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ABSTRACT

The stability of the triangular Lagrangian solutions for
the photo-gravitational restricted three-body problem in the
three-d imensional case is investigated for the case when the
resonances are absent and also when the resonances are pre-
sent., Stability is proved for most (in the sense of Lebesgue)
initial conditions for all u < Yo except for the resonance
cases,

1. INTRODUCTION

This work is a generalisation over the work by Kumar and
Choudhry (1987,1988) in the sense that here we have taken up
three-dimensional case and a generalisation over Markeev's
work (1972) in the sense that here we have taken ploto-gravi-
tational effects of the tw finites bodies which have been
assumed to be radiating ones as well.

Here we have studied the stability of the triangular
Lagrangian solutions. Since we have tw such solutions situa-
ted symmetrically, so we have taken up the study of the sta-
bility of L, alone and it is claimed that the nature of L5
will be the same.

For the investigation of the stability we have tried to
reduce our Hamiltonian to a form suitable for the application
of Arnold-theory (1963 ). The equations of motion have been
normalised by Birkhoff's transformations. The non-resonace
case has been dealt in section 4 and the resonance cases in
section 5. The resonance case when wl = uwg has not been ta-
ken up.
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2. THE HAMILTONIAN OF THE PERTURBED MOTION

We introduce the rotating coordinate system (0,xyz). Its
origin coincides with 0, the centre of mass of the bodies P
and Py, its Ox-axis is directed towards the body Pp,the Oy-
axis %ies in the rotation plane of the bodies P; and Py per-
pendicular to PyPg and the Oz-axis completes a right-handed
coordinate system with Ox and Oy. We adopt the units of mea-
surement for time and length such that the angular rotational
velocity of the bodies Pl and P2 and the distance between
them are equal to unity.” The sum of masses of Py and Pg
will be taken for unit mass. DBoth of the todies Py and Pg
are taken to be radiating and the reduction factors o and B
are assumed to be such that 0 < a, B < 1 as detailed in the
work (1987).

If x,y,z be the coordinates of the body P and Py ,P,,P,
the corresponding momenta, then the Hamilton function " for
the photo-gravitational restricted three body problem will
take the form:

1 4.2, .2 2
H=7% (gx+ py + Py) + B y-Pox - @ (1-p)/PyP- Bu/P P ()

2
1 (x+u)2 +y + zz.

K
el
i}

)
o]
"

9 (x-1+u )2 + y2 + z2

In the (0,xyz) coordinate system the triangular solution
corresponding to the egquilibrium position L4 is given as

8§ +1 - & _
%o T 2 — My Yo T 887D, 2, =0
Pxo=-6162/b ,Pyo=——-T-—— -4, PXO=0
= &3 = &3
a = 61; B = 62 ’
(62 + 62 - 1)?
b = 1~ -
48262
172

If we make the change of variables
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X =x, *ta, y =73, vt 2z =2, +aqq

o)

|
o
+
H’U
]

=P, + P, .
o y Yo 2 z z, 3

the motion in question will correspond to the equilibrium
position qq =Py = 0 (i =1,2,3).

The Hamiltonian function (i) may be expanded in the nei-
ghbourhood of the equilibrium position as

H=H, + Hj + H +...+ § +... (2)

where H, is a homogeneous function of degree m with respect
to a9y and Py In particular,

Hy = (1/2)(P2 + pa + P2) + Pydy- Dgdy + GoL1-(3/4 ) (L-n)

£267% + uns32}1 /2-(3/2)ay 576/ 6, 8,1 82 (11)E + 62un)

~(1/2)Q203b0 A-u)62 wusdt —11+(1/2)03 3)
By = (1/16)a50 (1-u)E 87" (562-1262) + unsy” (5n°-1262)
+ (3/8)a3a,/ B (1-u)6,67° (5:%-462) + 16y 65° (5n°-462)]

- - 2
+ (3/4)q,a2E87%(1-1) (BbSA-1) + nd,> u(5bso-1)] +

3 -1,_.2 -1,_.2
+ qy/B (1-u)658;" (565b-3) + s 8, (58, b-3)1/2

~(3/4)a;G5T (1-u)E 677 + uné;> -(3/2)aza3 vl (A-u)6,6
+ uslagll “4)
B = -(1/8)q30 A-n)8 036 —as/2)c%62 + 35/16)%)

+us;t363-a5/2)n%63 + (35/16)n" 1]

+ (5/8)a5ay Bl (1) 6,87 £ (3-(7/4)E 6%}

293

https://doi.org/10.1017/50252921100066197 Published online by Cambridge University Press


https://doi.org/10.1017/S0252921100066197

+

- -2

+ (5/4)a, agvBL (1-u)E 6567° (3-752b) +unsy 657 (3-762p)1 +

-2

+ (3/4)quEtll—u)aiz(-1+55§b + (5/4)5251

2.2 -2 2

- 35/005%6567%) + uey (145670 + (5/4)n’s;

- (35/4)n262b6,%11 -(1/8)apl (1-u)82 (3-30bs5 +3563b%)

2

+ u652(3-30b61 + 355ib2)3

2 8

2 -2 - 2 -
+ (3/16)q7a50 -4 (1-u)6] -4n8,” + 5(1-mEZ6]° +
2.~ 2 -2 2
+ 5un?6,°1  ~(3/4)a505L (1-1)8 2 (1-565b) +

-2 2
+ M8y (1-567D)

+ (15/4)/bq112q§[(1-u)552553 + un51653]
4 -2 -2
- (3/8)d3L (1-)87% + uéy” ] 59
where £ = af + 1—52 ,n = af -1-82

3. CHARACTERISTIC ROOTS AND THE FIRST ORDER STABILITY OF THE
TRIANGULAR L IBERATION POINTS

Restricting to alone, we may write down the character-
istic equation in the form

[ A% +22 + oqua-ubl %4y =0 (6)

As in the planar case (1987) the value u = 0.285954 = U,

(say) for b = 1 corresponds to a critical case which needs
special consideration and we shall not take it up here. We
shall investigate the stability for all admissible values of
b for u < My where p, is given by Table-I (1987).

If Wy,0o and wqg be the frequencies, then
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ssaud Aissaaun abplquied Aq auluo paysliand £61990001 L Z625205/£101°01/B10"10p//:sdny

JABLE :
1 1 " a4 Y Y1
L o o o e S e LNy Do 9 A 1 4 R L
be AN Wy =20y 0 0,362 0 20,- Gy 20 Wy gy =0 100, 0,-26) 0
0.00 | not applicable N.A N.A N.A N.A N.A
.05 [ lmaginary Imaginary 02763902 0168668 {maginary imagingr
9.0 Imaginary 0.271258 o.M22701 0.07 5080 Imaginary imaginary
0.13 | .24 5424 0.1373962 0.0 718255 0068668 Imoginary imaginary
0.20 ] 00666444 0.0986135 005278044 0036019 8.325219¢ Imaginary
0.25} 6.12732 0770474 0.0 4174208 0020598 0.227248 Imaginary
0.3¢ | 0.103253Y 0.632612 0,03452513 0.0237V0 078004 tmaginary
8.3%1 0.68¢9202 0.8534 746 0.029634¢ 0.020250 0.147038 Imaginary
040 8075007 0.46617¢ 00256583 0.017673 0125488 0.4225¢0
0 LS| 0.086097; 0.041201)9 0.0227392 0.01S6 77 0.1095¢40 0.35018¢
0.50 ] 0,0590414 003691185 0.0204168 0.016000 0097240 0.2873%17
0.55 1 0.0533851¢ 0.0334 418 00185249 0012700 0.087450 0.26737)
0.60 | 0.0L86648 0.0305837 0.016954) 0.011 710 0.079470 0.218320
0.65 | 0.044363 0.0 2014248 0.0156280 0.0701000 0.072830 0.195910
0.70 | 0.0413%41 0.0260768 0.0144958 00100 0.06712120 9.177940
0.75 | 0.0385208 0.024293% 0.01351¢60 0.00934¢ 0.662420 0.163140
0.80 | 0.036019¢8 0.22713%2 0.0126602 0.008757 0.050260 0.150710
0.85 | s.00302) 0.0213M7 0.0Vt046¢L 0.008237 0.054¢620 0.140090
0.90 | 0.031800S 0.0207594 0.011237) 0.00777¢ 8.051410 0.130910
095 | 0.030148? 0.09077)3 0.010639% 0.00736¢ 0.048540¢ 0.12289¢
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2 2 - 1+ VU386 0 q)b) _ 1
2

2

2 _ L2 _A-/T3603)b _ 1M

wy 3,4 2 2
2 _ 2
w3 = ~Ag5 =1 @)

where M = vI-36u @ -4)b.
The expressions (7) show that

1> >1//f>m2>0

1
and also it is clear that

wfwg = % Q-u)b=1/4

wh = .
en u =y

4. ARNOLD'S THEOREM ON THE STABILITY AND THE EXISTENCE OF
RESONANCES

Since the characteristic equation of the linearised sys-
tem has imaginary roots and the Hamiltonian function (2) will
ot have a definite sign, so it is not possible to assert
that the motion will be stable or unstable when all the terms
of the Hamiltonian function are taken into consideration. If
the freauencies smtisfy the cordition

0 < |nl|+'|n2|+|n3|§_4 ®)

then there exists (1927) a real canonical transformation
(ql,pl) > (ql' ,p]:), specified by power series convergent in

the neighbourhood of the origin saich that the kamil tonian
function (2) may be witten as

E=H + H(q', p") (9)
in the new variahles, where lf) has the normal form
2
H = wjr) - wyry +wgry + Cooari + Cpygryr,
2 2
+CroT1%3 * Co20%2 t Cor1T2"3 t Coo23 a0
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Z 12 2
(2ry = qi" +p{")
and H' is a convergent series in powers of qjs p]: beginning

with terms not lower than the fifth one. We shall now aim to
apply Arnold's theoremn (1963) on the stability of the equi-
librium position which is stated as follows:

Let the Hamiltonian function be such that

@) the characteristic equation of the linearised system has
purely imaginary roots,

() the condition (B) is satisfied,
) the coefficient of the normal form (10) satisfy the in-

equality
32 i
arlar3 arl
D = # 9 (1)
0
3H 0
T3

Then for most (in the sense of Lebesgue measure) initial
conditions the equililr jum position

9 =P = o,
will be stable.
During the present investigation, we aim to apply the

above stated Arnold's theorem concerning the condition 8),
we shall come across siXx resonance cases given as

(1) o -wy, =0 (i1) w; - 2w, =0, (iii) w; =~ 3w, =0,

(iv) 2m2-m3 o, w) 3wy- w, = 0, wi) 2m1-w21n3 = 0,

In the adjoining figure 1, we have plotted the values
of U corresponding to the different values of b varying
from 0 to 1 for all the six types of resonances. It las al-
ready been seen by Kumar and Choudhry (1987 ) that within the
range of stakility given by the values of u for W) = Wy, which

will be denoted as graph (i), we come across the resonances
(iv), w) and (i) we £find that the graph corresponding to
the resonance (iv) lie within the graph (i) and the graphs
for the (v) & (vi) lie beyond. It shows that within the ran-
ge of linear stability given by the graph (i), there is the
possibility of having the resonances of the types (ii)=(iv).
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Cfince and H, are even functions of g, and so after the
4 3

normalisation ¢, will enter the arguments of sines anmd co-
sines as 2¢3 and 4¢3 and so corresponding to the cases

(iv), v) amd i) we shall not have any critical case. S
these cases need no special imvestigation. It is thus seen
that except for (ii) and (iii) the Hamiltonian function can
be reduced to the form (10) saitahle for the application of
Arnold's theorem.

If the values of .ucorresponding to W = w, be denoted

by Hgr then from the graph (i), it is clear that these values
of Ug will differ according to the different values of b.

From the equation (6) it follows that
2 2
wiwy

for all b where Wy T W,

= 1l/4

As in (1987) we shall restrict our imvestigation for the
range of values of 4 restricted to 0 < u < p_ given by Table 1
where My correspords to W -, = 0 for the different values

of banmd for sach u =y _, wfw% = 1/4. Under such a restric-

o
tion although the resonance (i) is avoided but we may come
across the other resonance cases. As examined in (1972) the
resonance relations (iv)-(vi) will not lead to the appearance
of non-=wanishing denominators and they will not prevent the
rormal form (10) from being obtained. & except for the two
cases (ii) amd (iii) the Hamiltonian can be reduced to the
normal form (10) required for the application of Armold's
theorem.We shall need special consideration for the cases
(ii) and (iii).

5. NORMAL FORM OF THE HAMILTONIAN FUNCTION AND THE STABI-
LITY EXCEPT FOR THE RESONANCE CASES (ii) & (iii) WHERE

u <y

o

Here ve shall aim to reduce the Hamiltonian function
given by (2) to the form (10) for which we shall use Birk-
hoff's method of normalisation (1 985). If in the form (10),
Hz(O) is of positive definite form,then the equililr ium posi-
tion is stable by virtue of Liapunov's theorem (1956) for all
orders and all time. If H, is mot a function of definite sign,
then we shall need the application of Arnold's theorem refer-
red alove. In the present case Hp is not of definite form.

To put H, in the form (1 0), we shall introduce the transfor-
mation referred in (1985), where we may wite
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H= 1/2) o2 +0lqp?) - w/2) @2 +wlqy?)

2 (- -]
q1) + I h q
3 o« +B=3 oB

2

I2 .0.
+ 0/2) () + w

p'® 12)
a = al+ oy + aqy
B =B+ 82 + 83

where for simplicity we shall mean

h
o f ha1a20.3818283

a a a
q'e = q' "1 g) "2 q33
B, B, By

p'f=p' " p; " P

and in sibsequent investigations we shall not wite these
ranges with the summation sign. Taking the notations as used
in (1985) it may be mentioned that hg upto the third order
and the fourth order terms not inclu gng q.; and p) are given
in (19%5)which we shll not rewrite here. 'The terfis depend-
ing on q:; and p:; are given here as follows: .

M 02000 = 21 B g2000 * €1Hp 2000’
h =a,l
012000 - 22'% 02000 + 80 20007
hoo2100 = 21P1Bg12000°
Boo2000 = 22P280 20007
_ 2 2
b 02000 = 21 02000 * ©1H022000 ¥ C1H 120007

2 2

Ro22000 = 22 02000 * 28022000 ¥ S2H12000)"

b 12000 = 2122 @Ry 05000 * 26128022000 * (€140 5) By 5000
= 2a2 c. H + a2

hy 021 00 1811 Bo22000 ¥ 211 B 12000

b oo2010 T 22122051 Hyon000 ~ 212228120007
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ho12100 = 2212201 055000 * 212201 B3 2000¢

2 2
hor2010 = ~222b5C28522000 = 22P2B12000°

Roga110 = ~ 2812,0 ByH,5 000

Ry04000 = Hoos000 13)

Next we perform the following canonic transformations

q = @/2)qf + (/e dpfy By = A/2)ima" + B,
G = -0/ ¢ W)y B = -0/ + i
9 = @/2)ay + ipy . py = Q/2)igy + p] a4)

In the new variables the Hamiltonian (12) may be written
in the form

i

H= J.mlqlp1 + szqé'ps + iw3q3p:;' + I h' B q”"‘p"B as)

I hyg = %48

not involving q3' and p3' are already given in (1987 ) which we

+ iya g’ then the coefficients of terms

shall not repeat here, except it may ke moted that there we
have to replace hyja281 82 by }’0110!2 08y 82° and similarly

h by
ay0,8y 8y aja, OBy B0 .

The coefficients with the terms irvolving q:; and p:,: may
be given as follows:

X002100 = 174) Bgoa1 00 Yooz100 = 9/491 )My go000r
X000002 = “Poo21 00’ Yooa 02 = ~ 8701 )N 630007
*oor10r = ~@/®1)B 950000 Yoor101 = Poo21 o0’

Xgozoro = W/4w3)hg 00007 Yoo2000 = /4 Bgg201 0

-(l/wz)h = =h

Xopoo0012 ~ 012000’ Yo000012 00201 0’

= Q/wy)hy 50007

1e)

XgoLo011 ~ ~“Poo2010’ Yool 011

300

https://doi.org/10.1017/50252921100066197 Published online by Cambridge University Press


https://doi.org/10.1017/S0252921100066197

the remaining coefficients of the third order terms involv-
ing q:,;' and p3 may be given by

hig = g+ ixgg) (0,/2) (B) ;) Wy/2) (By—uy) (w3/2) (By-ey)
17)

we shall firstly assume that the resonances of the types of
(i)~(iii) are mot present. As in (1987) we s}all use Birk-
loff's transformation

(@ pJ)— (@" PP ) ag)

and nullify the third order terms.

The new Hamiltonian exclusive of the third order and the
fourth order terms giving rise to the resonance of type (iii)
and also those terms not necessary for the form (10) may be
given as

- 4 . " .
B' = dw)q" pi" + w,dy’ Py + iwyq Pyt

" L 2 "
C200%9" P *Cpioly” P )@y py)

Coo2 (93" 3'.') Cyop ‘9" Py" ) fag" py")
L [1 2
+ Coup ‘ay Py )iay P - Cpyplay pf)
2
+0(ql +p1 5/2 a9)

where

_ ) 2 2
C00 = “P200200 = 87821 %0300 * Yoo0300’

2 2 2
-8/2) &) 50200 * Y100200) * U/2) &1 5010
2
w

2 1 2 2
+ Yyoor10’ 20, 2o, w ) &o1 0200 * Yo10200’

2
wiw
19 2 2
* Rt ay) & 000210 * Yoo00210'"
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_ 2, 2 2
€020 = 020020 * ©/8 )3 ®500030 * Y00003 0]

2. .2 2
+ 6/ &oo000 * Yo20010’
w)

«2 +y2 )
20y W= 2w,) 100020 T Y100020

2 2
A/2) o1 0010 * Yoro10

2
Wiy 2 2

LT % 000120 * Yooo120)"

C = - h! - ﬁ &2 + 2 )
002 002002 ~w -2 *002100 * ¥002100

! 62 . 2 )
8 W, +2) *000002 * Yoo0102

2 2
a/2) (XOOll 01 + ’y0011 01) + 2(‘)2 (Xiozoso*yzozom)

©,- 2

) 2

2
+ §G, 27 ® 000012 * Yoooo0r2’

2 2
* 4/72) &0 011 * Yoorma

2
2w2

. _ 2 2
C10 = Mia10 Wy By -Za) &1 00020 * ¥1 00020’

2
[ Vi)
192 2 2
AT 25,V & 900120 * Yoo 20’

2
w1 w
172 2 2
T2 (Zmlﬁnzs (x000210 + y000210)
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2
20y

2 2
T Ty T ey, & 010200 * Yor 0200’

+

2601 0110100200 * Yo 0110 Y100200

@/wy) & o000 Yro0110 * *10010 Yozoaro'r
P 1
100 - Moo * 2% 00200 Xoor101 * Y100200 Yoor1 01!
b 00110 ¥ooro11 * Y100010 Yooy o1’
8w1 2 ’

2
e ® 002100 * Y0021 00’

. wy o2 . yz )
2‘@‘—21+ ) 0001 02 0001L02""

Cc = h

011 o101l ~ 2 %011001 X020000 * Yor1o0r Yo20010’

* ®o10110 00100 * Yoro110 Yoor1or!

- 2 2 + ¥y )
Tw,+2) *oooar2 Y000012
8w

) 2 2
* wyT ® 002000 * Yoo2010’

_ 2 _ 2 )
200200 = ~B/2)e1hgq0000 = B/201 )y 600007 0/2) By 005000
ht = -(3/2)2h - G/2%)n -W/2)h

020020 2P000040 2 P54 0000 020020’
h402002 = ~B7/2) by 00

B1o110 = ¥1%2Pgo0220 * ©/wiw5)hy00000

+ Wy /wydhgr0200 * Wo/0) Yhy 00200
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Wor100 ==Q7w; Yhy02000¢

hor1o11 = @/« Ihy05000¢ (20)

Passing now to the real variables introducing the trans-
formation

@ by )+ (G, By)

given by
g = QMe) G -ip), Pt = Vap/2) -Ig ¥ e )

ay = e HE, -B,), Py = Wuy/2) @, - Ip,),

@ = Q/e3) gy - ipy), P™ = Wa3/2) (-igg+ py) (21)
and then to polar co-ordimates
E;—3 = »’?r3 sin ¢4, 53 = |/2r3 cos ¢, (22)

we shall find that the Hamiltonian (19) reduces to

= _ 2 2 2
H = rywy T w, + riwg + (1/4)[c200rl + C020r2 + C002r3
+ C r.r, +C r.r, + C rr]+0(r)5/2 (23)
1107172 1017173 0117273 3

Mw to test regarding the stability of the equilibrium
points under reference we shall examine the value of det D

given by

2°%n 3H

3 ,3r . or .
i 73 i

det . (24)
IH
3 3 0
ry= ro= r3= 0
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On its expansion, we shall find that

2.2 2,2
16D = w; (€11~ 4ChacC002) * 92T - 4C200%002]

(

C o )

) - 2 + 2C

2 2
+ w3 (C10 = 4C500%020 192 0025110

= 2003 €p1C30 % Lt

- 203 €5 % * 2C00Cmy? (25)
After making some computations we may find the coeffi-
cients given as

4
1

2.2 2
144 (1-2w1) (l—Swl)

wlazew? - 69a? + 1)

C200

22
-wlwz (64m1m2 + 43)

2 2 2 2
6(1-20)1) (1-2(»2) (l-Su)l) (].-5102)

110

8w, w2
o - 1“2
1a 3(1-2wf)(4-mf

)

4

2
‘”1 (124'”2 - 696w, + B1)

2
- 2
020 2
2

144 @-w35)° @-52)

2

c _ 8w My
(Ul 2
2

30- 2w5) @w2)

2
0wy

(26)

002 2
2)

34=w;) 4w

N

Which coincide with those of Markeev (1972). Putting
u = m{z m;2 , we finmd that (25), on substitutions of the

values for the co-efficients Ci'k given by (26), may be
witten as J
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16D = f ) (27)

5184 (4-u)2 (25~4u)? (L+12u)°

where £ f1) = 73908288u° - 35652657 6u’ + 2645643 564u>

- 5787985485u2 - 759408680u - 317395600
ard for u = 4,

£, £', £, £m, £V, £

are all positive where dashes denote the differentiations.
Bence by Newton's theorem (Birnside and Panton, 1979) on the
super ior limits of the roots it follows that there will be no
root for u > 4, whence it follows that D # 0 for such a rest=~
riction.

In Markeev's case vhen ut = u_, u = 4, hit in our case
u =4 for all u = Mo correspondlrﬁ to the case Wy -wy = 0

plotted in our graph - (i). Thus we find that for each b, we
shall have different y . For example, when b = 0.20 the mot-
ion will be stable for all g < 0.1666666 anmd so we find
that corresponding to the different values of the pair
(61,62) our range of stability will go on differing.

* Since uo = 0,0285454 is less than all the values of u

in the Table-l, so the motion will be stable for all u < Mo
hit it leaves many values of 4 for which also Armold’'s

theorem will hold and consequently the stability will hold
except for the two resonance cases wlose corresponding values
of 4 are all less than u_ for each b. S the inmvestigation of
the stability for the resonance cases cannot be escaped.

6. STABILITY FOR THE RESONANCE CASES (ii) AND (iii):

(a) The resonance case (ii) wy - 2m2 = 0:

As in (Kumar & Choudhry, 1988), we shall introduce the
transformation (18) to the Hamiltonian (15) it now we retain
the terms giving rise to the resonance case and we shall fin-

ally have
HY = dwyqp" p" + dwpqy’ pY *dwyay’ P+ Pygggp0%
pm 2 + hl qvl 2 m + (28)
020100 92 Py
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Passing now to real variables by means of the transfor-
mation (21), our Hamiltonian (28) reduces to

vi 3 —
B' = 20,r) -wyr, +r3 - Yo, %31 00020 * ¥100020'72"F1
i + + Hir.,o.
x sin b, 2¢2) H(rj ¢J) (29)

where H has the period 27 in ¢; and H= 0(ry+ r2)2.

2 2 cq il \ .
If X1 00020 + ¥1 00020 # 0 the equilibrium point will be

unstable by Markeev's theorem (1978).
It has been examined in the paper (Kumar & Choudhry,

1988) that xfOOO2O + nyOOZO which is the same as () in

Table II of the said paper is mot zero for the region under
consideration and its slows that the motion will be unstahle.

(b) The resonance case wy = 3m2

In this case proceeding similar as in the paper (1988)
which we shall not rewrite here, the Hamiltonian may be red-
uced to

2
B o= 3wyl —wyXy + 13 +Choefy ¥ Ciy0%1%2 * Croa%1%3

2 2
+Co1¥2f3 * Coapfa + Copo2ts

' ) ) —
+ 0/3)wy73 &y gg030 * Yio0mso) X T2/T1T; COS @+ 39,)

‘ot + 152

Demoting by

+ 3C + 9C

a2 =Cyo0 110 020

v} 3
30y ¥%1 00030 * ¥1 00030

o)
"

it is known by Markeev's theorem (1978) that if |a| < d,the
equililrium position is unstable and if |a| > d, the equili-
hrium position is stable.
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If a = 0, the consideration of higher order terms beco-
mes necessary.

The values of a,d and the corresponding nature of the
motion have already been computed in Table III of the refer~
red wrk(1988). So here even in the three-dimensional case
the nature will contimie to be the same and it will not be

rewritten.

CONCLUSIONS

Thus we have shown that the triangular solution of the
three-dimensional photo-gravitational circular restricted
three-body problem is stable, for most sufficiently small in-
itial departures from the given solution except for the two
resonance cases w; = 2m2 and w, = 3m2 and the range u < L

Under the resonance case w; = 2w2, the motion is seen to be
unstable and for w, = 3w2 for some sets of values of the pair
(61,62) the motion is stable and for others it is unstahle.
These values are given in the referred paper (1988).
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