i}
$$

where t is a positive integer and t_{i} is a non-negative integer for $i \neq r$.
By Lemma 2.2, $\Delta_{1}=\left\{\alpha \in \Delta \mid \alpha=m \gamma+\sum_{i \neq r} m_{i} \beta_{i}\right.$ and $\left.t \mid m\right\}$. Thus in order to prove the first part of the proposition we need only show that t is a prime. Assume the contrary; then $t=q \cdot s$, where q and s are integers >1.

Let $\Delta^{q}=\left\{\alpha \in \Delta \mid \alpha=m \gamma+\sum_{i \neq r} m_{i} \beta_{i}\right.$ and $\left.q \mid m\right\}$. Then Δ^{q} is a subsystem of Δ and $\Delta^{q} \supset \Delta_{1}$. Thus (by maximality of Δ_{1}) either $\Delta^{q}=\Delta_{1}$ or $\Delta^{q}=\Delta$. If $\Delta^{q}=\Delta$ and if $\alpha \in \Delta$, then

$$
\alpha=k \cdot q \gamma+\sum_{i \neq r} m_{i} \beta_{i}
$$

with k an integer. Since $\gamma \in \Delta$, we must have $q=1$, a contradiction. Assume that $\Delta^{q}=\Delta_{1}$. Since $q \leqslant t$, there is an element $\alpha \in \Delta$ such that

$$
\alpha=q \gamma+\sum_{i \neq r} q_{i} \beta_{i} .
$$

In fact, if we relabel $\gamma, \beta_{1}, \ldots, \beta_{r-1}, \beta_{r+1}, \ldots, \beta_{l}$ as $\alpha_{1}, \ldots, \alpha_{l}$, then every element $\mu \in \Delta$ is of the form

$$
\sum_{j=1}^{k} \alpha_{i j}, \quad \text { where } \sum_{j=1}^{s} \alpha_{i j} \in \Delta \text { for } 1 \leqslant s \leqslant k
$$

But since $\beta \in \Delta_{1}, \beta=t \gamma+\sum_{i>r} t_{i} \beta_{i}$ and also

$$
\beta=\sum_{j=1}^{k} \alpha_{i_{j}} \quad \text { where } \sum_{j=1}^{s} \alpha_{i_{j}} \in \Delta, 1 \leqslant s \leqslant k
$$

hence there is an element $\alpha \in \Delta$ such that $\alpha=q \gamma+\sum_{i \neq r} q_{i} \beta_{i}$. But since $\Delta^{q}=\Delta_{1}$, this implies $t \mid q$. Since we know $q \mid t$, this implies that $q=t$. This contradicts the definition of q and s and thus t is a prime. Set $t=p$.

In the course of the proof we have actually shown that if $\alpha \in \Delta-\Delta_{1}$, then $\alpha=\sum\left(m_{i} / p\right) \beta_{i}$ where the m_{i} are integers. We use this fact to prove the unicity of p. Assume that β_{s} is a deletable element of π_{1} and that $\left\{\rho, \pi_{1}-\left\{\beta_{s}\right\}\right\}$ is the simple system constructed as above. Then by the proof of the first part of the proposition

$$
\rho=(1 / q) \beta_{s}-\sum_{i \neq s}\left(s_{i} / q\right) \beta_{i}
$$

with s_{i} non-negative integers and q a prime. Since we also know that $\rho=\sum\left(m_{i} / p\right) \beta_{i}, m_{i} \in Z$, we must have $\left(m_{s} / p\right)=(1 / q)$ and thus $m_{s} q=p$. Since p and q are primes, this implies that $m_{s}=1$ and $q=p$. Thus p depends only on π_{1} and not the particular deletable element of π_{1}.

Let π_{1} and π_{2} be fundamental systems of Δ_{1} and let p_{1} and p_{2} be the corresponding primes as above. Let σ be the element of the Weyl group of Δ_{1} such that $\sigma \pi_{1}=\pi_{2} . \sigma$ is a linear isometry of $\{\Delta\}_{Q}$ and $\sigma \Delta=\Delta$ implies that σ is in the Weyl group of Δ. In particular, $\sigma\left(\Delta-\Delta_{1}\right)=\Delta-\Delta_{1}$. Let $\alpha \in \Delta-\Delta_{1}$. Then $\alpha=\sum\left(m_{i} / p_{i}\right) \beta_{i}, \quad \sigma \alpha=\sum\left(m_{i} / p_{1}\right)\left(\sigma \beta_{i}\right)$ where $\pi_{1}=\left\{\beta_{1}, \ldots, \beta_{l}\right\}$. Setting $\pi_{2}=\left\{\gamma_{1}, \ldots, \gamma_{l}\right\}$ and noting that if $\delta \in \Delta-\Delta_{1}$, then $\delta=\sum\left(q_{i} / p_{2}\right) \gamma_{i}$ q_{i} an integer $i=1, \ldots, l$. If $\delta=\sigma \alpha$, then we see easily that $p_{1}=p_{2}$. Thus p depends only on Δ_{1}.

In the course of the proof of Proposition 2.1 we have shown that if $\pi_{1}=\left\{\beta_{1}, \ldots, \beta_{l}\right\}$ is a fundamental system of Δ_{1} and if $\alpha \in \Delta-\Delta_{1}$, then $\alpha=(1 / p) \sum m_{i} \beta_{i}$ with $m_{i} \in Z$ and p a prime independent of the particular π_{1}. That is, if we consider the lattice $\left\{\Delta_{1}\right\}_{z}$, then $(1 / p)\left\{\Delta_{1}\right\}_{z} \supset \Delta$. And p is the only prime such that this inclusion holds. We shall call p the characteristics of Δ_{1} in Δ. If Δ_{1} is an $l-1$ maximal, maximal subsystem we say that it has characteristic 0 in Δ. In the next section we shall study this concept.

We conclude this section by giving a complete characterization of maximal subsystems of Δ in the case when Δ is connected (i.e. g is simple).

Theorem 3.1. Let $\pi=\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ be a fundamental system for Δ, and let $\beta=\sum m_{i} \alpha_{i}$ be the largest root in Δ with respect to π. Let p be a prime, and set $\Delta_{1}=\left\{\alpha \in \Delta \mid \alpha=\sum n_{i} \alpha_{i}, n_{1} \equiv 0(\bmod p)\right\}$. Then:
(1) Δ_{1} is l-maximal if and only if $m_{1} \geqslant p$.
(2) Let Δ_{2} be an arbitrary l-maximal subsystem of Δ with characteristic p; then there is an element σ of the Weyl group of Δ such that $\sigma \Delta_{2}=\Delta_{1}$ (with a possible relabelling of $\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$).
(3) A maximal subsystem Δ_{2} is $l-1$ maximal if and only if there is a σ in the Weyl group of Δ such that $\sigma \Delta_{2}=\Delta_{1}$ and $m_{1}=1$ (after a possible relabelling of $\left.\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}\right)$.

Proof. (1) If $p>m_{1}$, then $\operatorname{dim}\left\{\Delta_{1}\right\}_{Q}=l-1$ and thus Δ_{1} cannot be l-maximal. If $m_{1} \geqslant p$, then there is $\alpha \in \Delta_{1}, \alpha=\sum n_{i} \alpha_{i}$ and $n_{1}=p$. Let γ be the smallest of such α 's in Δ_{1} (with respect to the given order of π). Then $\left\{\gamma, \pi-\left\{\alpha_{1}\right\}\right\}$ is a fundamental system for Δ_{1}. In fact, we show that with respect to the lexicographic order $\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ on $\left\{\Delta_{1}\right\}_{Q}, \gamma, \alpha_{2}, \ldots, \alpha_{l}$ are simple in Δ_{1}. Clearly $\alpha_{2}, \ldots, \alpha_{l}$ are simple. Suppose $\gamma=\delta+\mu, \delta>0, \mu>0$, $\delta, \mu \in \Delta_{1}$. Then $\delta<\gamma$ and $\mu<\gamma$, contradicting the definition of γ. Thus γ is simple and $\left\{\gamma, \alpha_{2}, \ldots, \alpha_{l}\right\}$ is a fundamental system for Δ_{1}. We can now show that Δ_{1} is maximal in Δ.

Suppose $\rho \in \Delta-\Delta_{1}, \rho=\sum s_{i} \alpha_{i}, s_{i} \in Z$, and $s_{1} \not \equiv 0(\bmod p)$. If $\delta \in \Delta$ is arbitrary, then $\delta=\sum t_{i} \alpha_{i}, t_{i} \in Z$. Since $s_{1} \not \equiv 0(\bmod p)$, there are integers u and v such that $t_{1}=u s_{1}+v p$. Thus $u \rho+v \gamma=\sum q_{i} \alpha_{i}$ with $q_{1}=t_{1}$. Hence

$$
\delta=u \rho+v \gamma+\sum_{i=2}^{l}\left(t_{i}-q_{i}\right) \alpha_{i} .
$$

Thus we have shown that $\left\{\rho, \Delta_{1}\right\}_{z} \supset \Delta$. Suppose that $\Delta \supset \tilde{\Delta} \supset \Delta_{1}$. If If $\tilde{\Delta}-\Delta_{1} \neq \emptyset$, then there is a $\rho \in \tilde{\Delta}-\Delta_{1}$. By the above arguments $\left\{\rho, \Delta_{1}\right\}_{Z}$ $\supset \Delta$, and thus by Lemma 2.2 we have $\Delta=\tilde{\Delta}$. We have thus concluded a proof of (1).
(2) By Proposition 3.1 we know that there is a fundamental system $\tilde{\pi}=\left\{\gamma_{1}, \ldots, \gamma_{i}\right\}$ of Δ such that $\Delta_{2}=\left\{\alpha \in \Delta \mid \alpha=\sum r_{i} \gamma_{i}, r_{1} \equiv 0(\bmod p)\right\}$. Let σ be the element of the Weyl group of Δ such that $\sigma \tilde{\pi}=\pi$. Relabel $\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ such that $\alpha_{i}=\sigma \gamma_{i}$ for $i=1, \ldots, l$. Then $\sigma \Delta_{2}=\Delta_{1}$, as above. Thus concludes the proof of (2).
(3) Suppose Δ_{2} is an $l-1$ maximal, maximal subsystem of Δ. By the corollary to Lemma 2.3 there is an element σ of the Weyl group of Δ such that $\sigma \Delta_{2} \cap \pi$ is a fundamental system for $\sigma \Delta_{2}$. Relabel $\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ (if necessary) so that $\sigma \Delta_{2} \cap \pi=\left\{\alpha_{2}, \ldots, \alpha_{l}\right\}$. Suppose that $m_{1}>1$. Then, if we consider the subsystem $\Delta_{3}=\left\{\alpha \in \Delta \mid \alpha=\sum k_{i} \alpha_{i}, k_{1} \equiv 0\left(\bmod m_{1}\right)\right\}, \Delta_{3} \neq \Delta$ since $\alpha_{1} \notin \Delta_{3}$. And $\Delta_{3} \supset \sigma \Delta_{2}$. Thus $\sigma^{-1} \Delta_{3} \supset \Delta_{2}$ and hence Δ_{2} is not maximal. This contradiction implies that $m_{1}=1$.

The proof of the Theorem 3.1 is now complete.
4. The characteristic of an l maximal subsystem of Δ. Let Δ_{1} be an l maximal subsystem of Δ with characteristic $p . g$ has a root space decomposition $g=h+\sum_{\alpha \in \Delta} g_{\alpha}$. Set $g_{1}=h+\sum_{\alpha \in \Delta_{1}} g_{\alpha}$. Since Δ_{1} is l maximal, g_{1} is a semisimple Lie algebra over K. Set $P_{1}=\sum_{\alpha \in \Delta-\Delta_{1}} g_{\alpha}, g=g_{1} \oplus P_{1}$ (vector space direct sum).

If $\alpha \in \Delta_{1}$ and $\beta \in \Delta-\Delta_{1}$ and if $\alpha+\beta \in \Delta$, then by the definition of subsystem, $\alpha+\beta \in \Delta-\Delta_{1}$. Thus $[X, Y] \in P_{1}$ if $X \in g_{1}, Y \in P_{1}$. Thus we
can define a representation $\left(\rho, P_{1}\right)$ of g_{1} as follows:

$$
\rho(X) \cdot Y=\operatorname{ad}(X) Y, \quad X \in g_{1}, Y \in P_{1}
$$

Recall that if $X, Y \in g$, then $\operatorname{ad}(X) Y=[X, Y]$.
We shall show that the number of irreducible components of this representation is exactly $p-1$. To this end fix $\pi_{1}=\left\{\beta_{1}, \ldots, \beta_{l}\right\}$ a fundamental system for Δ_{1}. We assume that β_{1} is deletable (see Definition 3.1). Order $\{\Delta\}_{Q}$ lexicographically with respect to the ordered basis $\left\{\beta_{1}, \ldots, \beta_{l}\right\}$ of $\{\Delta\}_{Q}$. Let γ be the smallest positive root in $\Delta-\Delta_{1}$ with respect to this order. Proposition 2.1 asserts that

$$
\Delta_{1}=\left\{\alpha \in \Delta \mid \alpha=s \gamma+\sum_{i>1} s_{i} \beta_{i}, s \equiv 0 \bmod (p)\right\}
$$

Let

$$
M^{r}=\left\{\alpha \in \Delta \mid \alpha=s \gamma+\sum_{i>1} s_{i} \beta_{i}, s \equiv r(\bmod p)\right\}, \quad r=1, \ldots, p-1
$$

Then $M^{r} \neq \emptyset$ and $\Delta_{1} \cup M^{1} \cup \ldots \cup M^{p-1}=\Delta$. If we set $V^{i}=\sum_{\alpha \in M^{i}} g_{\alpha}$, then $\left[g_{1}, V^{i}\right] \subset V^{i}$. If we denote by $\left(\rho_{i}, V^{i}\right)$ the subrepresentation of g_{1} obtained from $\left(\rho, P_{1}\right)$ by restricting ρ to V^{i}, then we clearly have $P_{1}=V^{1} \oplus \ldots$ $\oplus V^{p-1}$ (direct sum) and $\rho=\rho_{1} \oplus \ldots \oplus \rho_{p-1}$.

Using the above order, we denote by γ^{i} the largest element of $M^{i} .\left\langle\gamma^{i}, \beta_{j}\right\rangle \geqslant 0$ for $j=1, \ldots, l$. Thus γ^{i} is a dominant integral element of $\left\{\Delta_{1}\right\}_{Q}$ with respect to π_{1}. Let $\left(\rho_{i}{ }^{+}, W^{i}\right)$ be the irreducible subrepresentation of $\left(\rho_{i}, V^{i}\right)$ corresponding to the highest weight γ^{i}. We shall show that $\left(\rho_{i}{ }^{+}, W^{i}\right)=\left(\rho_{i}, V^{i}\right)$.

Let $M_{+}{ }^{r}$ be the set of weights of ($\rho_{r}{ }^{+}, W^{r}$) (clearly $M_{+}{ }^{r} \subset \Delta$).
Lemma 4.1. If $\alpha \in M^{r}$ and if $\alpha=\gamma^{r}-\sum m_{i} \beta_{i}$, where $m_{i} \in Z, i=1, \ldots, l$, then $\alpha \in M_{+}{ }^{r}$.

Proof. Let F_{i} be a non-zero root vector in g corresponding to $-\beta_{i}, i=1, \ldots, l$. Let X_{τ} be non-zero in g_{γ}.

We prove Lemma 4.1 by induction on $\sum\left|m_{i}\right|=m$. If $m=1$, then $\alpha=\gamma^{\tau}-\beta_{j}\left(\gamma^{r}+\beta_{j} \notin \Delta\right)$. Since $\alpha \in \Delta$, we have $\left[F_{j}, X_{r}\right] \neq 0$ and $\left[F_{j}, X_{r}\right]$ $\in g_{\alpha}$. But $\rho_{i}{ }^{+}\left(F_{j}\right) X_{r}=\left[F_{j}, X_{\tau}\right]$ and thus $g_{\alpha} \subset W^{r}$. And hence $\alpha \in M_{+}{ }^{r}$. Thus the result is true for $m=1$.

Assume that the result is true for $m=k$. Assume that $m=k+1$. By Lemma 2.1, either $\alpha-\gamma^{r} \in \Delta$ or $\alpha+\epsilon_{j} \beta_{j} \in \Delta$ for some j, where $\left|m_{j}\right| \geqslant 1$ and $\epsilon_{j}=m_{j} /\left|m_{j}\right|$. If $\alpha-\gamma^{r} \in \Delta$, then $\sum m_{j} \beta_{j} \in \Delta$ and thus by Lemma 2.2 we have $\sum m_{i} \beta_{i} \in \Delta_{1}$. Let $\delta=\sum m_{i} \beta_{i}$ and let X be a non-zero root vector in g corresponding to $-\delta$. Then, as above, $\rho_{r}{ }^{+}(X) X_{r} \neq 0$; thus $\alpha \in M_{+}{ }^{r}$. If $\alpha+\epsilon_{j} \beta_{j} \in \Delta$, then

$$
\alpha+\epsilon_{j} \beta_{j}=\gamma^{\tau}-\sum \epsilon_{i}\left(\left|m_{i}\right|-\delta_{i j}\right) \beta_{i} .
$$

Since $\alpha+\epsilon_{j} \beta_{j} \in M^{r}$ and $\sum\left(\left|m_{i}\right|-\delta_{i j}\right)=k$, we see by the inductive hypothesis that $\alpha+\epsilon_{j} \beta_{j} \in M_{+}{ }^{r}$. Now, as above, $\rho_{r}{ }^{+}(Y) Z$ is non-zero in $g_{\alpha}\left(Y \in g_{-\epsilon j \beta j}, Y \neq 0\right.$, and $\left.Z \in g_{\alpha+\epsilon \beta \beta j}, Z \neq 0\right)$; thus $\alpha \in M_{+}{ }^{r}$.

Lemma 4.2. Let $\alpha, \beta \in M^{r}$. If $\alpha=\sum\left(m_{i} / p\right) \beta_{i}$ and $\beta=\sum\left(n_{i} / p\right) \beta_{i}$ with $m_{i}, n_{i} \in Z, i=1, \ldots, l$, then $m_{i} \equiv n_{i}(\bmod p), i=1, \ldots, l$.

Proof. $M^{r}=\left\{\alpha \in \Delta \mid \alpha=s \gamma+\sum_{i>1} s_{i} \beta_{i}, s \equiv r(\bmod p)\right\}\left(\right.$ notice that s, s_{i} in the above are all integers of the same sign).

Assume that $\gamma=\sum\left(q_{i} / p\right) \beta_{i}$ (notice that $q_{1}=1$).

$$
\alpha=s \gamma+\sum_{i>1} s_{i} \beta_{i}, \quad s, s_{i} \in Z, s \equiv r(\bmod p),
$$

and

$$
\beta=t \gamma+\sum_{i>1} t_{i} \beta_{i}, \quad t, t_{i} \in Z, t \equiv r(\bmod p)
$$

Hence

$$
\alpha=s / p \beta_{1}+\sum\left(s q_{i}+p s_{i}\right) / p \beta_{i} \quad \text { and } \quad \beta=t / p \beta_{1}+\sum\left(t q_{i}+p t_{i}\right) / p \beta_{i} .
$$

$m_{1}=s, m_{i}=s q_{i}+p s_{i}, n_{1}=t, n_{i}=t q_{i}+p t_{i}, i+2, \ldots, l$. Clearly $m_{1} \equiv n_{1}$ $(\bmod p)\left(\right.$ by definition of $\left.M^{r}\right), m_{i} \equiv s q_{i}(\bmod p)$, and $n_{i} \equiv t q_{i}(\bmod p)$, and hence $m_{i} \equiv r q_{i}(\bmod p)$ and $n_{i} \equiv r q_{i}(\bmod p)$. Thus $m_{i} \equiv n_{i}(\bmod p)$.

Using Lemmas 4.1 and 4.2, we can now prove the main result of this section:
Theorem 4.1. Let p, g_{1}, P_{1}, ρ be as defined in the beginning of this section. Then the number of irreducible components of the representation $\left(\rho, P_{1}\right)$ is exactly $p-1$.

Proof. Using the above notation we need only to show that $M^{r}=M_{+}{ }^{r}$. Now Lemma 4.2 says that if $\alpha, \beta \in M^{r}$, then $\alpha-\beta=\sum r_{i} \beta_{i}$ with $r_{i} \in Z$. In particular, this says that for each $\alpha \in M^{r}, \gamma^{r}-\alpha=\sum r_{i} \beta_{i}$ with $r_{i} \in Z$, $i=1, \ldots, l$. And this says that $\alpha=\gamma^{r}-\sum r_{i} \beta_{i}$ with $r_{i} \in Z, i=1, \ldots, l$. Lemma 4.1 implies that $\alpha \in M_{+}{ }^{r}$. Thus $M^{r} \subset M_{+}{ }^{r}$. Since $M_{+}{ }^{r} \subset M_{r}$, we have shown that $M_{+}{ }^{r}=M^{r}$. And the theorem is proved.

Restricting Theorem 4.1 to the case $p=2$, we have
Corollary to Theorem 4.1. If g_{1}, ρ, P_{1} are as above and $p=2$, then (ρ, P_{1}) is an irreducible representation of g_{1}.
5. Conjugacy theorems. Let g, h, Δ, and l be as in the preceding sections. Let $\tilde{W}(\Delta)$ be the group of all rotations of Δ. Let $W(\Delta)$ be the (normal) subgroup generated by the Weyl reflections of Δ.

Definition 5.1. If Δ_{1} and Δ_{2} are two subsets of Δ, then they are said to be conjugate if there is a $\sigma \in \tilde{W}(\Delta)$ such that $\sigma \Delta_{1}=\Delta_{2}$.

The main purpose of this section is to sketch a proof of
Theorem 5.1. Let Δ_{1} and Δ_{2} be maximal subsystems of Δ and assume that they have the same structure. Assume that Δ is connected (i.e., g is simple). Then
(1) if Δ_{1}, Δ_{2} are l maximal with the same characteristic, they are conjugate;
(2) if Δ_{1}, Δ_{2} are $l-1$ maximal, they are conjugate.

We know of no proof of this theorem that is completely independent of the classification of simple Lie algebras over an algebraically closed field of characteristic 0 .

A proof of Theorem 5.1 (1) for the case $p=2$ and Theorem 5.1 (2) can be found in (7). The proof is essentially a case-by-case check using weak forms of the results of this paper.

The following lemma can be proved using the techniques of Dynkin's classification of complex simple Lie algebras (that is, the use of $1,2,3,4$, and 6, pp. 130-131 in Jacobson (4)).

Lemma 5.1. Assume g is simple and g is not B_{2}, G_{2}, or F_{4}. Let π be a fundamental system for Δ. If π_{1} and π_{2} are subsets of π that contain $l-1$ elements and if π_{1} and π_{2} have the same diagram, then there is a $\tau \in \tilde{W}(\Delta)$ such that $\tau \pi=\pi$ and $\tau \pi_{1}=\pi_{2}$.

Using Lemma 5.1 we can prove
Proposition 5.1. Let Δ_{1} and Δ_{2} be $l-1$ maximal subsystems of Δ. If $\Delta \neq B_{2}$, G_{2}, or F_{4} and if Δ_{1} and Δ_{2} have the same structure, then Δ_{1} and Δ_{2} are conjugate.

Proof. Let π be a fixed fundamental system for Δ. By Lemma 2.3 we know that there are fundamental systems π_{1} and π_{2} of Δ such that

$$
\left|\Delta_{1} \cap \pi_{1}\right|=\left|\Delta_{2} \cap \pi_{2}\right|=l-1
$$

$(|A|$ means the cardinality of $A)$.
Let $\sigma_{1}, \sigma_{2} \in W(\Delta)$ be such that $\sigma_{i} \pi_{i}=\pi, i=1,2$. Then $\sigma_{1}\left(\Delta_{1} \cap \pi_{1}\right)$ and $\sigma_{2}\left(\Delta_{2} \cap \pi_{2}\right)$ are subsets of π containing $l-1$ elements and having the same Dynkin diagram. Thus there is a $\tau \in \tilde{W}(\Delta)$ such that

$$
\tau \sigma_{1}\left(\pi_{1} \cap \Delta_{1}\right)=\sigma_{2}\left(\pi_{2} \cap \Delta_{2}\right) .
$$

Thus

$$
\sigma_{2}^{-1} \tau \sigma_{1}\left(\pi_{1} \cap \Delta_{1}\right)=\pi_{2} \cap \Delta_{2}
$$

This implies that $\sigma_{2}^{-1} \tau \sigma_{1} \Delta_{1}=\Delta_{2}$. And the proposition is proved.
Lemma 5.1 and Proposition 5.1 do not extend to the case $g=B_{2}, G_{2}$, or F_{4}. Consider, for example,

$$
B_{2}=\underset{\alpha_{1}}{\circ} \Rightarrow \underset{\alpha_{2}}{\circ}
$$

If $\Delta_{1}=\left\{\alpha_{1},-\alpha_{1}\right\}, \Delta_{2}=\left\{\alpha_{2},-\alpha_{2}\right\}$. Then if there were a $\tau \in \tilde{W}(\Delta)$ such that $\tau \Delta_{1}=\Delta_{2}$, then $\tau \alpha_{1}= \pm \alpha_{2}$, and we would have $\left\langle\tau \alpha_{1}, \tau \alpha_{1}\right\rangle \neq\left\langle\alpha_{1}, \alpha_{1}\right\rangle$. Thus τ would not be an isometry, which is impossible.

Using Proposition 5.1 we can prove (2) of Theorem 5.1.

Proof of Theorem 5.1 (2). If $g=G_{2}$ or F_{4}, then if Δ_{1} is maximal, it is l maximal. If $g=B_{2}$, then a fundamental system of Δ is

$$
\pi=\underset{\alpha_{1}}{\circ} \Rightarrow \underset{\alpha_{2}}{\circ}
$$

The subset $\left\{\alpha_{1}\right\}$ of π corresponds to a 1 -maximal subsystem in Δ that is also maximal in Δ. The subset $\left\{\alpha_{2}\right\}$ does not. Thus every 1-maximal, maximal subsystem of Δ is conjugate to $\left\{\alpha_{1},-\alpha_{1}\right\}$. All other cases of Theorem 5.1 (2) are taken care of by Proposition 5.1.

To prove Part (1) of Theorem 5.1 we shall need
Lemma 5.2. Let Δ_{1} and Δ_{2} be two l maximal subsystems of Δ of characteristic p such that Δ_{1} and Δ_{2} contain respectively $\tilde{\Delta}_{1}$ and $\tilde{\Delta}_{2}, l-1$ maximal subsystems of Δ. If $\tilde{\Delta}_{1}$ and $\tilde{\Delta}_{2}$ are conjugate, then Δ_{1} and Δ_{2} are conjugate.

Proof. Let $\sigma \in \tilde{W}(\Delta)$ be such that $\sigma \tilde{\Delta}_{1}=\tilde{\Delta}_{2}$. Then $\sigma \Delta_{1} \cap \Delta_{2} \supset \tilde{\Delta}_{2}$. Let π be a fundamental system of Δ such that $\left|\pi \cap \Delta_{2}\right|=l-1$. Let $\pi=\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ and $\pi \cap \tilde{\Delta}_{2}=\left\{\alpha_{2}, \ldots, \alpha_{l}\right\}$. By the definition of characteristic,

$$
\begin{aligned}
\sigma \Delta_{1} & =\left\{\alpha \in \Delta \mid \alpha=\sum s_{i} \alpha_{i}, s_{1} \equiv 0(\bmod p)\right\} \\
\Delta_{2} & =\left\{\alpha \in \Delta \mid \alpha=\sum s_{i} \alpha_{i}, s_{1} \equiv 0(\bmod p)\right\}
\end{aligned}
$$

Thus $\Delta_{1}=\Delta_{2}$, which was to be proved.
Corollary to Lemma 5.2. If $g \neq B_{2}, G_{2}$, or F_{4} and if Δ_{1} and Δ_{2} are l maximal subsystems of characteristic p in Δ such that $\Delta_{1} \supset \tilde{\Delta}_{1}, \Delta_{2} \supset \tilde{\Delta}_{2}$ where $\tilde{\Delta}_{1}$ and $\tilde{\Delta}_{2}$ are $l-1$ maximal subsystems of Δ with the same structure, then Δ_{1} and Δ_{2} are conjugate.

In order to prove Theorem 5.1 (1) we must still study B_{2}, G_{2}, and F_{4} individually. The proofs for B_{2} and G_{2} are simple (using the same technique as the proof of Theorem 5.1 (2) for B_{2}). For F_{4} the proof is slightly more difficult.

In the general case for $g \neq B_{2}, G_{2}$, or F_{4} the proof goes as follows.
Let π_{1} and π_{2} be fundamental systems for Δ_{1} and Δ_{2}. (We assume that Δ_{1} and Δ_{2} have the same structure and characteristic.) Write out the diagrams of π_{1} and π_{2}. If there is a deletable element (see §2) $\beta_{i} \in \pi_{i}, i=1,2$, such that $\left\{\pi_{1}-\beta_{1}\right\}$ and $\left\{\pi_{2}-\beta_{2}\right\}$ have the same structure, then by the corollary to Lemma $6.2 \Delta_{1}$ and Δ_{2} are conjugate. (This condition is in fact necessary and sufficient.) We are now left with a case-by-case determination which is a rather straightforward computation.

The case $p=2$ of Theorem 5.1 has interesting applications (see §6) and in this case the proof is much simpler. We can use the corollary to Theorem 4.1 and study the irreducible representations as in $\S 4$ to give a proof.

Lemma 5.2. Suppose Δ_{1} and Δ_{2} are l maximal subsystems of Δ of characteristic 2 with the same structure. Suppose that π_{1} and π_{2} are fundamental systems of Δ_{1} and Δ_{2} respectively and that β and γ are the respective highest weights of the representa-
tions defined in $\S 4$ corresponding to Δ_{1} and Δ_{2} with respect to π_{1} and π_{2}. Finally suppose that there is an ordering of $\pi_{1}\left(o f \pi_{2}\right)$ in a Dynkin diagram such that $\pi_{1}=\left\{\beta_{1}, \ldots, \beta_{l}\right\}\left(\pi_{2}=\left\{\gamma_{l}, \ldots, \gamma_{l}\right\}\right)$ and $\beta=\sum\left(k_{i} / 2\right) \beta_{i}, \gamma=\sum\left(k_{i} / 2\right) \gamma_{i}$. Then Δ_{1} and Δ_{2} are conjugate. (The diagrams above differ only in labels.)

Proof. Let σ be the linear map of $\{\Delta\}_{Q}$ to $\{\Delta\}_{Q}$ such that $\sigma \beta_{i}=\gamma_{i}, i=1, \ldots, l$. Clearly σ is an isometry with respect to $\langle. \ldots, \ldots\rangle$.

If we can show that $\sigma \Delta=\Delta$, then Δ_{1} and Δ_{2} will be conjugate. Every element of $\Delta-\Delta_{1}$ can be written in the form

$$
\alpha=\beta-\beta_{i_{1}}-\beta_{i_{2}}-\ldots-\beta_{i_{r}}
$$

where $\beta-\beta_{i_{1}}-\ldots-\beta_{i_{k}} \in \Delta-\Delta_{1}$ for $1 \leqslant k \leqslant r$ and $\beta_{i_{j}} \in \pi_{1}, j=1, \ldots, r$. Let us say α is in the r th level. We shall show that $\sigma\left(\Delta-\Delta_{1}\right) \subset \Delta$ by induction on r.

If α is in the first level, then $\alpha=\beta-\beta_{i_{1}}$. Thus $\left\langle\beta, \beta_{i_{1}}\right\rangle>0\left(\beta+\beta_{i_{1}} \notin \Delta\right)$ and hence $\sigma \alpha=\gamma-\gamma_{i_{1}}$. But $\left\langle\gamma, \gamma_{i_{1}}\right\rangle=\left\langle\beta, \beta_{i_{1}}\right\rangle>0$. Hence $\gamma-\gamma_{i_{1}} \in \Delta$. And hence $\sigma \alpha \in \Delta$. Suppose true for all α with level less than r. We shall show that the result is true for r. Let α be on the r th level. Then $\alpha+\beta_{j}$ $\in \Delta+\Delta_{1}$ for some $1 \leqslant j \leqslant l$ and $\alpha+\beta_{j}$ is on the $(r-1)$ th level. Consider the β_{j} string containing $\alpha+\beta_{j}$. That is

$$
\left(\alpha+\beta_{j}\right)-k \beta_{j}, \ldots, \alpha+\beta_{j},\left(\alpha+\beta_{j}\right)+\beta_{j}, \ldots,\left(\alpha+\beta_{j}\right)+s \beta_{j} .
$$

Then $2\left\langle\alpha+\beta_{j}, \beta_{j}\right\rangle /\left\langle\beta_{j}, \beta_{j}\right\rangle=k-s$. But σ is an isometry and $\sigma\left(\left(\alpha+\beta_{j}\right)\right.$ $\left.+t \beta_{j}\right) \in \Delta$ for $t=0,1, \ldots, s$ by the inductive hypothesis. Thus

$$
\sigma\left(\alpha+\beta_{j}\right)-\sigma \beta_{j}, \ldots, \sigma\left(\alpha+\beta_{j}\right)-k \sigma \beta_{j} \in \Delta
$$

and in particular $\sigma \alpha \in \Delta$. Thus the lemma is proved.
We complete the proof of Theorem 5.1 in the special case of characteristic 2 by including a table of the possible conjugacy classes of l maximal subsystems of the root system of each simple Lie algebra, and the corresponding highest weight. In Table I, the column g corresponds to the class of the simple Lie algebra g under consideration. The column π corresponds to a fundamental system for the root system under consideration. The next columns refer to the subsystem

$$
\Delta_{k}=\left\{\alpha \in \Delta \mid \alpha=\sum m_{i} \alpha_{i} \text { where } m_{k} \equiv 0(\bmod 2)\right\} .
$$

If in the column β_{k} there is a " - ," then we know that Δ_{k} is not l maximal. If there is an expression that corresponds to a root in Δ in the column β_{k}, then this means that $\left\{\beta_{k}, \pi-\left\{\alpha_{k}\right\}\right\}$ is a fundamental system for Δ_{k}. The column π_{k} gives a Dynkin diagram $\pi_{k}=\left\{\beta_{k}, \pi-\left\{\alpha_{k}\right\}\right\}$. The column g_{k} corresponds to the subalgebra of g that corresponds to Δ_{k} as defined at the beginning of $\S 4$. The column γ_{k} is a list of the highest weights of the representations corresponding to g_{k} in g defined in $\S 4$. We only include an expression for γ_{k} in the case when Δ_{k} is l maximal.

TABLE I

g	π	β_{k}	π_{k}	γ_{k}	g_{k}
	$\begin{array}{ccc} \circ-\mathrm{O} & \cdots \\ \alpha_{1} & \alpha_{2} & \alpha_{l} \end{array}$		$\begin{array}{cccc} \circ-0 \cdots & \cdots & 0 & 0 \\ \alpha_{1} & \alpha_{2} & \alpha_{k-1} & \alpha_{k+1} \alpha_{k+2} \end{array} \alpha_{l}$		A_{k-1}
	$\begin{aligned} & \circ-\mathrm{O} \cdot \mathrm{O} \Leftrightarrow \mathrm{O} \\ & \alpha_{1} \quad \alpha_{2} \alpha_{l-1} \alpha_{l} \end{aligned}$	$k=1$	$\begin{aligned} & 0-0 \cdots \circ \Leftarrow 0 \\ & \alpha_{2} \quad \alpha_{3} \alpha_{l-1} \alpha_{l} \end{aligned}$		B_{l-1}
		$\begin{aligned} k & >1 \\ \alpha_{k-1} & +2 \sum_{i=k}^{l} \alpha_{i} \end{aligned}$		$\frac{1}{2} \beta_{k}+\frac{1}{2} \alpha_{k-1}+\sum_{i \neq k: k-1} \alpha_{i}$	$D_{k} \times \bar{B}_{l-k}$
	$\begin{aligned} & \circ-\mathrm{O} \cdots \mathrm{O} \Rightarrow \mathrm{O} \\ & \alpha_{1} \quad \alpha_{2} \alpha_{l-1} \alpha_{l} \end{aligned}$	$k=l$	$\begin{array}{llll} \circ & \cdots & \cdots \\ \alpha_{1} & \alpha_{2} & \alpha_{l-1} \\ \hline \end{array}$		A_{l-1}
		$\begin{gathered} k<l \\ 2 \sum_{i=k}^{t=1} \alpha_{i}+\alpha_{\imath} \end{gathered}$	$\begin{array}{llllll} 0 & \cdots & \cdots \Rightarrow 0 & 0 & \cdots 0 \Rightarrow 0 \\ \alpha_{1} & \alpha_{2} & \alpha_{k-1} \beta_{k} & \alpha_{k+1} & \alpha_{l-1} \alpha_{l} \end{array}$	$\frac{1}{2}\left(\beta_{k}+\alpha_{l}\right)+\sum_{i \neq k, l} \alpha_{i}$	$C_{k} \times C_{l-1}$
		$k=l$	$\begin{aligned} & \circ-\mathrm{o-} \mathrm{\cdots-0} \\ & \alpha_{1} \\ & \alpha_{2} \end{aligned} \alpha_{l-1}$		A_{l-1}
		$k=1$	$\begin{array}{ccc} \alpha_{2} & \alpha_{3} & \alpha_{l-2} _{0} \\ & \alpha_{l} \end{array}$		D_{l-1}
		$\begin{gathered} 1<k \leqslant l-2 \\ \alpha_{k-1}+2 \sum_{k}^{l-2} \alpha_{i}+\alpha_{l-1}+\alpha_{l} \end{gathered}$		$\frac{1}{2}\left(\beta_{k}+\alpha_{k-1}+\alpha_{l}+\alpha_{l-1}\right)+\sum_{i \neq k, k-1, l, l-1} \alpha_{i}$	$D_{k} \times D_{l-k}$
P_{6}		$k=1$			$D_{5}{ }^{\text {a }}$
		$\begin{gathered} k=2 \\ \alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+\alpha_{4}+\alpha_{6} \end{gathered}$	$\begin{array}{ccccc} 0-0 & 0 & 0 & 0 & \circ \\ \beta_{2} & \alpha_{5} & \alpha_{4} & \alpha_{3} & \alpha_{6} \end{array}$	$\frac{1}{2} \beta_{2}+\alpha_{5}+\frac{3}{2} \alpha_{4}+\alpha_{3}+\frac{1}{2} \alpha_{6}+\frac{1}{2} \alpha_{1}$	$A_{5} \times A_{1}$
		$\begin{gathered} k=3 \\ \alpha_{2}+2 \alpha_{3}+\alpha_{4}+\alpha_{6} \end{gathered}$	$\begin{array}{llll} \circ-\mathrm{O}-\mathrm{O}-\mathrm{O} & \mathrm{O} & \circ \\ \alpha_{2} & \alpha_{1} & \beta_{3} & \alpha_{5} \end{array} \alpha_{4} \alpha_{6}$	$\frac{1}{2} \alpha_{2}+\alpha_{1}+\frac{3}{2} \beta_{3}+\alpha_{5}+\frac{1}{2} \alpha_{4}+\frac{1}{2} \alpha_{6}$	$A_{5} \times A_{1}$
		$\begin{gathered} k=6 \\ \alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+2 \alpha_{4} \\ \quad+\alpha_{5}+2 \alpha_{6} \end{gathered}$	$\begin{array}{llll} 0-0-0 & 0-0 & 0 \\ \alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} \end{array} \alpha_{5} \quad \beta_{6}$	$\frac{1}{2} \alpha_{1}+\alpha_{2}+\frac{3}{2} \alpha_{3}+\alpha_{4}+\frac{1}{2} \alpha_{5}+\frac{1}{2} \beta_{6}$	$A_{5} \times A_{1}$
i_{7}		$\begin{gathered} k=1 \\ 2 \alpha_{1}+3 \alpha_{2}+4 \alpha_{3}+3 \alpha_{4} \\ +2 \alpha_{5}+\alpha_{6}+2 \alpha_{7} \end{gathered}$		$\frac{1}{2} \alpha_{6}+\alpha_{5}+\frac{3}{2} \alpha_{4}+2 \alpha_{3}+\frac{3}{2} \alpha_{2}+\alpha_{7}+\frac{1}{2} \beta_{1}$	$D_{6} \times A_{1}$
		$\begin{gathered} k=2 \\ \alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+\alpha_{4}+\alpha_{7} \end{gathered}$		${ }_{\frac{1}{2}} \alpha_{7}+\alpha_{3}+\frac{3}{2} \alpha_{4}+2 \alpha_{5}+\frac{3}{2} \beta_{2}+\alpha_{6}+\frac{1}{2} \alpha_{1}$	$D_{6} \times A_{1}$
		$\begin{gathered} k=3 \\ \alpha_{2}+2 \alpha_{3}+\alpha_{4}+\alpha_{7} \end{gathered}$		$\frac{1}{2} \alpha_{2}+\alpha_{1}+\frac{3}{2} \beta_{3}+2 \alpha_{5}+\frac{3}{2} \alpha_{7}+\alpha_{6}+\frac{1}{2} \alpha_{7}$	$D_{6} \times A_{1}$
		$\begin{gathered} k=4 \\ \alpha_{2}+2 \alpha_{3}+2 \alpha_{4}+\alpha_{6}+\alpha_{7} \end{gathered}$	$\begin{array}{lllllllllllllll} \alpha_{5} & \alpha_{6} & \beta_{4} & \alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{7} \end{array}$	$\frac{1}{2} \alpha_{5}+\alpha_{6}+\frac{3}{2} \beta_{4}+2 \alpha_{1}+\frac{3}{2} \alpha_{2}+\alpha_{3}+\frac{1}{2} \alpha_{7}$	A_{7}
		$\begin{gathered} k=5 \\ \alpha_{2}+2\left(\alpha_{3}+\alpha_{4}+\alpha_{5}\right) \\ +\alpha_{6}+\alpha_{7} \end{gathered}$		$\frac{1}{2} \beta_{5}+\alpha_{1}+\frac{3}{2} \alpha_{2}+2 \alpha_{3}+\frac{3}{2} \alpha_{7}+\alpha_{4}+\frac{1}{2} \alpha_{6}$	$D_{6} \times A_{1}$
		$k=6$			E_{6}
		$\begin{gathered} k=7 \\ \alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+2 \alpha_{4} \\ +\alpha_{5}+2 \alpha_{7} \end{gathered}$	$\begin{array}{ccccc} 0 & 0 & 0 & 0 & 0 \\ \alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} & \alpha_{5} \end{array} \alpha_{6} \beta_{7}$	$\frac{1}{2} \alpha_{1}+\alpha_{2}+\frac{3}{2} \alpha_{3}+2 \alpha_{4}+\frac{3}{2} \alpha_{5}+\alpha_{6}+\frac{1}{2} \beta_{7}$	A_{7}

TABLE I (Continued)

In the case A_{l} there are no l maximal subsystems. In the case B_{l} all of the classes l maximal subsystems with characteristic 2 as shown in Table I are distinct. Thus Theorem 3.1 (2) contains Theorem 5.1 (b) in the case B_{l}. In case C_{l}, Δ_{k} has the same structure as Δ_{r} if and only if $r+k=l$. And in this case Lemma 5.3 proves Theorem 5.1 (b). In the case D_{l} we have the same situation as in C_{l}. In the case F_{4} we see that Δ_{1} and Δ_{2} are conjugate and Δ_{3} and Δ_{4} are conjugate by Lemma 5.3. In case G_{2} we have Δ_{1} conjugate to Δ_{2}. The tables and Lemma 5.3 complete the proof for $E_{l}, l=6,7,8$. We have thus proved Theorem 5.1 completely for $l-1$ maximal, maximal systems and l maximal systems of characteristic 2 .
6. On the classification of real simple Lie algebras. The results stated without proof in this section can be found in (7) and for the most part in (5). Let g be a complex simple Lie algebra, h a Cartan algebra with $\operatorname{dim} h=l$, u a compact form of g such that $u \cap h$ is maximal abelian in u, Δ the root system of g with respect to h, and π a fundamental system of Δ.

A fundamental result of E. Cartan states that up to isomorphism every real form g_{0} of g can be found as follows:

Let A be an involutive automorphism of u (i.e. $A^{2}=1$). Let $u_{A}{ }^{+}=$ $\{X \in u \mid A X=X\}$ and $u_{A}{ }^{-}=\{X \in u \mid A X=-X\}$. Then

$$
g_{A}=u_{A}++\sqrt{ }(-1) \cdot u_{A}^{-}=g_{0} .
$$

Furthermore, if A and B are involutive automorphisms of u, then g_{A} and g_{B} are isomorphic if and only if there is an automorphism C of u such that $C^{-1} A C=B$.

An algebraic proof of this result can be found in (7).
Definition 6.1. Let A and B be involutive automorphisms of $u . A$ and B are said to be equivalent (written $A \equiv B$) if there is an automorphism C of u such that $C A C^{-1}=B$.

Thus, to classify all real forms of g up to isomorphism we need only classify all involutive automorphisms of u up to equivalence.

Let $I(\pi)$ be the set of rotations σ of Δ such that $\sigma^{2}=1$ and $\sigma \pi=\pi$. Let $\pi=\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ and let X_{i} be a non-zero element of the root space with respect to h for α_{i}, Y_{i} be a non-zero element of the root space for $-\alpha_{i}$. For each $\tau \in I(\pi)$ let $i \rightarrow i^{\prime}$ denote the corresponding permutation of $\{1, \ldots, l\}$. Define $T X_{i}=X_{i^{\prime}}, T Y_{i}=Y_{i^{\prime}}, i=1, \ldots, l$. Since $X_{1}, \ldots, X_{l}, Y_{1}, \ldots, Y_{l}$ generate g, T defines an involutive automorphism of g and of u. We call T the canonical automorphism of u associated with τ. For simplicity we use the same notation for $I(\pi)$ and the canonical automorphisms associated with $I(\pi)$.

Theorem 6.1 (Gantmacher). Every involutive automorphism of u is equivalent to an automorphism of the form $T \exp (\sqrt{ }(-1) \cdot \pi \operatorname{ad}(H))$ where $T \in I(\pi)$, $H \in \sqrt{ }(-1) .(h \cap u)$ and $T H=H$.

For a proof of Theorem 6.1, see (7).
If $T \exp (\sqrt{ }(-1) \cdot \pi \operatorname{ad}(H))$ is involutive and $T H=H, T \in I(\pi)$, then since $T^{2}=1$, we must have $\exp (\sqrt{ }(-1) \cdot \pi \operatorname{ad}(H))$ is involutive. Since $H \in \sqrt{ }(-1) .(h \cap u)$, this implies that $\alpha(H)$ is an integer for each $\alpha \in \Delta$. Set

$$
\Delta_{H}{ }^{+}=\{\alpha \in \Delta \mid \alpha(H) \equiv 0(\bmod 2)\}
$$

and

$$
\Delta_{H}^{-}=\Delta-\Delta_{H}^{+}=\{\alpha \in \Delta \mid \alpha(H) \equiv 1(\bmod 2)\}
$$

Since $T H=H$, we have $\tau \Delta_{H}{ }^{+}=\Delta_{H}{ }^{+}$.
Proposition 6.1. Let T, H, and $\Delta_{H}{ }^{+}$be as above. Then $\Delta_{H}{ }^{+}$is a maximal subsystem of Δ. If $\Delta_{H}{ }^{+}$is l maximal, then it has characteristic 2 . Conversely, every l maximal, subsystem of characteristic 2 or $l-1$ maximal subsystem Δ_{1} of Δ such that $\tau \Delta_{1}=\Delta_{1}$ corresponds to an involutive automorphism $T \exp (\sqrt{ }(-1) . \pi$ $\operatorname{ad}(H))$, where $T \in I(\pi), T H=H$, and $H \in \sqrt{ }(-1) .(h \cap u)$.

To prove Proposition 6.1 we use the following lemma of Hano and Matsushima (3).

Lemma. Suppose Δ_{1} and Δ_{2} are subsystems of Δ and suppose that $\Delta_{1} \cup \Delta_{2}=\Delta$. Then one of Δ_{1} or Δ_{2} is Δ.

Proof of Proposition 6.1. We first show that $\Delta_{H}{ }^{+}$is maximal in Δ. Let $\beta \in \Delta-\Delta_{H}{ }^{+}$. Set $\tilde{\Delta}=\left\{\Delta_{H}{ }^{+}, \beta\right\}_{Z} \cap \Delta$. Clearly $\tilde{\Delta}$ is a subsystem of Δ. Furthermore, if we show that $\tilde{\Delta}=\Delta$ for arbitrary β, Lemma 2.2 tells us that $\Delta_{H}{ }^{+}$is maximal in Δ.

To this end we consider $\Delta-\tilde{\Delta}=\Delta^{\prime}$. Notice that $\Delta^{\prime} \subset \Delta_{H}{ }^{-}$. Furthermore, we note that if $\gamma, \alpha \in \Delta_{H^{-}}$and $\alpha+\gamma \in \Delta$, then $\alpha+\gamma \in \Delta_{H}{ }^{+}$. We shall show that $\Delta^{\prime} \cup \Delta_{H^{+}}$is a subsystem of Δ. If $\alpha \in \Delta^{\prime}$, clearly $-\alpha \in \Delta^{\prime}$. If $\alpha \in \Delta^{\prime}$ and $\gamma \in \Delta_{H}{ }^{+}$, suppose that $\alpha+\gamma \in \tilde{\Delta}$. Then

$$
\alpha+\gamma=\sum m_{i} \beta_{i}+m \beta, \quad m_{i} \in Z, m \in Z
$$

But then $\alpha=-\gamma+\sum m_{i} \beta_{i}+m \beta$, which would then say that $a \in \tilde{\Delta}$, contrary to the definition of Δ^{\prime}. Thus $\alpha+\gamma \in \Delta^{\prime}$. Hence $\Delta_{H}+\cup \Delta^{\prime}$ is a subsystem of Δ. But $\Delta=\left(\Delta_{H}{ }^{+} \cup \Delta^{\prime}\right) \cup \tilde{\Delta}$. And since $\beta \notin \Delta_{H}{ }^{+} \cup \Delta^{\prime}$, Lemma 6.1 implies that $\tilde{\Delta}=\Delta$.

We now show that if $\Delta_{H}{ }^{+}$is l maximal, it has characteristic 2 in Δ.
By Theorem 3.1 (2) there is a fundamental system for $\Delta,\left\{\gamma_{1}, \ldots, \gamma_{l}\right\}$ such that $\gamma_{2}, \ldots, \gamma_{l} \in \Delta_{H}{ }^{+} . \alpha \in \Delta_{H}{ }^{+}$if and only if $\alpha(H) \equiv 0(\bmod 2), \alpha \in \Delta$ implies that $\alpha=\sum m_{i} \gamma_{i}$, where the m_{i} 's are all integers of the same sign. $\alpha(H)=\sum m_{i} \gamma_{i}(H)$. Since $\gamma_{i}(H) \equiv 0(\bmod 2)$ for $i=2, \ldots, l$, we have $\alpha(H) \equiv m_{1} \gamma_{1}(H)(\bmod 2) . \gamma_{1} \in \Delta-\Delta_{H}{ }^{+}$; hence $\gamma_{1}(H) \equiv 1(\bmod 2)$. Thus $\alpha \in \Delta_{H}{ }^{+}$if and only if $m_{1} \equiv 0(\bmod 2)$. Thus

$$
\Delta_{H}^{+}=\left\{\alpha \in \Delta \mid \alpha=\sum m_{i} \gamma_{i}, m_{1} \equiv 0(\bmod 2)\right\}
$$

But this says that $\Delta_{H}{ }^{+}$has characteristic 2 or 0 in Δ.
Let Δ_{1} be a maximal subsystem of Δ with characteristic 2 or 0 such that $\tau \Delta_{1}=\Delta_{1}$. Let $\pi_{1}=\left(\Delta-\Delta_{1}\right) \cap \pi$. Clearly $\pi_{1} \neq \emptyset$, since if $\pi_{1}=\emptyset$, then $\Delta_{1}=\Delta$. Let us suppose that $\pi_{1}=\left\{\alpha_{1} \ldots, \alpha_{s}\right\}$. Let

$$
\tilde{\Delta}=\left\{\alpha \in \Delta \mid \alpha=\sum m_{i} \alpha_{i}, \quad \sum_{i=1}^{s} m_{i} \equiv 0(\bmod 2)\right\}
$$

Let H_{1}, \ldots, H_{l} be the elements of h such that $\alpha_{i}\left(H_{j}\right)=\delta_{i j}\left(\delta_{i j}\right.$ the Kronecker delta). Since $\tau \Delta_{1}=\Delta_{1}, \tau\left(\Delta-\Delta_{1}\right)=\Delta-\Delta_{1}$, and $\tau \pi=\pi$, this implies that $\tau \pi_{1}=\pi_{1}$. Hence if we set $H=H_{1}+\ldots+H_{s}$, we have $T H=H$. Furthermore, $\tilde{\Delta}=\Delta_{H}{ }^{+}$. And $\tau \Delta_{H}{ }^{+}=\Delta_{H}{ }^{+}$. If we show that $\tilde{\Delta}=\Delta_{1}$ we shall have completed the proof of Proposition 6.1. Let $\left\{\gamma_{1}, \ldots, \gamma_{l}\right\}$ be a fundamental system for Δ such that

$$
\Delta_{1}=\left\{\alpha \in \Delta \mid \alpha=\sum m_{i} \gamma_{i}, m_{1} \equiv 0(\bmod 2)\right\}
$$

$\left\{\gamma_{1}, \ldots, \gamma_{l}\right\}$ exists by Theorem 3.1 (2). Let $\widetilde{H}_{1}, \ldots, \widetilde{H}_{l}$ in h be defined by $\gamma_{i}\left(\widetilde{H}_{j}\right)=\delta_{i j}$. Then

$$
\Delta_{1}=\left\{\alpha \in \Delta \mid \alpha\left(\widetilde{H}_{1}\right) \equiv 0(\bmod 2)\right\}
$$

Now $\alpha_{i}\left(\tilde{H}_{1}\right) \equiv 1(\bmod 2), i=1, \ldots, s$. Hence if $\alpha \in \Delta_{1}$, then $\alpha=\sum m_{i} \alpha_{i}$ and

$$
\alpha\left(\widetilde{H}_{1}\right)=\sum m_{i} \alpha_{i}\left(\widetilde{H}_{1}\right) \equiv \sum_{i=1}^{s} m_{i} \alpha_{i}\left(\widetilde{H}_{1}\right) \equiv \sum_{i=1}^{s} m_{i}(\bmod 2) .
$$

Since $\alpha\left(\tilde{H}_{1}\right) \equiv 0(\bmod 2)$, this implies that $\Delta_{1} \subset \tilde{\Delta}$ since $\tilde{\Delta} \neq \Delta$. This says that $\Delta_{1}=\Delta_{H}{ }^{+}$.

We next give a more root-theoretic criterion for congruence.
Proposition 6.2. Let $A=\exp (\sqrt{ }(-1) . \pi \operatorname{ad}(H))$ and $B=\exp (\sqrt{ }(-1) . \pi$ $\operatorname{ad}\left(H^{\prime}\right)$) be two involutive automorphisms of u, with $\sqrt{ }(-1) \cdot H, \sqrt{ }(-1) \cdot H^{\prime}$ $\in h \cap u . A \equiv B$ if and only if $\Delta_{H}{ }^{+}$and $\Delta_{H^{\prime}}{ }^{+}$are conjugate.

Proof. Suppose that $\sigma \in \tilde{W}(\Delta)$ is such that $\sigma \Delta_{H^{\prime}}{ }^{+}=\Delta_{H}{ }^{+}$. There is an automorphism S of u such that $S h=h$ and $\sigma \alpha(H)=\alpha\left(S^{-1} H\right)$ for each $H \in h$. Consider

$$
\begin{aligned}
S^{-1} A S & =S^{-1} \exp (\sqrt{ }(-1) \cdot \pi \operatorname{ad}(H)) S=\exp \left(S^{-1} \sqrt{ }(-1) \cdot \pi \operatorname{ad}(H) S\right) \\
& =\exp \left(\sqrt{ }(-1) \cdot \pi \operatorname{ad}\left(S^{-1} H\right)\right)=\exp (\sqrt{ }(-1) \cdot \pi \operatorname{ad}(\widetilde{H}))
\end{aligned}
$$

But

$$
\begin{aligned}
\Delta_{\tilde{H}^{+}} & =\left\{\alpha \in \Delta \mid \alpha\left(S^{-1} H\right) \equiv 0(\bmod 2)\right\} \\
& =\{\alpha \in \sigma \mid \sigma \alpha(H) \equiv 0(\bmod 2)\}=\Delta_{H^{\prime}}{ }^{+}
\end{aligned}
$$

Thus $S^{-1} A S=B$. Hence $A \equiv B$.
Let us suppose that $A \equiv B$; then there is an S in the automorphism group of u such that $S^{-1} A S=B$. Now let U denote the connected component of the identity in the group G of automorphisms of u; then

$$
G=\bigcup_{i=1}^{s} T_{i} U
$$

the components of G with respect to U, and we may assume that $T_{j} h=h$. Thus $S=T_{j} R, R \in U$. Now then $S^{-1} A S=R^{-1} T_{j}^{-1} A T_{j} R$. Hence $T_{j}^{-1} A T_{j}=$ $R B R^{-1}$. But $T_{j}^{-1} A T_{j}$ and B are contained in the maximal torus $\exp (\operatorname{ad}(h \cap u))$ in U and thus there is an element of the normalizer of this torus, V, such that $T_{j}^{-1} A T_{j}=V B V^{-1}$ (see Séminaire "Sophus Lie" (6), Exposé 23). Thus $V^{-1} T_{j}^{-1} A T_{j} V=B$. And $T_{j} V h=h$. Let $\widetilde{S}=T_{j} V$. Let $\tilde{\sigma}$ be the element of $\tilde{W}(\Delta)$ defined by $\tilde{\sigma} \alpha(X)=\alpha\left(\widetilde{S}^{-1} X\right)$ for all $X \in h$. Then $\tilde{\sigma} \Delta_{H^{\prime}}{ }^{+}=\Delta_{H}{ }^{+}$.

Combining Propositions 6.1 and 6.2 and Table I we have thus given a complete classification of all equivalence classes of inner involutive automorphisms.

Lemma 6.1. Let $A=T \exp (\sqrt{ }(-1) \cdot \pi \operatorname{ad}(H))$ be an involutive automorphism of u, where $T \in I(\pi)$ and $T H=H, \sqrt{ }(-1) . H \in u \cap h$. Then $A \equiv$ $T \exp (\sqrt{ }(-1) . \pi \operatorname{ad}(\widetilde{H}))$, where $T \tilde{H}=\tilde{H}$ and if $\alpha_{i} \in \pi-\Delta_{\tilde{H}}{ }^{+}$, then $\tau \alpha_{i}=\alpha_{i}$.

Proof. Let H_{1}, \ldots, H_{l} in h be defined by $\alpha_{i}\left(H_{j}\right)=\delta_{i j}$. Let $\pi_{1}=\pi-\Delta_{H}{ }^{+}$. Assume that $\pi_{1}=\left\{\alpha_{1}, \ldots, \alpha_{s}\right\}$. In the course of the proof of Proposition 6.1 we showed that $\Delta_{H}{ }^{+}=\Delta_{H^{\prime}}{ }^{+}$, where $H^{\prime}=H_{1}+H_{2}+\ldots+H_{s}$ and $T H^{\prime}=H^{\prime}$. Hence $A=T \exp \left(\sqrt{ }(-1) \cdot \pi \operatorname{ad}\left(H^{\prime}\right)\right)$. Suppose $\tau \alpha_{j} \neq \alpha_{j}$ for some j between 1 and s. Let $\tau \alpha_{j}=\alpha_{j^{\prime}}$ (note that $1 \leqslant j^{\prime} \leqslant s$). Set $\hat{H}=\left(H_{j}-H_{j^{\prime}}\right)$. Then $T \hat{H}=-\hat{H}$. Since $T^{2}=1$, this implies that $\hat{H}=(T-1) H^{\prime \prime}$, where $H^{\prime \prime} \in \sqrt{ }(-1) . h \cap u$. Now

$$
H^{\prime}+\hat{H}=2 H_{j}+\sum_{i \neq h, h^{\prime}}^{s} H_{i}
$$

Thus $\exp \left(\sqrt{ }(-1) \cdot \pi \operatorname{ad}\left(H^{\prime}+\hat{H}\right)\right)=\exp (\sqrt{ }(-1) \cdot \pi \operatorname{ad}(\tilde{H}))$, where

$$
\tilde{H}=\sum_{i \neq j, j^{\prime}}^{s} H_{i} .
$$

Now

$$
\begin{aligned}
& \exp \left(\pi \sqrt{ }(-1) \cdot \operatorname{ad}\left(H^{\prime \prime}\right)\right) T \exp \left(\pi \sqrt{ }(-1) \cdot \operatorname{ad}\left(H^{\prime}\right)\right) \exp \left(-\pi \sqrt{ }(-1) \cdot \operatorname{ad}\left(H^{\prime \prime}\right)\right) \\
= & T \exp \left(\pi \sqrt{ }(-1) \cdot \operatorname{ad}\left(H^{\prime}+(T-1) H^{\prime \prime}\right)\right)=T \exp \left(\pi \sqrt{ }(-1) \cdot \operatorname{ad}\left(H^{\prime}+\hat{H}\right)\right) \\
= & T \exp (\pi \sqrt{ }(-1) \cdot \operatorname{ad}(\tilde{H}))
\end{aligned}
$$

Setting $S=\exp \left(\pi \sqrt{ }(-1) \cdot \operatorname{ad}\left(H^{\prime \prime}\right)\right)$, we have thus shown that

$$
S A S^{-1}=T \exp (\pi \sqrt{ }(-1) \cdot \operatorname{ad}(\tilde{H}))
$$

with $\pi-\Delta_{\tilde{H}^{+}}=\pi-\Delta_{H}{ }^{+}-\left\{\alpha_{j}, \tau \alpha_{j}\right\}$. Lemma 6.1 now follows by induction.
Lemma 6.2. If $\tau \in I(\pi)$ and $\tilde{\pi}=\{\alpha \in \pi \mid \tau \alpha=\alpha\}$, then $\tilde{\pi}$ is connected.
Proof. If $\alpha, \beta \in I(\pi)$ and $\alpha, \beta_{1}, \ldots, \beta_{r}, \beta$ is a chain connecting α and β in π (i.e., $\left\langle\alpha, \beta_{1}\right\rangle \neq 0,\left\langle\beta_{i}, \beta_{i+1}\right\rangle \neq 0, i=1, \ldots, r-1,\left\langle\beta_{r}, \beta\right\rangle \neq 0$), then $\tau \alpha, \tau \beta_{1}, \ldots, \tau \beta_{r}, \tau \beta$ is a chain connecting α and β in $\pi(\tau \alpha=\alpha, \tau \beta=\beta)$. If then for some $1 \leqslant k \leqslant r$ we have $\tau \beta_{k} \neq \beta_{k}$, then we would have a "cycle" in π, and this is impossible (see Jacobson (4, p. 130) for the pertinent definitions and theorems). Thus $\tau \beta_{k}=\beta_{k}, k=1, \ldots, r$. Hence $\tilde{\pi}$ is connected.

Let $\tilde{\Delta}$ be the subsystem of Δ generated by $\tilde{\pi}$. We now prove
Lemma 6.3. Let $T \exp (\sqrt{ }(-1) \cdot \pi \operatorname{ad}(H))$ be an involutive automorphism of u such that $T \in I(\pi), \sqrt{ }(-1) . H \in u \cap h$, and $T H=H$. Let H_{1}, \ldots, H_{l} be the elements in h defined by $\alpha_{i}\left(H_{j}\right)=\delta_{i j}$, where $\pi=\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$. Then if $H \neq 0$,

$$
T \exp (\sqrt{ }(-1) \cdot \pi \operatorname{ad}(H)) \equiv T \exp \left(\sqrt{ }(-1) \cdot \pi \operatorname{ad}\left(H_{k}\right)\right)
$$

where $\tau \alpha_{k}=\alpha_{k}$.
Proof. Let $\left\{\alpha_{i_{1}}, \ldots, \alpha_{i_{r}}\right\}=\pi-\Delta_{H}{ }^{+}$. By Lemma 6.2 we may assume that $\alpha_{i j} \in \tilde{\pi}, j=1, \ldots, r$. Furthermore,

$$
\tilde{\Delta} \cap \Delta_{H}{ }^{+}=\{\alpha \in \tilde{\Delta} \mid \alpha(H) \equiv 0(\bmod 2)\}
$$

and thus by Proposition 6.1, $\tilde{\Delta} \cap \Delta_{H}{ }^{+}$is a maximal subsystem of $\tilde{\Delta}$ of characteristic 0 or 2 . Theorem 3.1 (2) says that there is an $\alpha_{i_{k}} \in \tilde{\pi}$ and a $\sigma \in W(\tilde{\Delta})$ such that

$$
\sigma\left(\tilde{\Delta} \cap \Delta_{H}^{+}\right)=\left\{\alpha \in \tilde{\Delta} \mid \alpha=\sum m_{i j} \alpha_{i j}, m_{i k} \equiv 0(\bmod 2)\right\}
$$

Since σ is a product of Weyl reflections, σ can be considered an element of the Weyl group of Δ. Now $\tilde{\pi} \cap \pi-\left(\sigma \Delta_{H}{ }^{+}\right)=\alpha_{i_{k}}$. For simplicity, set $i_{k}=k$. And thus by Lemma 6.1 we have

$$
T \exp (\sqrt{ }(-1) \cdot \pi \operatorname{ad}(H)) \equiv T \exp \left(\sqrt{ }(-1) \cdot \pi \operatorname{ad}\left(H_{k}\right)\right)
$$

Proposition 6.2. $T \exp \left(\sqrt{ }(-1) . \pi \operatorname{ad}\left(H_{k}\right)\right) \equiv T \exp \left(\sqrt{ }(-1) . \pi \operatorname{ad}\left(H_{\tau}\right)\right)$ (where $\alpha_{k}, \alpha_{r} \in \tilde{\pi}$ and H_{k}, H_{r} are as in Lemma 6.1) if ${\Delta_{H_{k}}}^{+} \cap \tilde{\Delta}$ is conjugate to $\Delta_{H_{r}}+\cap \tilde{\Delta}$ in $\tilde{\Delta}$.

TABLE II

\begin{tabular}{|c|c|c|c|c|c|}
\hline g \& π \& τ \& A \& $\tilde{\pi}_{A}$ \& $g_{A}{ }^{+}$

\hline $$
\begin{aligned}
& A_{l} \\
& l=2 p
\end{aligned}
$$ \& $$
\begin{aligned}
& \circ-\mathrm{O} \\
& \alpha_{1} \alpha_{2}
\end{aligned} \alpha_{l-1} \alpha_{l}
$$ \& $$
\tau \alpha_{i}=\alpha_{l+1-i}
$$ \& T \& $$
\begin{aligned}
& 0 — ० \cdots \circ \Leftarrow \circ \\
& \tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{p-1} \tilde{\alpha}_{p}
\end{aligned}
$$ \& B_{p}

\hline $$
\begin{aligned}
& A_{l} \\
& l=2 p+1
\end{aligned}
$$ \& $$
\begin{aligned}
& \circ-\mathrm{O} \cdot \cdots-\mathrm{O} \\
& \alpha_{1} \alpha_{2} \quad \alpha_{l-1} \alpha_{l}
\end{aligned}
$$ \& $\tau \alpha_{i}=\alpha_{l+1-i}$ \& $$
T
$$
$$
T e^{\mathrm{ad} \pi i H_{p+1}}
$$ \& \& C_{p+1}

D_{p+1}

\hline $$
\begin{aligned}
& D_{l} \\
& l>4
\end{aligned}
$$ \& \& $\tau \alpha_{l-1}=\alpha_{l}$ \& \[

T e^{\mathrm{a} \dot{\mathrm{~d}} \pi i H_{k}}

\] \& \[

$$
\begin{aligned}
& \circ-0 \cdots \circ \Leftarrow 0 \\
& \tilde{\tilde{\alpha}}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{l-2} \tilde{\alpha}_{l-1} \\
& \beta_{k}=\sum_{k}^{l} \tilde{\alpha}_{i} \\
& \circ-\bigcirc \cdots \circ \Leftarrow \circ \circ-\cdots \circ \Leftarrow 0 \\
& \tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{k-1} \beta_{k} \tilde{\alpha}_{k+1} \quad \tilde{\alpha}_{l-2} \tilde{\alpha}_{l}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& B_{l-1} \\
& B_{k} \times B_{l-k-1}
\end{aligned}
$$
\]

\hline D_{4} \& \& \[
$$
\begin{aligned}
\tau_{1} \alpha_{1} & =\alpha_{4} \\
\tau_{2} \alpha_{1} & =\alpha_{3} \\
\tau_{3} \alpha_{3} & =\alpha_{4}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
T_{j} j=1,2 \\
T_{3} \\
T_{j} e^{\mathrm{ad} \pi i H_{2}} \\
j=1,2 \\
T_{3} e^{\operatorname{sd} \pi i H_{2}}
\end{gathered}
$$

\] \& \& \[

$$
\begin{aligned}
& B_{3} \\
& B_{3} \\
& B_{2} \times A_{1} \\
& B_{2} \times A_{1}
\end{aligned}
$$
\]

\hline E_{6} \& \& \[
$$
\begin{aligned}
\tau \alpha_{1} & =\alpha_{5} \\
\tau \alpha_{2} & =\alpha_{4}
\end{aligned}
$$

\] \& \[

T
\]

$$
T e^{\mathrm{ad} \pi i H_{3}}
$$

$$
T e^{\mathrm{ad} \pi i H_{6}}
$$ \& \& F_{4}

C_{4}

C

\hline
\end{tabular}

Note. In the above table $\tilde{\alpha}_{i}=\alpha_{i} \mid h_{A^{+}}$, where $h_{A^{+}}=\{H \in h \mid A H=H\} ; g_{A}{ }^{+}=$ $\{X \in h \mid A X=X\}$; and $\tilde{\pi}_{A}$ is a fundamental system for $\tilde{\Delta}$, the set of roots of $g_{A}{ }^{+}$with respect to $h_{A}{ }^{+}$.

Proof. If $\Delta_{H_{k}}{ }^{+} \cap \tilde{\Delta}$ is conjugate to $\Delta_{H_{r}}+\cap \tilde{\Delta}$ in $\tilde{\Delta}$, then the techniques of the proof of Lemma 6.3 will show that $T \exp \left(\sqrt{ }(-1) \cdot \pi \operatorname{ad}\left(H_{k}\right)\right) \equiv$ $T \exp \left(\sqrt{ }(-1) \cdot \pi \operatorname{ad}\left(H_{r}\right)\right)$.

Using Table II, we can now complete the classification of real forms of g. We first note that $I(\pi) \neq\{1\}$ only for A_{l}, D_{l}, E_{6}.

For A_{l} we notice that if l is even and if $\tau \in I(\pi)-\{1\}$, then $\tau \alpha_{k} \neq \alpha_{k}$ for any $\alpha_{k} \in \pi$. Thus Lemma 6.1 implies that up to equivalence the only involutive outer automorphism is T. If l is odd, $l=2 p+1$, then the only fixed point of τ is α_{p+1}; thus up to equivalence we need only consider T and $T \exp (\sqrt{ }(-1)$. π $\operatorname{ad}\left(H_{p+1}\right)$) and these two automorphisms cannot be equivalent because Table II shows that they have non-isomorphic fixed point sets.

In the case of D_{l} for $l>4, \tau \in I(\pi)-\{1\}$, then

$$
\tilde{\pi}=\{\alpha \in \pi \mid \tau \alpha=\alpha\}=\left\{\alpha_{1}, \ldots, \alpha_{l-2}\right\} ;
$$

thus Lemma 6.4 and the classification of inner involutive automorphisms say that $T \exp \left(\sqrt{ }(-1) \cdot \operatorname{ad}\left(H_{i}\right)\right) \equiv T \exp \left(\sqrt{ }(-1) \cdot \operatorname{ad}\left(H_{l-1-i}\right)\right)$ for $1 \leqslant i \leqslant l-1$. Table II shows that every outer involutive automorphism is then conjugate to T or one of the $T \exp \left(\sqrt{ }(-1) \cdot \operatorname{ad}\left(H_{i}\right)\right)$, where $i=1, \ldots, s$ and $s=p+1$ if $l=2 p+s, s=p$ if $l=2 p+2$.
E_{6} and D_{4} are handled similarly.
For the techniques of calculation of the tables the reader may consult the appendix to (7) or (5).

References

1. A. Borel and J. de Siebenthal, Les sous-groupes fermés de rang maximum des groupes de Lie clos, Comment. Math. Helv., 23 (1949), 200-221.
2. E. B. Dynkin, Semi-simple subalgebras of semi-simple Lie algebras, Mat. Sb. 30 (1952); Amer. Math. Soc. Transl., Ser. 2, 6 (1957), 111-244.
3. J. Hano and Y. Matsushima, Some studies on Kählerian homogeneous spaces, Nagoya Math. J., 11 (1957), 78-92.
4. N. Jacobson, Lie algebras (New York, N.Y., 1962).
5. S. Murakami, Sur la classification des algèbres de Lie réelles et simples, Osaka Math. J., 2 (1965), 291-307.
6. Séminaire "Sophus Lie" (mimeographed notes, Ecole Normale Supérieure, Paris, 1955).
7. N. Wallach, A classification of real simple Lie algebras (Thesis, Washington University, St. Louis, 1966).

Washington University, St. Louis, Mo.;
University of California, Berkeley, Calif.

[^0]: Received August 10, 1966.
 Section 6 contains several results of the author's Ph.D. thesis written under the direction of Jun-ichi Hano of Washington University, St. Louis. The author would like to thank Professor Hano for his help in the preparation of the first draft of this work.

