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Abstract

A number is squareful if the exponent of every prime in its prime factorization is at least two. In this
paper, we give, for a fixed l, the number of pairs of squareful numbers n, n + l such that n is less than a
given quantity.
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1. Introduction

Recall that a positive integer n is a squareful number when, if a prime number p
divides n, then p2 also divides n. In other words, the exponents ei in the prime
factorization pe1

1 pe2
2 . . . per

r of n are all at least two. Hence all numbers of the form
a2b3 are squareful. In fact, any squareful number n can be written uniquely as a2b3 for
some positive integers a and b, with b squarefree. Here squarefree means that, in the
prime factorization of n = pe1

1 pe2
2 . . . per

r , all the exponents ei are equal to one. It is well
known (see, for example, [7]) that there are asymptotically Cx1/2 squareful numbers
up to x for some positive constant C. Similar to the concept of twin primes, one can
talk about twin squareful numbers, namely when both n and n + 1 are squareful. By
looking at the Pell equation x2 − 8y2 = 1, one can see that there are infinitely many
twin squareful numbers. In the summer of 2009, Koo posed the following question.

Q 1. How many twin squareful numbers n, n + 1 are there with n ≤ x? Do they
have ‘zero density’ among all squareful numbers up to x?
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More generally, we consider the following question.

Q 2. For a given positive integer l, how many twin squareful numbers n, n + l
are there with n ≤ x? Do they have ‘zero density’ among all squareful numbers up
to x?

Let N(x; l) denote the number of positive integers n ≤ x such that n and n + l are
both squareful.

We will prove the following result.

T 3. If x ≥ 2 and l ≥ 1, then

N(x; l)� d3(l)x2/5(log x)2,

where d3(l) is the number of ways to write l as a product of three positive integers.

Since 2/5 < 1/2, this shows that twin squareful numbers indeed have ‘zero density’
among all squareful numbers if l is not too big. For a fixed integer l, we have a slight
improvement.

T 4. If x ≥ 2 and l ≥ 1, then

N(x; l)�l x7/19 log x.

Note that 7/19 = 0.36842 . . . .
We suspect that the following conjecture is true.

C 5. For any positive ε, there exists a positive constant Cε such that

N(x; l) ≤Cε x
ε

for all x, l ≥ 1.

Towards Conjecture 5, we have the following conditional result.

T 6. Assume the abc-conjecture. Then for any positive integer l and any
positive ε,

N(x; l)�ε,l xε .

The paper is organized as follows. We prove Theorems 3 and 6 first, then the more
involved Theorem 4. Throughout the paper, we write F(x)�G(x) or F(x) = O(G(x))
to mean that |F(x)| ≤ c G(x) for some constant c > 0, while F(x)�λ1,λ2,...,λn G(x) and
F(x) = Oλ1,λ2,...,λn (G(x)) mean that the implicit constant may depend on λ1, λ2, . . . , λn.
Also, |S | stands for the number of elements in a set S .
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2. Proof of Theorem 3

To begin, let us define the divisor function

d2,3(n) =
∑
a,b

a2b3=n

1.

In particular d2,3(n) is supported on squareful numbers only. Clearly,

N(x, l) ≤
∑
n≤x

d2,3(n)d2,3(n + l). (1)

This looks like the divisor sum ∑
n≤x

d(n)d(n + l) (2)

where d(n) is the usual divisor function, which counts the number of divisors of n.
Many people have studied (2), starting with Ingham [6]. Our inspiration comes from
Ingham’s work.

P  T 3. The sum
∑

n≤x d2,3(n)d2,3(n + l) in (1) can be rewritten as
counting the number of quadruples of positive integers

S = {(a, b, c, d) : a2b3 − c2d3 = l, c2d3 ≤ x}.

We will switch our focus to the variables a, b, c, d, just as Ingham did. Observe that

a2c2b3d3 = (c2d3)(c2d3 + l) ≤ x(x + l) ≤ 2x2 =: X.

Let 0 < λ < 1 be a parameter, which we will choose later. Clearly either a2c2 ≤ Xλ or
b3d3 ≤ X1−λ. Let S 1 be the subset of S satisfying the extra condition a2c2 ≤ Xλ and S 2

be the subset of S satisfying the extra condition b3d3 ≤ X1−λ. Then

|S 1| =
∑

ac≤Xλ/2

N1(a, c) and |S 2| =
∑

bd≤X(1−λ)/3

N2(b, d),

where
N1(a, c) = |{(b, d) : a2b3 − c2d3 = l and d3 ≤ x/c2}|

and
N2(b, d) = |{(a, c) : b3a2 − d3c2 = l and c2 ≤ x/d3}|.

We have a Thue equation of the form Ax3 − By3 = l in N1(a, c). A uniform bound
on the number of solutions, depending on the degree and l only, was first obtained
by Evertse [4]. Here we use a later improvement by Bombieri and Schmidt [2] and
have N1(a, c) ≤C3ω(l) for some positive absolute constant C, where ω(l) denotes the
number of distinct prime factors of l. Hence

|S 1| � 3ω(l)Xλ/2 log X
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by a standard result on divisor sums. It is worth mentioning that when l = 1, a
remarkable result of Bennett [1] gives N1(a, c) ≤ 1.

As for N2(b, d), here we are counting the number of solutions to a Pell equation. By
Estermann [3, Hilfssatz 2], N2(b, d) ≤ 2d(l)(log X + 1). Hence

|S 2| � d(l)X(1−λ)/3(log X)2.

On choosing λ = 2
5 ,

|S | ≤ |S 1| + |S 2| � d3(l)X1/5(log X)2,

where d3(l) is the number of ways to write l as a product of three positive integers
and 3ω(l) ≤ d3(l). Therefore N(x) ≤ |S | � d3(l)x2/5(log x)2, as X� x2, which gives
Theorem 3. �

3. Proof of Theorem 6

First, let us recall the famous abc-conjecture. For a positive integer n, define R(n),
the kernel of n, by R(n) =

∏
p|n p, where the product is over all the prime numbers that

divide n. For example, R(8) = 2 and R(72) = 6. Considering the equation a + b = c,
the abc-conjecture states that for every ε > 0,

c�ε R(abc)1+ε

for any relatively prime integers a, b, c.

P  T 6. As in the previous section, we consider the set

S = {(a, b, c, d) : a2b3 − c2d3 = l, c2d3 ≤ x}.

Rearranging the equation,
c2d3 + l = a2b3.

Suppose that k is the greatest common divisor of c2d3, l and a2b3. There are at
most d(l) possibilities for k. For each fixed k, let k = pe1

1 pe2
2 . . . per

r be its prime
factorization. Observe that if a2b3 is divisible by k, then a2b3/k = pα1

1 pα2
2 . . . pαr

r a′2b′3

for some a′, b′ and α1, α2, . . . , αr ∈ {0, 1} where αi = 1 when the exponent of pi in
the prime factorization of a2b3/k is exactly one, and αi = 0 otherwise. Similarly,
c2d3/k = pβ1

1 pβ2

2 . . . pβr
r c′2d′3 for some c′, d′ and β1, β2, . . . , βr ∈ {0, 1} where βi = 1

when the exponent of pi in the prime factorization of c2d3/k is exactly one, and βi = 0
otherwise. So we are reduced to counting the number of solutions in a′, b′, c′, d′ to

pβ1

1 pβ2

2 . . . pβr
r c′2d′3 +

l
k

= pα1
1 pα2

2 . . . pαr
r a′2b′3.

By the abc-conjecture and the definition of R(n), for fixed k, α1, . . . , αr, β1, . . . , βr,

c′2d′3, a′2b′3 �ε R

(
(pβ1

1 pβ2

2 . . . pβr
r c′2d′3)

( l
k

)
(pα1

1 pα2
2 . . . pαr

r a′2b′3)
)1+ε/2

≤ l1+ε/2(a′b′c′d′)1+ε/2
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because R(mn) ≤ R(m)R(n). Thus

a′2b′3c′2d′3�ε l2+ε(a′b′c′d′)2+ε

which implies that b′d′�ε,l (a′c′)ε/(1−ε)� xε/(1−ε) ≤ x2ε for ε < 1/2. Hence there are
Oε,l(x2ε log x) choices for the pair (b′, d′). For each such pair of b′ and d′, the Pell
equation

pα1
1 pα2

2 . . . pαr
r b′3a′2 − pβ1

1 pβ2

2 . . . pβr
r d′3c′2 = l/k

has at most O(d(l/k) log x) solutions in (a′, c′) by [3, Hilfssatz 2]. Consequently,
taking into account all the possibilities for k, α1, . . . , αr, β1, . . . , βr, there can be
at most Oε,l(d(l)2r2rd(l/k)x2ε log2 x) = Oε,l(x3ε) quadruples in S . This completes the
proof of Theorem 6 as ε can be arbitrarily small. �

4. Proof of Theorem 4

We will prove Theorem 4 for the case where l = 1 and indicate how to modify the
proof for general l at the end of this section. We need a result of Huxley [5] on rational
points close to a curve.

T 7. Suppose that f is defined on the interval [0, M] and is 2l + 2 times
continuously differentiable with∣∣∣∣∣ f (r)(x)

r!

∣∣∣∣∣ ≤ λCr+1

Mr
∀r = 0, 1, 2, . . . , 2l + 2.

Assume that

|Dl+1,s( f (x))| ≥
(

λ

Cl+2Ml+1

)s

∀s = 1, 2, . . . , l + 1,

where

Dk,n( f (x)) = det
( f (k+i− j)

(k + i − j)!

)
n×n
.

Let

R =

{(
m,

r
q

)
: 0 ≤ m ≤ M, 1 ≤ q ≤ Q, (r, q) = 1,

∣∣∣∣∣ f (m) −
r
q

∣∣∣∣∣ ≤ ∆

q2

}
.

Let T = λQ2 and ∆ < 1/2, C ≥ 1, M ≥ 2, Q ≥ 2, T ≥ 4. Then

|R| �d (Cl+2MlT )1/(2l+1) + (C2l3+8l2+11l+4∆l+1T l)1/(2(l+1)2)M.

In particular, when l = 2, the above theorem gives

|R| � (C4M2T )1/5 + (C74∆3T 2)1/18M. (3)

P  T 4. Recall from the previous section that we want to count the
number of quadruples of positive integers

S = {(a, b, c, d) : a2b3 − c2d3 = 1, x/2 < c2d3 ≤ x}.
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Note that (a, c) = 1 = (b, d) automatically. So we want |a2b3 − c2d3| = 1. Divide
everything by c2b3, and then ∣∣∣∣∣a2

c2
−

d3

b3

∣∣∣∣∣ =
1

c2b3
.

Upon factoring, we see that ∣∣∣∣∣ac − d3/2

b3/2

∣∣∣∣∣∣∣∣∣∣ac +
d3/2

b3/2

∣∣∣∣∣ =
1

c2b3
.

Hence ∣∣∣∣∣ac − d3/2

b3/2

∣∣∣∣∣ ≤ 1
c2b3

1
a/c

=
1

acb3
. (4)

Suppose that 1 ≤ R1 ≤ a ≤ 2R1 and 1 ≤ R2 ≤ c ≤ 2R2. Define

fb(d) =
d3/2

b3/2

where
M
2
≤ d ≤ M ≤

( x

R2
2

)1/3

since c2d3 ≤ x. Based on (4), we will apply Theorem 7 to count the set

Rb,M =

{(
d,

a
c

)
:

M
2
≤ d ≤ M, R2 ≤ c ≤ 2R2, (a, c) = 1,

∣∣∣∣∣ fb(d) −
a
c

∣∣∣∣∣ ≤ ∆

c2

}
where ∆ = 4R2/R1b3. Now with l = 2, C = 100, λ = M3/2/b3/2, the reader can check
that f is six times continuously differentiable and satisfies∣∣∣∣∣ f (r)(x + M/2)

r!

∣∣∣∣∣ ≤ λ100r+1

(M/2)r
for r = 0, 1, 2, . . . , 6 and x ∈ [0, M/2].

As for the determinant conditions in Theorem 7, let g(x) = c(x + M/2)α with α < Z.
Then

g(k)(x)
k!

= (α)kc(x + M/2)α−k

where (α)k = α(α − 1) . . . (α − k + 1)/k!. Thus

D3,1(g(x)) =
g(3)(x)

3!
= c(x + M/2)α−3(α)3,

D3,2(g(x)) =

∣∣∣∣∣∣∣∣∣∣∣
g(3)(x)

3!
g(2)(x)

2!
g(4)(x)

4!
g(3)(x)

3!

∣∣∣∣∣∣∣∣∣∣∣ = c2(x + M/2)2(α−3)

∣∣∣∣∣∣(α)3 (α)2

(α)4 (α)3

∣∣∣∣∣∣ ,

D3,3(g(x)) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g(3)(x)
3!

g(2)(x)
2!

g(1)(x)
1!

g(4)(x)
4!

g(3)(x)
3!

g(2)(x)
2!

g(5)(x)
5!

g(4)(x)
4!

g(3)(x)
3!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= c3(x + M/2)3(α−3)

∣∣∣∣∣∣∣∣
(α)3 (α)2 (α)1

(α)4 (α)3 (α)2

(α)5 (α)4 (α)3

∣∣∣∣∣∣∣∣ .
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In particular, if g(x) = fb(x + M/2), then

D3,1( fb(x + M/2)) =
−1/16

(b(x + M/2))3/2
,

D3,2( fb(x + M/2)) =
−5/210

(b(x + M/2))6/2

and

D3,3( fb(x + M/2)) =
−35/215

(b(x + M/2))9/2
.

The determinant conditions can be easily seen to be true.
In our situation, T = λ(2R2)2. To ensure that ∆ < 1/2, note that

∆ =
4R2

R1b3
=

16R2R1

(2R1)2b3
≤

16R2R1

a2b3
≤

32R1R2

x

as a2b3 ≥ x/2. Hence to ensure that ∆ < 1/2, we need the condition

R1R2 < x/64.

To ensure that T = 4(M3/2/b3/2)R2
2 ≥ 4, we require M ≥ b/R4/3

2 . What happens
when M < b/R4/3

2 ? From the definition of Rb,M ,

1
2R2
≤

a
c
≤

d3/2

b3/2
+

∆

c2
<

1

R2
2

+
4

R1R2b3
<

1

R2
2

+
4

R5
2

, (5)

which is impossible when R2 ≥ 3. When R2 < 3, at most a finite number of a/c satisfy
(5) and R2 ≤ c ≤ 2R2. Hence, when M < b/R4/3

2 ,

|Rb,M | � M. (6)

Now by (3), when b/R4/3
2 ≤ M ≤ (x/R2

2)1/3,

|Rb,M | �

(
M2 M3/2

b3/2
R2

2

)1/5

+

(
∆3

( M3/2

b3/2
R2

2

)2)1/18

M =
M7/10R2/5

2

b3/10
+

M7/6R7/18
2

R1/6
1 b2/3

. (7)

Summing over all dyadic intervals over M for (6) and (7),

|Rb| �
b

R4/3
2

+
x7/30

R1/15
2 b3/10

+
x7/18

R1/6
1 R7/18

2 b2/3
,

where

Rb =

{(
d,

a
c

)
: 1 ≤ d ≤

( x
R2

)1/3

, R2 ≤ c ≤ 2R2, (a, c) = 1,
∣∣∣∣∣ fb(d) −

a
c

∣∣∣∣∣ ≤ ∆

c2

}
.
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Now summing over b ≤ ((x + 1)/R2
1)1/3, we see that the set of quadruples in S with the

extra conditions R1 ≤ a ≤ 2R1 and R2 ≤ c ≤ 2R2, which we denote by S R1,R2 , satisfies

|S R1,R2 | �
x2/3

R4/3
1 R4/3

2

+
x7/15

R1/15
2 R7/15

1

+
x1/2

R7/18
1 R7/18

2

.

By symmetry, we also have

|S R1,R2 | �
x2/3

R4/3
1 R4/3

2

+
x7/15

R1/15
1 R7/15

2

+
x1/2

R7/18
1 R7/18

2

.

Therefore, since min(a, b) ≤
√

ab,

|S R1,R2 | �
x2/3

R4/3
1 R4/3

2

+
x7/15

R4/15
1 R4/15

2

+
x1/2

R7/18
1 R7/18

2

. (8)

We now finish the proof of Theorem 4. By the result of Bennett [1], the equation
a2b3 − c2d3 = 1 has at most one solution for each pair of a and c. Hence

|S R1,R2 | � R1R2. (9)

When R1R2 ≥ x/64,( x
64

)2

(bd)3 ≤ (R1R2)2(bd)3 ≤ a2b3c2d3 ≤ x(x + 1) ≤ 2x2

which implies that bd ≤ 213/3. So there are at most finitely many Pell equations
a2b3 − c2d3 = 1, each having O(log x) solutions in a and c. Together with (8) and (9),
this gives, by summing over R1 = 2i and R2 = 2 j,

|S | �
∑
i, j

2i+ j≤x7/19

|S 2i,2 j | +
∑
i, j

x7/19<2i+ j<x/64

|S 2i,2 j | +
∑
i, j

2i+ j≥x/64

|S 2i,2 j |

�
∑
i, j

2i+ j≤x7/19

2i+ j +
∑
i, j

x7/19<2i+ j<x/64

( x2/3

24(i+ j)/3
+

x7/15

24(i+ j)/15
+

x1/2

27(i+ j)/18

)
+ log x

� x7/19 log x.

Finally summing over dyadic intervals x/2i+1 < c2d3 ≤ x/2i, where i = 0, 1, 2, . . . ,
gives Theorem 4.

For general l, one notes that the solutions to a2b3 − c2d3 = l may not satisfy
(a, c) = 1. But they can be divided into classes of solutions to a′2b3 − c′2d3 = l/ f 2 with
(a′, c′) = 1 according to different divisors f 2 of l. For each such modified equation the
above proof works, except that the implicit constants may depend on l. One should
also replace the use of Bennett’s result with Bombieri and Schmidt’s result on the Thue
equation. �
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