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The main objective of the present work is to explain the physical mechanisms occurring
in droplet-laden homogeneous shear turbulence (HST) with a focus on the modulation of
turbulence kinetic energy (TKE) caused by the droplets. To achieve such an objective,
first, we performed direct numerical simulations (DNS) of HST laden with droplets
of initial diameter approximately equal to twice the Taylor length scale of turbulence,
droplet-to-fluid density and viscosity ratios equal to ten and a 5 % droplet volume fraction.
We investigated the effects of shear number and Weber number on the modulation of
TKE for Sh ≈ 2 and 4, and 0.02 ≤ Werms ≤ 0.5. Then, we derived the TKE equations for
the two-fluid, carrier-fluid and droplet-fluid flow in HST and the relationship between the
power of surface tension and the rate of change of total droplet surface area, providing
the pathways of TKE for two-fluid incompressible HST. Our DNS results show that, for
Werms = 0.02, the rate of change of TKE is increased with respect to the single-phase
cases, for Werms = 0.1, the rate of change of TKE oscillates near the value for the
single-phase cases and, for Werms = 0.5, the rate of change of TKE is decreased with
respect to the single-phase cases. Such modulation is explained from the analysis of
production, dissipation and power of surface tension in the carrier-fluid and droplet-fluid
flows. Finally, we explain the effects of droplets on the production and dissipation rate
of TKE through the droplet ‘catching-up’ mechanism, and on the power of the surface
tension through the droplet ‘shearing’ mechanism.

Key words: homogeneous turbulence, multiphase flow

1. Introduction

The interaction of dispersed droplets and turbulence is important in many natural and
industrial processes, e.g. rain formation (Shaw 2003), liquid–liquid emulsion (Berkman
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& Calabrese 1988), spray cooling (Qin et al. 2014) and spray atomization in combustors
(Sirignano 1983; Faeth, Hsiang & Wu 1995). In these flows the droplet volume fraction is
typically of the order of 1–10 % such that the turbulence is altered by droplet feedback
on the surrounding fluid and by droplet–droplet interactions, placing the flow in the
four-way coupling regime (Elghobashi 1994). A review on the state-of-the-art of direct
numerical simulations (DNS) of turbulent flows laden with droplets or bubbles is provided
by Elghobashi (2019).

The main objective of the present work is to explain the physical mechanisms
occurring in droplet-laden homogeneous shear turbulence (DLHST) with a focus on the
modulation of turbulence kinetic energy (TKE) caused by the droplets when compared
with single-phase homogeneous shear turbulence (HST). Kida & Tanaka (1992) explained
the physical mechanisms of TKE production in single-phase HST via DNS. Mashayek
(1998) used DNS to study the modulation of HST at low Mach number by droplets of size
smaller than the Kolmogorov length scale and found that the presence of non-evaporating
droplets decreases the TKE of the carrier phase. Ahmed & Elghobashi (2000) explained
the physical mechanisms responsible for the modulation of TKE budget in HST by
sub-Kolmogorov solid particles via DNS and found that the presence of particles can
decrease TKE production. Nicolai et al. (2014) conducted both DNS and experiments
for the one-way coupling regime of HST laden with solid particles of the size of the
Kolmogorov length scale and reported the preferential concentration and orientation of
particle clusterings. Tanaka & Teramoto (2015) and Tanaka (2017) performed DNS of
HST laden with finite-size particles of diameter ten times the Kolmogorov length scale
(D0 ∼ 10η) and reported enhanced dissipation near the particle surface, in accordance
with the findings of Lucci, Ferrante & Elghobashi (2010) for particle-laden decaying
isotropic turbulence with particles from 16 to 35 Kolmogorov length scales. Kasbaoui,
Koch & Desjardins (2019a) studied clustering of sub-Kolmogorov particles in HST via
DNS and found three mechanisms leading to significant particle clustering. Kasbaoui
(2019) performed DNS of particle-laden HST in the two-way coupling regime and found
that the ratio of TKE production to dissipation increases or decreases with respect to that
of the single-phase case depending on the particle mass loading.

In comparison to solid particles, droplets can deform, develop internal circulation, break
up and coalesce with other droplets. Thus, with respect to the modulation of HST with
solid particles, the interaction of finite-size droplets and HST is expected to reveal new
physical mechanisms. For decaying isotropic turbulence laden with droplets of initial
diameter of Taylor length-scale size, via DNS, Dodd & Ferrante (2016) explained the
physical mechanisms of droplet/turbulence interaction and the pathways of TKE between
droplets, carrier fluid and the interface between the two. Their results showed that the
droplet-carrier-fluid interface represents a sink or source of TKE through the power of the
surface tension due to the fluctuating velocity, Ψ ′

σ , which acts as a sink (source) of TKE
when the total surface area of the interface increases (decreases). In decaying isotropic
turbulence, the absence of mean shear translates to the absence of production of TKE.
Thus, the next step of complexity in our understanding of droplet/turbulence interaction,
including the effects of shear on droplets and the effects of droplets on the production of
TKE, is studying DLHST.

The DNS of droplet-laden statistically stationary homogeneous shear turbulence
(SS-HST) has been studied by Rosti et al. (2019). In our opinion, this work has three
weaknesses, which we discuss herein. Firstly, in § 1 of their study the following question
was posed as one of their three objectives: ‘How does the dispersed phase change
the turbulent kinetic energy budget?’ In experiments, HST exhibits unbounded growth
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of length scales and of TKE (Tavoularis & Karnik 1989). Statistically stationary HST
artificially constrains the growth of the large scales of the turbulent flow to the domain
size, which produces ‘bursting’ events, i.e. sudden reductions of TKE. These sudden
modulations of TKE are not due to the droplets, and affect the droplet dynamics as well.
Thus, the bursting events have an effect on the rate of change of TKE, which may mask
the effects of droplets on the TKE budget. Thus, while for single-phase flows, Sekimoto,
Dong & Jiménez (2016) found similarities between SS-HST and the logarithmic layer in
wall turbulence, we discourage its use for studying two-way or four-way coupling effects
in particle-, droplet- or bubble-laden turbulent flows. This is analogous to the critique of
studying two-way coupling effects for particle-laden forced isotropic turbulence, which
forces the turbulence to a statistically stationary state, instead of decaying isotropic
turbulence (Elghobashi & Truesdell 1993; Elghobashi 2019; Ferrante & Elghobashi 2022,
p. 93). Secondly, Rosti et al. (2019) used the standard second-order Adams–Bashforth
(AB2) scheme to integrate the governing equations in time. This scheme is weakly unstable
for simulations of HST performed with higher resolutions and longer simulation times
(Schumann, Elghobashi & Gerz 1986; Kasbaoui et al. 2017). Although no instability was
reported by Rosti et al. (2019), the AB2 scheme can cause a spurious increase of the TKE
energy spectrum at high wavenumbers, as shown herein in § 2.2.1. Finally, in their § 3.3,
Rosti et al. (2019) included the relationship Ψ ′

σ = (−σ/Vm) dA/dt between the power of
the surface tension due to the fluctuating velocity and the rate of change of the total
droplet surface area. While such a relationship was derived by Dodd & Ferrante (2016)
for isotropic turbulence, such an equation is not applicable to HST due to the presence of
a mean velocity with shear. The equations for the power of surface tension for HST are
derived from basic principles in Appendix C and reported and analysed in § 3.3.4.

In the present work we consider finite-size droplets larger than the Taylor length-scale
size at the time of release (D0 ∼ 2λ0, where λ is the Taylor length scale and the subscript
0 means at droplet release time) in HST without gravity. We ensure that the simulation
is physically meaningful by monitoring the expansion of the length scales, and we ensure
that the two-point velocity autocorrelation in the x direction diminishes to zero in less
than half the length of the computational domain. We perform a parametric study of DNS
of DLHST in which we vary the Weber number based on the root-mean-square (r.m.s.)
velocity of turbulence and the shear number.

The paper is organized as follows. The mathematical description is presented in § 2,
which includes the governing equations (§ 2.1) and the numerical method FastRK3P∗
(§ 2.2) that solves the issue of weak instability for simulating HST while being
computationally efficient. Next, the results are presented and discussed in § 3, starting with
a description of the initial conditions and the droplet parameters (§ 3.1). We introduce the
TKE budget for droplet-laden flows in § 3.2, which is derived in Appendix B. We compare
the time evolution of TKE in single-phase HST to that of DLHST, and explain the physical
mechanisms of the droplet/turbulence interaction and the modulation of TKE due to the
droplets in § 3.3. Finally, we summarize the findings of this work in § 4.

2. Mathematical description

2.1. Governing equations
The non-dimensional governing equations for an incompressible flow of two immiscible
fluids with mean shear in the absence of gravity are

∇ · u = 0, (2.1a)
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∂u
∂t

= −∇ · (uu) − Sz
∂u
∂x

− Swî + 1
ρ

[
−∇p + 1

Re
∇ · (

2μS′) + 1
We

f σ

]
, (2.1b)

where u = u(x, t) is the fluid fluctuating velocity, S = ∂Ū/∂z is the mean shear rate
where Ū is the mean velocity, p = p(x, t) is the pressure, ρ = ρ(x, t) is the density, μ =
μ(x, t) is the dynamic viscosity, S′ = S′(x, t) is the strain-rate tensor of the fluctuating
velocity (S′ = 1

2 [∇u + (∇u)T]). Here, Re and We are the Reynolds and Weber numbers,
respectively, which are defined as

Re = ŨL̃ρ̃c

μ̃c
, We = ρ̃cŨ2L̃

σ̃
, (2.2a,b)

where Ũ, L̃, ρ̃c, μ̃c and σ̃ denote, in order, the reference dimensional velocity, length,
carrier-fluid density, carrier-fluid dynamic viscosity and surface tension coefficient used
to non-dimensionalize the governing equations (2.1a) and (2.1b). The subscripts c and d
indicate the carrier fluid and droplet fluid, respectively. Throughout the paper, all quantities
are dimensionless unless they are accented with ∼. Also, note that Re = 1/νc, where νc =
μc/ρc and We = 1/σ ; thus, we may use Re−1 or We−1 instead of νc or σ throughout the
paper. We have chosen to non-dimensionalize the density and dynamic viscosity in (2.1b)
by choosing the carrier fluid as the reference phase, such that ρc = 1 and μc = 1. Here,
f σ = f σ (x, t) is the force per unit volume due to surface tension,

f σ = κδ(s)n, (2.3)

where κ = κ(x, t) is the curvature of the droplet interface, n = n(x, t) is the unit vector
that is normal to the interface and directed towards the interior of the droplet, δ is the
Dirac δ function that is needed to impose f σ only at the interface position and s is a
normal coordinate centred at the interface, such that s = 0 at the interface. Figure 1 of
Dodd & Ferrante (2016) illustrates the direction of the interface normal n and the sign of
the interface curvature κ .

2.2. Numerical method
In Dodd & Ferrante (2016) we employed a new pressure-correction method for simulating
incompressible two-fluid flows called FastP∗ (Dodd & Ferrante 2014). This method
reduces the variable coefficient Poisson equation that arises in solving the incompressible
Navier–Stokes equations for two-fluid flows to a constant coefficient equation, which,
depending on the boundary conditions, e.g. for periodic boundary conditions, can be
solved with a fast Fourier transform (FFT)-based, fast Poisson solver rather than multigrid.
FastP∗ uses the AB2 scheme to integrate the governing equations in time. This scheme is
known to be weakly unstable for simulating HST, particularly for higher resolutions and
longer simulation times (Schumann et al. 1986; Kasbaoui et al. 2017). Kasbaoui et al.
(2017) showed that this instability arises from using solutions from previous time steps in
flux calculations. In order to solve this issue, we have developed a new numerical method
for simulating DLHST called FastRK3P∗ that combines FastP∗ (Dodd & Ferrante 2014)
with FastRK3 (Aithal & Ferrante 2020). FastRK3 is a third-order Runge–Kutta (RK3)
pressure-correction method for solving the incompressible Navier–Stokes equations,
which requires solving the Poisson equation of pressure only once per time step versus
three times for a standard RK3 methodology (Aithal & Ferrante 2020). Also, Aithal,
Tipirneni & Ferrante (2022) have shown that FastRK3 preserves the temporal accuracy
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of the underlying standard RK3 methodology even if the Poisson equation for pressure is
solved only once per time step versus three for standard RK3. Thus, by combining these
two methodologies, FastRK3P∗ has two main qualities: first, it does not use the solution
from the previous time step to advance the solution in time, which is required by AB2, and,
second, it only requires one solution of the Poisson equation for pressure per time step. The
first quality ensures that the issue of weak instability for simulating HST is solved, and
the second makes the solver faster than the standard RK3 or Crank–Nicholson methods
that require solving the Poisson equation multiple times per time step. FastRK3P∗ can be
seen as the FastRK3 methodology extended to two-fluid immiscible flows, or as FastP∗
methodology using FastRK3 time integration instead of AB2.

In § 2.2.1 we describe the FastRK3P∗ method that is used to solve numerically
the two-fluid governing equations (2.1a) and (2.1b). This method is coupled to the
volume-of-fluid (VoF) method presented in § 2.2.2, which is used to capture the motion
of the droplet interface analogously to Dodd & Ferrante (2014).

2.2.1. FastRK3P∗
We solve the governing equations (2.1a) and (2.1b) throughout the whole computational
domain, including the interior of the droplets. The domain is a rectangular prism with side
lengths (Lx, Ly, Lz) = (2L,L,L), where L = 1. The governing equations are discretized
in space in an Eulerian framework using the second-order central difference scheme on a
uniform staggered mesh.

The solution algorithm begins by advecting the volume fraction of the droplet fluid,
C(x, t), based on the known velocity field un. The volume fraction has value C = 0 in
the carrier fluid, C = 1 in the droplet fluid and 0 < C < 1 in cells containing the droplet
interface. After computing Cn+1 (§ 2.2.2), the density and viscosity can be computed at
time level n + 1 as

ρn+1(x) = ρdCn+1(x) + ρc[1 − Cn+1(x)],

μn+1(x) = μdCn+1(x) + μc[1 − Cn+1(x)].

}
(2.4)

Runge–Kutta methods are a family of multi-step iterative methods that construct
approximate velocities at intermediate time steps, starting with the velocity at time level
n, to obtain the velocities at time level n + 1. First, the computation of the approximate
velocity omits the pressure term in (2.1b) and the second term on the right-hand side in
(2.1b) is omitted. This term represents the advection of momentum by the mean velocity
and is accounted for later in the solution algorithm by a ‘shear-remapping’ operation. The
momentum operator for the right-hand side of (2.1b) with the omitted terms is defined as

M(u) = −∇ · (uu) − Swî + 1
Re

[
1

ρn+1 ∇ ·
(

2μn+1S′
)]

+ 1
We

[
κn+1∇Cn+1

ρ̄

]
, (2.5)

where the surface tension force, f σ , of (2.1b) has been substituted by using Brackbill’s
continuum surface force approach (Brackbill, Kothe & Zemach 1992),

f σ = ρ

ρ̄
κ∇C, (2.6)

where ρ̄ ≡ 1
2 (ρ1 + ρ2). The interface curvature κn+1 is computed using the

height-function method (Cummins, Francois & Kothe 2005) with improvements
developed by López et al. (2009).
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The solution algorithm proceeds by calculating three intermediate velocities for the
three stages of the RK3 algorithm using the FastRK3 method of Aithal & Ferrante (2020)
as

u∗
1 = un + 1

3
tM(un), (2.7)

u∗
2 = un + 
t

[
−M(un) + 2M

(
u∗

1 − 1
3

t

∇φ

ρn+1

)]
, (2.8)

u∗
3 = un + 
t

[
3
4
M

(
u∗

1 − 1
3

t

∇φ

ρn+1

)
+ 1

4
M

(
u∗

2 − 1
3

t

∇φ

ρn+1

)]
, (2.9)

where the ∇φ terms represent a pressure-like field that correct u∗
1 and u∗

2 to be
approximately divergence-free. For FastRK3P∗, these terms are defined as

∇φ

ρn+1 =
[∇p

ρ

]n

. (2.10)

The right-hand side of (2.10) is computed and stored at each time step according to the
FastP∗ pressure splitting [∇p

ρ

]n

= 1
ρ0

∇pn +
(

1
ρn − 1

ρ0

)
∇p∗. (2.11)

Next, the advection by the mean velocity is accounted for by the ‘shear-remapping’
operator that maps local values of velocity to values computed upstream according to the
magnitude of the local mean velocity by using Fourier interpolation. The advection of
mean velocity is, thus, applied to u∗

3 with the ‘shear-remapping’ operator as

ǔ∗
3 = u∗

3(x − 
tSzî). (2.12)

The pressure is computed by solving the Poisson equation (Dodd & Ferrante 2014)

∇2pn+1 = ∇ ·
[(

1 − ρ0

ρn+1

)
∇p∗

]
+ ρ0


t
∇ · ǔ∗

3, (2.13)

where we have split the pressure gradient term (Dong & Shen 2012) as

1
ρn+1 ∇pn+1 → 1

ρ0
∇pn+1 +

(
1

ρn+1 − 1
ρ0

)
∇p∗, (2.14)

where ρ0 = min(ρ1, ρ2) and p∗ = 2pn − pn−1. The advantage of using (2.14) is that
it yields a constant coefficient Poisson equation (2.13) that can be solved efficiently
using direct methods. Equation (2.13) is solved directly using a combination of a
two-dimensional FFT in the x–y plane and Gauss elimination in the z direction (Schmidt,
Schumann & Volkert 1984). Finally, we update the velocity field by applying the pressure
correction to ǔ∗

3 as

un+1 = ǔ∗
3 − 
t

[
1
ρ0

∇pn+1 +
(

1
ρn+1 − 1

ρ0

)
∇p∗

]
. (2.15)

Figure 1 shows the difference in the TKE spectra when using AB2 versus the FastRK3
method to simulate HST with shear number (Sh = S/(urms/l)) Sh0 ≈ 2, i.e. case A2 (see
table 1). The TKE spectrum from the AB2 method shows unphysical fluctuations at higher
wavenumbers, while the spectrum from the FastRK3 method decays as expected at high
wavenumbers.
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100 101 102

κ/κ0

10–8

10–6

10–4

10–2

E(κ)

AB2

FastRK3

Figure 1. Spectrum of TKE, E(κ), for single-phase HST at tS = 2 for Reλ0 = 52 and Sh0 ≈ 2, using the
AB2 (dotted line) and FastRK3 (solid line) time-integration schemes. The wavenumber, κ , is normalized by
κ0 = 2π/L.

Case t t∗ Reλ Re� urms ε η × 10−3 λ � τη τλ τ�

0.0 — 40.0 134 0.181 0.127 1.40 0.017 0.058 0.025 0.096 0.323
0.1 — 43.8 135 0.164 0.071 1.61 0.021 0.065 0.033 0.128 0.395

A2 0.5 0.0 51.9 145 0.152 0.038 1.89 0.026 0.075 0.045 0.169 0.490
1.7 1.2 82.9 265 0.259 0.072 1.61 0.029 0.091 0.033 0.111 0.352

A4 0.3 0.0 53.0 152 0.172 0.060 1.69 0.024 0.069 0.036 0.141 0.401
0.9 0.6 93.2 286 0.311 0.205 1.24 0.024 0.072 0.020 0.076 0.233

Table 1. Flow parameters (dimensionless) at initial time (t = 0), shear activation time (t = 0.1), droplet
release time (tr = 0.5 for case A2, and tr = 0.3 for case A4) and at the final non-dimensional time (t = 1.7
for case A2, and t = 0.9 for case A4). Here, t∗ is defined in (3.4). Cases A2 and A4 are the single-phase HST
flow with Sh0 ≈ 2 and Sh0 ≈ 4, respectively (see table 2).

2.2.2. Volume-of-fluid method
In the VoF method the sharp interface between the two immiscible fluids is determined
using the VoF colour function, C, which represents the volume fraction of the droplet
fluid in each computational cell. In our VoF method the interface between the two
fluids is reconstructed using a piecewise linear interface calculation (Youngs 1982). The
interface reconstruction in each computational cell consists of two steps: the computation
of the interface normal n = (nx, ny, nz) and the computation of the interface location.
The algorithm that we use to evaluate the interface normal is a combination of the
centred-columns method (Miller & Colella 2002) and Youngs’ method (Youngs 1982)
known as the mixed-Youngs-centred method (Aulisa et al. 2007).

If we consider a characteristic function χ that has value χ = 1 in the droplet fluid and
χ = 0 in the carrier fluid, χ is governed by the following advection equation:

∂χ

∂t
+ u · ∇χ = 0. (2.16)
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0, 0 f (x – tSLz, y, Lz)

f (x, y, Lz)Lz
Ū(z)

Lx

Figure 2. Schematic showing the shear-periodic boundary conditions in the z direction.

The volume fraction Ci,j,k of grid cell i, j, k is related to the characteristic function χ by
the integral relation

Ci,j,k(t) = 1
V0

∫∫∫
V0

χ(x, t) dx, (2.17)

where V0 is the volume of the i, j, k cell. The volume fraction C is advanced in time using
the advection algorithm of Weymouth & Yue (2010), which is mass conserving, and wisps
are redistributed and suppressed using the method of Baraldi, Dodd & Ferrante (2014).

2.2.3. Shear-periodic boundary conditions
In HST, periodic boundary conditions are applied in the streamwise x direction and
spanwise y direction. In the z direction, in which the mean carrier flow velocity varies
(Ū(z), figure 2), the shear (S = ∂Ū/∂z) requires shear-periodic boundary conditions that,
for a generic dependent variable f , are expressed as

f (x, y, Lz, t) = f (x − tSLz, y, 0, t). (2.18)

Depending on the choice of S and time step 
t, the x position (x − tSLz) on the
right-hand side of (2.18) may fall in between grid points. The boundary values in the
z direction of velocity and pressure are computed using Fourier interpolation. The VoF
variables, such as the interface normal, plane constant and curvature, are discontinuous
and, thus, computing their boundary values via Fourier interpolation would be inaccurate.
The way that we impose shear-periodic boundary conditions for the VoF variables is
explained next. All VoF variables are located at cell centres along with the pressure
field, while velocities are located at the staggered cell faces. FastRK3P∗ computes the
momentum operator at staggered grid locations. In order to solve (2.1b) numerically, the
surface tension term, f σ , must be computed on the staggered cell faces by averaging
the values at the two nearest cell centres. In order to compute f σ at the z boundaries,
the shear-periodic boundary conditions need to fill the values of the VoF variables in
a number of ‘ghost cells’ in the z direction next to the bottom and top boundaries in a
two-step process. First, the VoF variables from a slab of four cells in the z direction are
copied from the interior, next to the bottom (and top) boundary, to the ghost cells next
to the top (and bottom) boundary at the same x, y locations. Next, the VoF advection
algorithm is employed to shift the values of the ghost cells in the x direction by the
corresponding distance 
x = StLz in accordance with (2.18). Next, for both the top and
bottom z boundaries, from the VoF variables in the four ghost cells, the interfaces are
reconstructed and the curvature is computed, such that f σ can be computed at the cell
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On the interaction of droplets and turbulence

centres in the first ghost cells according to (2.3). Finally, f σ is interpolated from the cell
centres to the staggered cell faces at the z boundaries.

3. Results and discussion

3.1. Initial conditions and droplet properties

3.1.1. Carrier flow parameters and initial conditions
The initial turbulent velocity field is generated by prescribing the TKE spectrum, E(κ), and
ensuring that the velocity field is isotropic, divergence free with respect to the discretized
form of the continuity equation and that the velocity cross-correlation spectra, Rij(κ),
satisfy the realizability constraint (Schumann 1977).

The initial energy spectrum at time t = 0 is prescribed as (Pope 2000, § 6.5.3)

E(κ) = 1.5[ε2/3
0 κ−5/3fL(κL)fη(κη)], (3.1)

where κ is the wavenumber, ε0 is the initial dissipation rate of TKE, L ≡ k3/2
0 /ε0, where

k0 is the initial TKE, fL is given by

fL(κL) =
(

κL
[(κL)2 + cL]1/2

)11/3

, (3.2)

and fη is given by

fη(κη) = exp
{
−5.2

{[
(κη)4 + c4

η

]1/4 − cη

}}
, (3.3)

where cL = 3.579 and cη = 0.440. The constants cL and cη are calculated such that E(κ)

and 2Re−1κ2E(κ) integrate to k0 and ε0, respectively. The values of the dimensionless
parameters at t = 0 were k0 = 4.867 × 10−2, ε0 = 1.243 × 10−1 and Re = 1.27 × 104.
These parameters yield an initial Reynolds number based on the Taylor length scale
of Reλ0 = 40 (Reλ = λ(k2/3)1/2/ν). The non-dimensional time step used is 
t =
0.1
x/(SLz).

The initial velocity field is allowed to develop with periodic boundary conditions and
without shear (i.e. as decaying isotropic turbulence), until the skewness of the velocity
derivative Su has reached ≈ −0.50. At that time, a constant mean velocity gradient S = 5
or S = 10, which corresponds to an initial shear number Sh0 ≈ 2 or Sh0 ≈ 4, respectively,
is imposed to the flow field. These values of Sh are below the strong shearing regime
(Sh > 20) that can be described using rapid distortion theory (Pearson 1959; Moffatt
1965; Kasbaoui, Koch & Desjardins 2019b). In order to ensure that our simulations are
physically meaningful, we check that ηκmax ≥ 1 at all times, where κmax = πN is the
maximum resolved wavenumber and N = 600 is the number of grid points in the y and
z directions, while Nx = 2N. Additionally, we check that the two-point Eulerian velocity
autocorrelation in the x direction diminishes to zero in less than half the length of Lx = 2L
at all times. To satisfy this condition, the domain length in the x direction is double its
length in the y and z directions.

Table 1 shows the dimensionless flow parameters at different times for the droplet-free
flows (cases A2 and A4): � and τ� are the integral length and time scales, respectively;
Re� is the Reynolds number based on �; λ is the Taylor length scale; η and τη are the
Kolmogorov length and time scales, respectively.

972 A9-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

64
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.647


P. Trefftz-Posada and A. Ferrante

Case S Werms We ϕ ≡ ρd/ρc γ ≡ μd/μc φm φv

A2 5 — — — — 0 0
A4 10 — — — — 0 0
A∗

2 5 ∞ ∞ 1 1 0.05 0.05
A∗

4 10 ∞ ∞ 1 1 0.05 0.05
B2 5 0.02 16.2 10 10 0.5 0.05
B4 10 0.02 12.7 10 10 0.5 0.05
C2 5 0.1 81.0 10 10 0.5 0.05
C4 10 0.1 63.2 10 10 0.5 0.05
D2 5 0.5 405 10 10 0.5 0.05
D4 10 0.5 316 10 10 0.5 0.05

Table 2. Simulation properties (dimensionless) at droplet release.

3.1.2. Droplet properties
We perform two simulations of single-phase flow, A2 and A4, and eight simulations of
DLHST (table 2). Cases A∗

2 and A∗
4 are limiting cases in which the viscosity and density

ratios are unity and the Weber number is infinity. We analyse the effects of varying
the shear number Sh = S/(urms/l) and the initial droplet Weber number based on the
r.m.s. of velocity fluctuations Werms = D0u2

rmsρc/σ , where l is the integral length scale
of turbulence and D0 is the initial droplet diameter. In cases A2–D2, Sh0 ≈ 2 and in cases
B2–D2, Werms increases from 0.02 to 0.5. In cases A4–D4, Sh0 ≈ 4 and in cases B4–D4,
Werms increases from 0.02 to 0.5. These Weber numbers were selected, from a larger set of
Weber numbers investigated, because they produced different effects on the evolution of
TKE with respect to single-phase HST. The values of shear number were selected based
on the simulations of Ahmed & Elghobashi (2000). The density and viscosity ratios for all
droplet-laden cases are set to be ϕ = 10 and γ = 10, respectively. These properties were
selected for their engineering relevance to spray combustion devices. For all cases, the
initial number of droplets is Nd = 1258 and the initial droplet diameter is D0 = 0.0533,
for which the resulting droplet volume fraction and droplet mass fraction are, respectively,
φv = 0.05 and φm = 0.5.

The flow field evolves free of droplets until tS = 2, which corresponds to one flow
through of the mean shear. To compare Sh0 ≈ 2 and Sh0 ≈ 4 cases, we introduce a new
time quantity, defined as

t∗ = t − tr, (3.4)

where tr = 0.5 and tr = 0.3 are the droplet release time for Sh ≈ 2 and Sh ≈ 4 cases,
respectively. After droplets are released, all cases advance in time for three flow throughs
of the mean shear, i.e. 0 ≤ t∗S ≤ 6. Equal values of t∗S between Sh ≈ 2 and Sh ≈ 4 cases
correspond to equal shifts in the boundary conditions due to the mean shear, allowing
for better comparison between different values of Sh. At t∗S = 0, droplets are randomly
seeded in the domain under the constraint that the distance between droplet centres must
be at least 2.1D0 and by setting the fluctuating velocity in the interior of the droplets to
zero. Figure 3 shows that at t∗S = 6 the spectra of cases A2 and A4 are nearly identical to
the spectra of cases A∗

2 and A∗
4, respectively, which indicates that setting the fluctuating

velocity to zero in the droplet interior has a negligible effect on the spectra of HST.
Wavelet-spectral analysis would be needed in order to accurately interpret the spectra
of droplet-laden cases (Freund & Ferrante 2019). We also tested different initial droplet
positions and found that for all droplet-laden cases, the values of dk/dt match within 3 %
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Figure 3. Spectra of the TKE at t∗S = 6 in (a) Sh0 ≈ 2 cases and (b) Sh0 ≈ 4 cases. The wavenumber, κ , is
normalized by κ0 = 2π/L.

for 5.25 < t∗S < 6, and the values of k match within 1.5 % at t∗S = 6. Thus, we conclude
that the results are nearly independent of the initial positions of the droplets.

3.2. Turbulence kinetic energy equations
In order to explain the fundamental physical mechanisms of the interactions of droplets
with HST, we start by analysing the evolution equation of TKE, k(t), for the two-fluid
flow, kc(t) for the carrier-fluid flow and kd(t) for the droplet-fluid flow.

The evolution equation of k(t) is derived in Appendix B as

dk
dt

= P − ε + Ψ ′
σ , (3.5)

where

k(t) ≡ 1
2 〈ρujuj〉, (3.6a)

P(t) ≡ −S〈ρuw〉, (3.6b)

ε(t) ≡ 1
Re

〈T′
ijS

′
ij〉, (3.6c)

Ψ ′
σ (t) ≡ 1

We
〈ujfσ,j〉, (3.6d)

where 〈· · · 〉 denotes instantaneous volume averaging over the entire computational
domain. Here, T ′

ij = 2μS′ is the viscous stress tensor and S′
ij is the strain-rate tensor of

the fluctuating velocity defined in § 2.1. In (3.5) and (3.6), P(t) is the production of k(t),
ε(t) is the dissipation rate of k(t) and Ψ ′

σ (t) is the power of the surface tension due to the
fluctuating velocity.

The evolution equation for the TKE of the carrier-fluid flow, kc(t), is

dkc

dt
= Pc − εc + Tν,c + Tp,c, (3.7)

and the evolution equation for the TKE of droplet-fluid flow, kd(t), is

dkd

dt
= Pd − εd + Tν,d + Tp,d. (3.8)
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The terms in (3.7) and (3.8) are defined as

kc(t) ≡ 1
2
〈ρujuj〉c, Pc(t) ≡ −S〈ρuw〉c, εc(t) ≡ 1

Re
〈T ′

ijS
′
ij〉c,

Tν,c(t) ≡ 1
Re

∂〈T ′
ijuj〉c

∂xi
, Tp,c(t) ≡ −∂〈ujp〉c

∂xj
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (3.9)

and

kd(t) ≡ 1
2
〈ρujuj〉d, Pd(t) ≡ −S〈ρuw〉d, εd(t) ≡ 1

Re
〈T ′

ijS
′
ij〉d,

Tν,d(t) ≡ 1
Re

∂〈T ′
ijuj〉d

∂xi
, Tp,d(t) ≡ −∂〈ujp〉d

∂xj
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (3.10)

where 〈. . .〉c and 〈. . .〉d denote instantaneous volume averaging over the carrier fluid and
droplet fluid, respectively. In (3.7)–(3.10), Pc and Pd are the productions of kc and kd, εc
and εd are the dissipation rates of kc and kd, Tν,c and Tν,d are the viscous powers and Tp,c
and Tp,d are the pressure powers. The power terms are related through the identity

Ψ ′
σ = (1 − φv)[Tν,c + Tp,c] + φv[Tν,d + Tp,d], (3.11)

which is also derived in Appendix B. We also analyse the modulation of the interfacial
surface energy by the mean flow via the power of the surface tension due to the mean
velocity, defined as

Ψ̄σ (t) ≡ 1
We

〈Ūjfσ,j〉, (3.12)

which is discussed in more detail in § 3.3.4 and Appendix C.
The derived equations, (3.5), (3.7), (3.8) and (3.12), are summarized schematically in

figure 4, which depicts the pathways for TKE exchange in DLHST, and, more generally, in
two-fluid (liquid–liquid or gas–liquid) incompressible HST. All terms responsible for the
evolution of k (3.5), kc (3.7) and kd (3.8) are represented. The rectangles from left to right
encompass the mean flow kinetic energy, the interfacial surface energy, the TKE of the
two-fluid flow k and the internal energy. In the current work the mean shear is prescribed
and kept constant in time, which means that the mean flow kinetic energy is constant in
time and that the modulation of the mean flow by the droplets is not allowed. This is
indicated by the solid line boundary of the leftmost rectangle, as opposed to the dashed
line boundaries of the other rectangles that represent energies that change in time. The
light purple arrows represent the production, P , of TKE in the carrier and droplet fluids
due to the mean shear. The red arrows represent TKE of the carrier fluid and droplet fluid
being transformed into internal energy by viscous dissipation, ε. The dark purple arrow
represents mean flow kinetic energy being converted to interfacial surface energy by the
power of the surface tension due to the mean velocity, Ψ̄σ . The blue arrow represents TKE
being exchanged for interfacial surface energy and vice versa by the power of the surface
tension due to the fluctuating velocity, Ψ ′

σ . The power (or transport) terms Tν,c, Tp,c, Tν,d,
Tp,d (green arrows) act to redistribute TKE between the carrier fluid and droplet fluid or
into interfacial surface energy via three bidirectional pathways: (i) carrier fluid ↔ droplet
fluid, (ii) carrier fluid ↔ interface and (iii) droplet fluid ↔ interface. This relationship is
expressed mathematically by (3.11).
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Mean flow
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pressure and
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(droplet deformation,
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Ψ̄σ Ψ ′
σ
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Figure 4. Schematic showing the pathways for TKE exchange in DLHST, or, in general, for two-fluid
incompressible HST, summarizing the results of (3.5)–(3.12).
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Figure 5. Temporal evolution of the TKE, k, normalized by its initial value (a) k0Sh≈2 for Sh ≈ 2 cases, and

(b) k0Sh≈4 for Sh ≈ 4 cases.

3.3. Comparison of TKE budget for single-phase and droplet-laden turbulence
In this section we present the effects of droplets on HST relative to the single-phase
cases by analysing the terms of the TKE budget equation (3.5) and, then, we explain the
underlying physical mechanisms.

3.3.1. Two-fluid TKE budget
Figure 5 shows the temporal evolution of k(t) normalized by its initial value at droplet
release time, k/k0, for all cases. The average rates of change of TKE after t∗S > 5 are
calculated and shown. For cases B2 and B4, the rate of change of TKE is increased with
respect to the single-phase cases (A2 and A4). For cases C2 and C4, the rate of change of
TKE oscillates near the value for the single-phase cases. For cases D2 and D4, the rate of
change of TKE is decreased with respect to the single-phase cases. For all droplet-laden
cases, d(k/k0)/dt is smaller for cases with larger values of Werms.
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Figure 6. Temporal evolution of the production of TKE, P , normalized by the initial value of the dissipation

rate (a) ε0Sh≈2 for Sh ≈ 2 cases, and (b) ε0Sh≈4 for Sh ≈ 4 cases.
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Figure 7. Temporal evolution of the dissipation rate of TKE, ε, normalized by the initial value of the

dissipation rate (a) ε0Sh≈2 for Sh ≈ 2 cases, and (b) ε0Sh≈4 for Sh ≈ 4 cases.

To explain why droplets modify the rate of change of k, we analyse the temporal
evolution of the terms on the right-hand side of (3.5), which are P , ε and Ψ ′

σ . Figure 6
shows the temporal evolution of the production of TKE normalized by the initial
dissipation rate of TKE, P/ε0. For cases B2 and B4, the production is increased with
respect to the single-phase cases. For cases C2 and C4, the production closely matches that
of the single-phase cases. For cases D2 and D4, the production is reduced with respect
to the single-phase cases. For all droplet-laden cases, P is smaller for cases with larger
values of Werms.

Figure 7 shows the temporal evolution of the normalized dissipation rate of TKE,
ε/ε0. For all droplet-laden cases, the dissipation rate is enhanced compared with the
single-phase cases, with a larger increase in dissipation for cases with smaller values of
Werms.

Figure 8 shows the temporal evolution of the power of the surface tension due to the
fluctuating velocity normalized by the initial dissipation rate of TKE, Ψ ′

σ /ε0. For cases
B2 and B4, Ψ ′

σ oscillates around roughly 200 % of the initial dissipation rate, ε0, which
corresponds to 30 % of the instantaneous values of the dissipation rate, ε, at t∗S = 6.
Therefore, in cases B2 and B4, Ψ ′

σ represents a significant source of TKE for t∗S > 3. For
cases C2 and C4, Ψ ′

σ initially exhibits oscillations around zero up to 80 % of ε0 (case C2)
and 200 % (case C4), which decay to less than 30 % of ε0 for t∗S > 3. For cases C2 and C4,
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Figure 8. Temporal evolution of the power of the surface tension due to the fluctuating velocity, Ψ ′

σ ,
normalized by the initial value of the dissipation rate (a) ε0Sh≈2 for Sh ≈ 2 cases, and (b) ε0Sh≈4 for Sh ≈ 4
cases.
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Figure 9. Temporal evolution of the carrier-fluid contribution to the production of TKE, (1 − φv)Pc,
normalized by the initial value of the dissipation rate (a) ε0Sh≈2 for Sh ≈ 2 cases, and (b) ε0Sh≈4 for Sh ≈ 4
cases.

Ψ ′
σ represents a moderate source or sink of TKE for 0 < t∗S < 3, and has a less significant

role in the time evolution of the TKE for t∗S > 3. For cases D2 and D4, Ψ ′
σ is limited to

±20 % of ε0, thus playing a less significant role in the time evolution of the TKE.

3.3.2. Production of TKE
To explain why for cases B2 and B4, P is increased with respect to the single-phase cases,
but for cases D2 and D4, P is reduced with respect to the single-phase cases, we analyse the
contributions to P from the carrier-fluid production, Pc, and the droplet-fluid production,
Pd, represented as

P = (1 − φv)Pc + φvPd. (3.13)

Figure 9 shows that, for droplet-laden cases, production is decreased in the carrier fluid
compared with the single-phase cases, and figure 10 shows that, for droplet-laden cases,
production is increased in the droplet fluid compared with the single-phase cases. The
relative importance of these effects for the different cases is explained next.

Figure 9 shows that Pc is smaller for all droplet-laden cases when compared with A∗
2

and A∗
4, and is smaller for the cases with larger Werms. For single-phase HST, Kida &
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Figure 10. Temporal evolution of the droplet-fluid contribution to the production of TKE, φvPd , normalized

by the initial value of the dissipation rate (a) ε0Sh≈2 for Sh ≈ 2 cases, and (b) ε0Sh≈4 for Sh ≈ 4 cases.
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Figure 11. Temporal evolution of the total surface area of the droplets, A, normalized by its initial value, A0.

Tanaka (1992) explain how, on average, vortical structures are first elongated and then
inclined by about 20◦ to the streamwise direction by the mean shear. Pairs of inclined
counter-rotating vortical structures cause a negative correlation of uw in the region
between them, and therefore, positive local production, P ′ = −Sρuw. The presence of the
droplets interrupts this mechanism due to the droplets’ higher inertia with respect to the
surrounding fluid, thereby reducing the regions of positive P ′ in the carrier fluid compared
with cases A∗

2 and A∗
4. Figure 11 shows that the total droplet surface area, A(t), decreases

with decreasing Werms, and that A(t) is largest for cases D2 and D4. The droplets in cases
D2 and D4 interrupt the carrier-fluid flow in the regions between pairs of counter-rotating
vortical structures more than the droplets in cases B2 and B4 due to their larger total surface
area. This explains why Pc is lowest for cases D2 and D4 among the cases studied.

Figure 10 shows that Pd is larger for all droplet-laden cases when compared with A∗
2

and A∗
4, and is smaller for the cases with larger Werms. Droplets with smaller Werms, such

as for cases B2 and B4, tend to deform less than droplets with larger Werms, such as
for cases D2 and D4. Due to the fact that the mean shear is positive, the mean velocity
of a droplet whose centre of mass is higher in the z direction tends on average to be
larger than the mean velocity of a droplet whose centre of mass is at lower z. Because
of this, droplets with lower Werms are more likely to keep their original spherical shape,
catch up with droplets at lower z on their path and collide such that their centres of
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U– (z)
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Pd > 0
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P ′ > 0

uw < 0

t1 t2 t3 t4

Figure 12. Schematic showing the droplet ‘catching-up’ mechanism.

mass are aligned along the northwest-southeast direction as depicted in figure 12. As
pairs of droplets coalesce and return toward a spherical shape, the surface tension force
squeezes the droplet fluid in the northwest-southeast direction, corresponding to a negative
correlation of uw, and therefore, positive P ′ ≡ −Sρuw in the droplet fluid as shown in
figures 12 and 13. Figure 12 depicts a schematic of this droplet ‘catching-up’ mechanism.
Figure 13 and supplementary movie 1 available at https://doi.org/10.1017/jfm.2023.647
show the instantaneous results of two catching-up droplets obtained from a simulation
placing two droplets in a shear flow with zero fluctuations and all droplet properties,
numerical viscosity and mean shear matching those of case B4. This effect only occurs
when the Weber number is small enough to keep the shape of the droplets closer to their
initial spherical shape. Figure 14 and supplementary movie 2 show that, for larger Werms,
droplets equivalent to those of case D4 are deformed by the shear instead of returning
toward a spherical shape. This explains why for cases B2 and B4 with smaller Werms, there
is a larger increase in Pd when compared with those of cases D2 and D4, respectively.
Figure 15 and supplementary movie 3 show a contour plot of P ′ in the x–z plane of case B4.
These figures demonstrate several instances of two droplets colliding in a similar fashion
to the laminar two-droplet simulations. Figure 16 shows that more droplet collisions occur
in cases B2 and B4 when compared with other cases, further showing that the droplet
‘catching-up’ mechanism increases Pd(t).

For cases B2 and B4, the increase in Pd due to the droplet ‘catching-up’ mechanism is
greater than the decrease in Pc when compared with the single-phase cases, which explains
the overall increase in P . For cases C2 and C4, both effects are relatively balanced, which
explains why P closely matches the single-phase results. For cases D2 and D4, the decrease
in Pc is the most significant of all droplet-laden cases and, additionally, the ‘catching-up’
mechanism does not cause a larger Pd, which explains the overall decrease in P . It should
be noted that the VoF method used in the present work will always produce coalescence
when the interfaces of two droplets come to occupy the same computational cell. Thus, the
droplet ‘bouncing’ regime which may occur in droplet–droplet collisions is not captured
by our VoF method, resulting in more coalescence events and no ‘bouncing’ regime.

3.3.3. Dissipation rate of TKE
To explain why ε(t) is greater in all droplet-laden cases compared with single-phase cases,
figure 17 shows the instantaneous two-dimensional contours of ε′ ≡ Re−1(T ′

ijS
′
ij) of the

computational domain at t∗S = 3. Figure 17 shows that ε′ is enhanced near the droplet
interface for droplet-laden cases, and in the droplet interior in case B4. This is explained
by two separate mechanisms.
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Figure 13. Two droplets demonstrating the droplet ‘catching-up’ mechanism in laminar shear flow. All droplet
properties, the numerical viscosity and the mean shear are equal to those in case B4. Droplet interfaces are
black lines, velocity vectors deviation from the mean velocity field are black arrows, colour contours of P ′ =
−Sρuw and temporal evolution of Pd = 〈P ′〉d in insert. Results are shown for (a) t∗S = 0.5; (b) t∗S = 0.9;
(c) t∗S = 1.4; (d) t∗S = 1.9.
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Figure 14. Two droplets demonstrating the droplet ‘catching-up’ mechanism in laminar shear flow. All droplet
properties, the numerical viscosity and the mean shear are equal to those in case D4. Droplet interfaces are black
lines, velocity vectors deviation from the mean velocity field are black arrows, colour contours of P ′ = −Sρuw
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interfaces highlighted within green circles where the droplet ‘catching-up’ mechanism is occurring for case
B4. (a) Case B4, t∗S = 1.5. (b) Case B4, t∗S = 1.8.
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Figure 16. Temporal evolution of the total number of droplets.

Firstly, the increased ε′ in the carrier phase near the droplet interface is due to the local
increase of S′

ij that is due to the local increase of the velocity gradient (∂ui/∂xj). Such
increase in ∂ui/∂xj is caused by the droplet trajectories deviating from the motion of the
carrier fluid because of the larger density of the droplets that, due to their higher inertia
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Figure 17. Instantaneous contours in the x–z plane of ε′ = Re−1(T ′
ijS

′
ij) at t∗S = 3 for cases A4, B4 and D4.

(a) Case A4, t∗S = 3.0. (b) Case B4, t∗S = 3.0. (c) Case D4, t∗S = 3.0.

with respect to the carrier fluid, force the surrounding flow to move around them. Note that
the droplet trajectories deviate from the trajectories of the turbulent eddies (both large and
small scales of motion) because the droplet Stokes numbers, based on either the integral
time scale or the Kolmogorov time scale, are both much larger than unity. This had been
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Figure 18. Temporal evolution of the carrier-fluid contribution to the dissipation rate of TKE, (1 − φv)εc,
normalized by the initial value of the dissipation rate (a) ε0Sh≈2 for Sh ≈ 2 cases, and (b) ε0Sh≈4 for Sh ≈ 4
cases.
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cases.

observed also in droplet-laden decaying isotropic turbulence by Dodd & Ferrante (2016).
Figure 18 shows the contribution from the carrier fluid to ε(t). For all droplet-laden cases,
εc is larger for cases with smaller Werms, and significantly larger for case B2. Figure 17
shows regions of large ε′ in the carrier fluid surrounding droplets that have coalesced via
the ‘catching-up’ mechanism. The significant increase in εc for case B2 is explained by the
greater amount of coalescence events, since case B2 has the least amount of droplets at the
end of the simulation (figure 16).

Secondly, the increased ε′ in the droplet interior in cases B2 and B4 is due to the droplet
‘catching-up’ mechanism. Figure 7 shows that, in cases B2 and B4, ε(t) is greatly enhanced
compared with all other cases. To explain this increase in magnitude, figure 19 shows
the contribution from the droplet fluid to ε(t). For all droplet-laden cases, εd is larger
for cases with smaller Werms, and significantly larger in cases B2 and B4. As explained
in § 3.3.2, in cases B2 and B4, the droplet ‘catching-up’ mechanism causes droplets to
coalesce and return towards a spherical shape. Figure 20 and supplementary movie 4 show
a contour plot of ε′ in the x–z plane of two droplets in a shear flow with initial zero velocity
fluctuations in the flow field for which all the droplet properties and the shear match those
of case B4, with an inset of the temporal evolution of the quantity εd. These figures show
that after coalescence, the elastic return towards a spherical shape creates large velocity
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Figure 20. Two droplets demonstrating the droplet ‘catching-up’ mechanism in laminar shear flow. All droplet
properties, the numerical viscosity and the mean shear are equal to those in case B4. Results are shown for
(a) t∗S = 0.4; (b) t∗S = 0.8; (c) t∗S = 1.2.

gradients (∂ui/∂xj) in the flow inside the coalesced droplets near the region of coalescence,
and, therefore, enhanced ε′ in the droplet fluid.

Finally, the contribution to ε(t) from the carrier-fluid dissipation, εc, and the
droplet-fluid dissipation, εd, is represented as

ε = (1 − φv)εc + φvεd. (3.14)
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The local increase of ε′ inside the droplets and near the droplet interfaces increases ε(t)
because ε(t) = 〈ε′〉.

3.3.4. Power of the surface tension due to the fluctuating velocity
In § 3.3.1 the results have shown that the power of the surface tension due to the fluctuating
velocity, Ψ ′

σ (t) = (1/We)〈ujfσ,j〉, acts as a sink or source of TKE initially for 0 ≤ t∗S ≤
3, and acts as a source of TKE at later times for 3 ≤ t∗S ≤ 6. We now explain in more
detail the behaviour of Ψ ′

σ (t), and why it changes for varying Werms. In order to do so, we
introduce the power of the surface tension due to the total velocity,

Ψσ (t) ≡ 1
We

〈Uj fσ,j〉. (3.15)

Since Uj = Ūj + uj, Ψσ (t) can be decomposed into the power of the surface tension due
to the mean velocity, Ψ̄σ (t), and the power of the surface tension due to the fluctuating
velocity, Ψ ′

σ (t), as
Ψσ (t) = Ψ̄σ (t) + Ψ ′

σ (t). (3.16)

In Appendix C we derive the following relationship between Ψσ (t) and the rate of change
of the total droplet surface area dA(t)/dt:

Ψσ (t) = − 1
We

1
V

dA(t)
dt

. (3.17)

Here, V is the volume of the domain (V = 2) and A(t) is the total droplet surface area
defined as

A(t) ≡
Nd(t)∑
n=1

∫∫
∂V(n)

c (t)
dA =

Nd(t)∑
n=1

A(n)(t), (3.18)

where Nd(t) is the instantaneous number of droplets, ∂V(n)
c (t) is the instantaneous control

surface that bounds the nth droplet interface from the carrier-fluid side and A(n)(t) is the
instantaneous surface area of the nth droplet. Here, Ψσ (t) is directly proportional to the rate
of change of droplet surface area (with opposite sign) and the constant of proportionality
is the non-dimensional surface tension coefficient We. Physically, Ψσ (t) represents the
transfer of interfacial surface energy to the total kinetic energy of the flow, i.e. mean kinetic
energy plus TKE. To analyse the behaviour of Ψ ′

σ , we first use (3.17) to determine how the
interfacial surface energy evolves, and then consider the contributions to the evolution of
the interfacial surface energy from the mean and fluctuating velocities.

Figure 11 shows that in cases B2, C2, B4 and C4, A(t) increases slightly after the droplets
are released, and then decreases below the initial total droplet surface area, A(t = 0),
with small oscillations. These changes in total droplet surface area, A(t), correspond to
an overall transfer of energy from the interfacial surface energy to the total kinetic energy
of the flow, with some transfer in the opposite direction, from the kinetic energy of the flow
to the interfacial surface energy, due to the oscillations for 0 ≤ t∗S ≤ 3. For cases B2, C2,
B4 and C4, the total droplet surface area decreases in time. The only mechanism that can
cause A(t) < A(0) in the present flow is the prevalence of droplet coalescence over break
ups and large deformations. Figure 16 shows that the total number of droplets decreases in
time. For cases D2 and D4, instead A(t) increases to 5 % of A(0) and then remains larger
than A(0) for all times. These changes in total droplet surface area correspond to an overall
transfer of energy from the total kinetic energy to the interfacial surface energy.
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by the initial value of the dissipation rate (a) ε0Sh≈2 for Sh ≈ 2 cases, and (b) ε0Sh≈4 for Sh ≈ 4 cases.
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Figure 22. Schematic showing the droplet ‘shearing’ mechanism.

Here, Ψ̄σ (t) represents the transfer of energy from the interfacial surface energy to mean
flow kinetic energy. Figure 21 shows that Ψ̄σ (t) is negative for all cases, with increasing
magnitude as Werms decreases. Negative Ψ̄σ (t) indicates that the mean flow kinetic energy
is being transferred to the interfacial surface energy. Physically, the negative contribution
of Ψ̄σ (t) to Ψσ (t) means that the mean flow is acting to deform the droplets; thus, it is a
source of interfacial surface energy.

In all cases except D2 and D4, after energy is transferred from the mean flow kinetic
energy to the interfacial surface energy by deforming the droplets, the surface tension
force is large enough to bring the droplets back to a more spherical shape. When the
droplets return to a more spherical shape, A(t) decreases and the interfacial surface energy
is transferred to TKE via Ψ ′

σ (t). This explains why Ψ ′
σ (t) increases for decreasing Werms

(increasing surface tension force). When droplets with a larger surface tension force
coalesce, they tend to come back to a more spherical shape compared with droplets with a
smaller surface tension force. Figure 22 depicts what we have named the droplet ‘shearing’
mechanism, which summarizes the above described roles of the three powers of surface
tension of (3.16).

4. Conclusions

We have performed DNS of HST laden with deformable droplets, whose diameter is
approximately equal to twice the Taylor length scale of turbulence at the time the droplets
are released in the flow field. The goal of this study was to extend the work by Dodd &
Ferrante (2016) on droplet-laden decaying isotropic turbulence, to include and explain the
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role of the mean shear on the physical mechanisms of droplet/turbulence interaction for
moderate initial shear numbers of Sh0 ≈ 2 and Sh0 ≈ 4. Understanding these mechanisms
is a prerequisite for developing predictive, physics-based turbulence models (Ferrante
2022), as, for example, has been done by Freund & Ferrante (2021) with their mixed
artificial neural network approach based on the work by Dodd & Ferrante (2016) and
Freund & Ferrante (2019).

In order to perform the DNS study of DLHST, first we developed FastRK3P∗ (§ 2.2.1)
by combining FastP∗ (Dodd & Ferrante 2014) with FastRK3 (Aithal & Ferrante 2020).
FastRK3P∗ has two main qualities: first, it does not use the solution from the previous
time step to advance the solution in time, which is required by AB2, and, second, it only
requires one solution of the Poisson equation for pressure per time step. These qualities
make FastRK3P∗ computationally more efficient than projection methods using standard
RK3 or Crank–Nicholson schemes for time integration, or using multigrid for solving the
variable-density Poisson equation for pressure, while solving the issue of weak instability
inherent to AB2 for time integration.

Then, we performed DNS of DLHST using FastRK3P∗ (§ 3) for five cases at Sh0 ≈ 2,
and for five cases at Sh0 ≈ 4. For the droplet-laden cases, we released 1258 droplets in HST
at an initial Reynolds number based on the Taylor length scale of Reλ = 52 for Sh0 ≈ 2
cases, and Reλ = 53 for Sh0 ≈ 4 cases (table 1). For the droplet-laden cases, we varied
the Weber number (0.02 ≤ Werms ≤ 0.5), while the volume fraction was set to 5 %, and
the droplet-to-fluid density and viscosity ratios were set to ρd/ρc = 10 and μd/μc = 10,
respectively (table 2). The governing equations were discretized and solved in time, using
FastRK3P∗ coupled with the VoF method to capture the droplet interface (Weymouth &
Yue 2010; Baraldi et al. 2014), in a domain using 1200 × 600 × 600 grid points, and each
droplet was initially resolved by 32 grid points across its diameter. The new findings of
this study are summarized below for the modulation of the TKE budget (§ 4.1) and the
physical mechanisms that explain such modulation (§ 4.2).

4.1. Modulation of the TKE budget
In order to explain the modulation of TKE in DLHST, we derived the TKE budget
equations, (3.5), (3.7) and (3.8), of DLHST for the two fluids, the carrier fluid and the
droplet fluid (Appendix B). Compared with the TKE equations for decaying isotropic
turbulence derived by Dodd & Ferrante (2016), the TKE equations for DLHST each have
an additional term of production for k, kc and kd, called P , Pc and Pd, respectively,
which are due to the presence of the mean shear S. Additionally, we derived the equations
relating the rate of change of total droplet interfacial area with the power of surface tension,
(3.16) and (3.17). For decaying isotropic turbulence, due to the absence of a mean velocity
the power of the surface tension is due only to the fluctuating velocity, Ψ ′

σ , whereas for
DLHST, the power of the surface tension has the additional contribution due to the mean
velocity, Ψ̄σ , which also modulates the interfacial surface energy. These equations allowed
us to summarize the pathways of TKE exchange in DLHST and, in general, for two-fluid
incompressible turbulent shear flows in figure 4. Our main findings on the modulation of
TKE budget terms in DLHST are summarized next.

(a) For Werms = 0.02, the rate of change of TKE is increased with respect to the
single-phase cases. For Werms = 0.1, the rate of change of TKE oscillates near
the value for the single-phase cases. For Werms = 0.5, the rate of change of
TKE is decreased with respect to the single-phase cases. For the droplet-laden
cases, d(k/k0)/dt is smaller for cases with larger values of Werms (figure 5).
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Werms = 0.02 Werms = 0.1 Werms = 0.5

dk/dt ↑ ∼ ↓
P ↑ ∼ ↓
Pc ↓ ↓ ↓
Pd ↑↑ ↑ ↑
−ε ↓↓ ↓ ↓
−εc ↓ ↓ ↓
−εd ↓↓ ↓ ↓
Ψ ′

σ ↑↑ ↑ ∼
Table 3. Summary of Werms effects on dk/dt, P , Pc, Pd , ε, εc, εd and Ψ ′

σ compared with the single-phase
cases.

Table 3 summarizes the described results, i.e. the effects of droplets of different
Werms on dk/dt, P , Pc, Pd, ε, εc, εd and Ψ ′

σ when compared with the single-phase
cases. Red up arrows indicate an increase of the listed quantity when compared
with the single-phase case, black tildes indicate a similar value to the single-phase
case, and blue down arrows indicate a decrease in the quantity when compared with
the single-phase case. Two arrows indicates an increase in magnitude of more than
100 %, when compared with the case with the next largest magnitude at t∗S = 6.

(b) For TKE-increasing droplets (Werms = 0.02), the budget terms that contribute the
most to the increase of dk/dt are Pd and Ψ ′

σ . The significant increase of Pd results in
an increase of P . For TKE-neutral droplets (Werms = 0.1), the increase of Pd and the
moderate contribution from Ψ ′

σ are balanced by the increase of ε. For TKE-reducing
droplets (Werms = 0.5), the increase of Pd is less than for other droplet-laden cases,
leading to an overall decrease of P that results in a decrease of dk/dt. These results
have shown that the flow inside the droplets in response to their dynamics has a
dominant role in the modulation of the budget terms of TKE and, thus, of TKE,
e.g. figures 9 and 10 for Pc vs Pd and figures 18 and 19 for εc vs εd.

4.2. Droplet ‘catching-up’ and ‘shearing’ mechanisms
The main findings of this work on the physical mechanisms that explain the modulation of
the TKE budget in DLHST are summarized next.

(a) The droplet ‘catching-up’ mechanism explains how droplets with lower Werms tend
to coalesce and return toward a spherical shape. Droplets with lower Werms tend to
deform less and, thus, stay more spherical. Due to the mean shear, spherically shaped
droplets are more likely to catch up and collide with droplets in their path, so that
their centres are aligned along the northwest-southeast direction (figure 12).
(i) For Werms = 0.02, as pairs of droplets coalesce and return toward a

spherical shape, the surface tension force squeezes the droplet fluid in the
northwest-southeast direction, generating a region of flow with negative uw
inside the newly formed droplet, and, therefore, positive P ′ ≡ −Sρuw within
the droplet fluid (figure 10).

(ii) For Werms = 0.02, the droplet ‘catching-up’ mechanism creates large velocity
gradients (∂ui/∂xj) in the flow inside the coalesced droplets, and, therefore,
enhanced ε′ in the droplet fluid (figure 19).
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(b) The droplet ‘shearing’ mechanism explains how the mean shear transfers kinetic
energy from the mean flow to interfacial surface energy of the droplets, and, then,
how the interfacial surface energy is transferred to TKE via Ψ ′

σ (figure 22). The
mean shear deforms the droplets, and so the interfacial surface energy is increased
(Ψ̄σ < 0). For Werms = 0.02, droplets coalesce, e.g. through the ‘catching-up’
mechanism, and then tend to return towards a spherical shape, such that the
total droplet surface area is reduced. In that process, interfacial surface energy is
transferred to TKE via Ψ ′

σ .

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.647.
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Appendix A. Jump conditions at the droplet interface and integral form of the kinetic
energy equation for a two-fluid flow

We consider the incompressible flow of two immiscible fluids separated by a common
interface in the absence of any body forces and without phase change and gravity, starting
from the approach used in Appendix A by Dodd & Ferrante (2016) for isotropic turbulence
to extend it to HST. The geometry of the control volume we consider, which is adapted
from Joseph (1976, p. 242), is illustrated in figure 23. The control volume, V(t), is a
material volume, i.e. fluid elements can not cross its boundaries; V(t) consists of two
volumes of fluid, Vc(t) and Vd(t) (e.g. the carrier and droplet fluid), separated by an
interface Σ(t), such that V = Vc ∪ Vd. The volumes Vc and Vd are bounded by ∂Vc(t)
and ∂Vd(t), respectively, the boundary of V(t) is ∂V = ∂Vc ∪ ∂Vd − Σ and the interface
satisfies Σ = ∂Vc ∩ ∂Vd. The unit normals to ∂Vc and ∂Vd are nc and nd, respectively.
Here, n is a unit vector normal to Σ that is directed from the carrier fluid to the
droplet fluid, and consequently, n = nc for x ∈ Σ . Here, ∂Σ is a contact line satisfying
∂Σ = Σ ∩ ∂V ; tS is a unit vector tangent to ∂Σ ; m is a unit vector perpendicular to ∂Σ

and pointing out of Σ ; n, tS and m are defined such that they form an orthonormal set
(e.g. m = n × tS).

Note: in the following subsections we refer to quantities with ‘d’ subscript as droplet
quantities; however, we have made no assumptions about the density ratio and viscosity
ratio, and therefore the following equations not only hold for droplet-laden flows but also
for bubble-laden flows and, in general, for the incompressible flow of two immiscible fluids
separated by an interface.

Following Reynolds decomposition, the fluid velocity, U , can be decomposed as

U = Ū + u, (A1)

where Ū is the mean fluid velocity and u is the fluctuating velocity about the mean. For
HST,

Ūx = Sz,

Ūy = 0,

Ūz = 0,

⎫⎪⎬
⎪⎭ (A2)
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∂V

tS

Vc(t)

nc

n

Ud

Vd (t)

nd

∂Σ

Uc

UΣ

m

Σ(t)

Figure 23. Control volume V(t) containing an interface Σ(t) separating two immiscible volumes of fluid,
Vc(t) and Vd(t).

and the fluctuating velocity u satisfies the two-fluid incompressible Navier–Stokes
equations (2.1a) and (2.1b).

A.1. Conservation of mass
The principle of conservation of mass states that the mass of a material volume does not
change, i.e.

d
dt

∫
V

ρdV = 0. (A3)

By taking the limit ∂V → Σ , and assuming that there is no mass flux across the interface,
one obtains that the normal components of velocity are equal (Aris 1989, p. 236), i.e.

Ud · n = Uc · n = UΣ · n, x ∈ Σ,

(Ū + ud) · n = (Ū + uc) · n = (Ū + uΣ) · n, x ∈ Σ,

ud · n = uc · n = uΣ · n, x ∈ Σ.

⎫⎪⎬
⎪⎭ (A4)

Also for viscous fluids under standard operating conditions, it is an experimentally
observed fact that the two fluids do not slip and, therefore, the velocity is continuous
across the interface,

Ud = Uc = UΣ, x ∈ Σ,

Ū + ud = Ū + uc = Ū + uΣ, x ∈ Σ,

ud = uc = uΣ, x ∈ Σ,

⎫⎪⎬
⎪⎭ (A5)

which we rewrite using jump notation (i.e. [[φ]] = φc − φd),

[[U]] = 0,

[[Ū + u]] = 0,

[[u]] = 0.

⎫⎪⎬
⎪⎭ (A6)
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A.2. Conservation of momentum
The conservation equation for the linear momentum of V is

d
dt

∫
V

ρU dV =
∫

∂V
τn dA +

∫
∂Σ

σm d�, (A7)

where τ is the fluid stress tensor, which for an incompressible Newtonian fluid is

τ = −pI + μ(∇U + (∇U)T)

= −pI + 2μS, (A8)

where I is the identity tensor, S ≡ 1
2 (∇U + (∇U)T) is the strain-rate tensor and d� is an

infinitesimal arc length (not to be confused with the integral length scale of turbulence, �).
On the left-hand side of (A7) is the rate of change of momentum, and on the right-hand
side the two terms represent, respectively, the force acting on the boundary due to fluid
stress and the force due to surface tension. We note that the last term in (A7) is a line
integral along the contact line ∂Σ . This term can be converted from a line integral to a
surface integral by using the theorem for curved surfaces, i.e.∫

∂Σ

σm d� =
∫

Σ

∇sσ dA +
∫

Σ

κσn dA, (A9)

where ∇s is the surface gradient defined as
∇s = ∇ − n(n · ∇). (A10)

Combining (A7) and (A9), using the divergence theorem, and accounting for a
discontinuity in τ yields

0 =
∫
V

(
ρ

dU
dt

− ∇ · τ

)
dV

+
∫

Σ

([[τ ]]n − ∇sσ − κσn) dA. (A11)

Using (A1) and (A2), (A11) can be rewritten as

0 =
∫
V

(
ρ

(
∂u
∂t

+ u · ∇u + Sz
∂u
∂x

+ Su3 î
)

− ∇ · τ

)
dV

+
∫

Σ

([[τ ]]n − ∇sσ − κσn) dA. (A12)

By taking the limit ∂V → Σ and noting that Σ was chosen arbitrarily, we obtain the jump
condition for momentum at Σ ,

[[τ ]]n = ∇sσ + κσn, x ∈ Σ. (A13)
Using (A8), the normal stress boundary condition is

[[−p + n · 2μSn]] = σκ (A14)
and the tangential stress boundary condition is

[[tk · 2μSn]] = tk · ∇sσ, k = 1, 2, (A15)
where t1 and t2 are two unit vectors that are tangent to Σ and orthogonal to n. When the
surface tension coefficient is constant, (A15) simplifies to

[[tk · 2μSn]] = 0, k = 1, 2, (A16)
which shows that the tangential stress is continuous across the interface and, if μc /=μd,
then the rate of strain S is discontinuous at the interface.
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A.3. Balance equation of kinetic energy
To derive the kinetic energy balance equation for V , we begin with the momentum
conservation equation (A12) for Vc and Vd,

ρ

(
∂u
∂t

+ u · ∇u + Sz
∂u
∂x

+ Su3 î
)

= ∇ · τ , x ∈ Vc or Vd. (A17)

Using (A1) and (A2), the divergence of the fluid stress tensor can be rewritten in terms of
only the fluctuating velocity field to obtain

∇ · τ = ∇ · (−pI + μ(∇U + (∇U)T))

= ∇ · (−pI + μ(∇(Ū + u) + (∇(Ū + u))T))

= ∇ · (−pI + μ(∇u + (∇u)T)) + ∇ · (μ(∇Ū + (∇Ū)T))

= ∇ · (−pI + μ(∇u + (∇u)T)) + ∇ · (μS(e1e3 + e3e1))

= ∇ · (−pI + μ(∇u + (∇u)T))

= ∇ · τ ′. (A18)

Here, τ ′ is the fluid stress tensor of the fluctuating velocity field defined as

τ ′ = −pI + μ(∇u + (∇u)T)

= −pI + 2μS′, (A19)

where S′ ≡ 1
2 (∇u + (∇u)T) is the strain-rate tensor of the fluctuating velocity field. Using

(A1), the relation between τ and τ ′ is

τ = 〈τ 〉 + τ ′, (A20)

where 〈τ 〉 = μ
(
∇Ū + (∇Ū

)T
)

. Combining (A17) and (A18) and taking the dot product
with u yields

ρ

(
∂(u · u)/2

∂t
+ u · ∇((u · u))/2 + Sz

∂(u · u)/2
∂x

+ Su1u3

)
= (∇ · τ ′) · u, x ∈ Vc or Vd. (A21)

We integrate (A21) over Vc and Vd, use the identity u · (∇ · τ ′) = ∇ · (τ ′u) − τ ′ : ∇u
and use the divergence theorem to obtain∫

Vc

ρc

(
∂(u · u)/2

∂t
+ u · ∇(u · u)/2 + Sz

∂(u · u)/2
∂x

+ Su1u3

)
dV

=
∫

∂Vc

τ ′u · nc dA −
∫
Vc

τ ′ : ∇u dV,

∫
Vd

ρd

(
∂(u · u)/2

∂t
+ u · ∇(u · u)/2 + Sz

∂(u · u)/2
∂x

+ Su1u3

)
dV

=
∫

∂Vd

τ ′u · nd dA −
∫
Vd

τ ′ : ∇u dV .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A22)
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Adding together the kinetic energy equations for the carrier and droplet fluid in (A22)
yields the evolution equation for the kinetic energy of V ,∫

V
ρ

(
∂(u · u)/2

∂t
+ u · ∇(u · u)/2 + Sz

∂(u · u)/2
∂x

+ Su1u3

)
dV

=
∫

∂Vc

τ ′u · nc dA +
∫

∂Vd

τ ′u · nd dA −
∫
V

τ ′ : ∇u dV . (A23)

We then use the following transformation to account for the jump in τ ′ at the interface:∫
∂V

τ ′u · n dA =
∫

∂Vc

τ ′u · nc dA +
∫

∂Vd

τ ′u · nd dA

−
∫

Σ

(τ ′u)c · nc dA −
∫

Σ

(τ ′u)d · nd dA

=
∫

∂Vc

τ ′u · nc dA +
∫

∂Vd

τ ′u · nd dA

−
∫

Σ

(τ ′u)c · n dA +
∫

Σ

(τ ′u)d · n dA

=
∫

∂Vc

τ ′u · nc dA +
∫

∂Vd

τ ′u · nd dA −
∫

Σ

[[τ ′u]] · n dA. (A24)

In the second line we have used the fact that nc = n and nd = −n for x ∈ Σ . Combining
(A23) and (A24) yields∫

V
ρ

(
∂(u · u)/2

∂t
+ u · ∇(u · u)/2 + Sz

∂(u · u)/2
∂x

+ Su1u3

)
dV

=
∫

∂V
τ ′u · n dA −

∫
V

τ ′ : ∇u dV +
∫

Σ

[[τ ′u]] · n dA. (A25)

The work due to surface tension contributes to the last term on the right-hand side of
(A25). This is made clear by dotting (A13) with u,

[[τu]] · n = u · ∇sσ + κσu · n, x ∈ Σ,

[[τ ′u]] · n = u · ∇sσ + κσu · n − [[〈τ 〉u]] · n, x ∈ Σ,

[[τ ′u]] · n = u · ∇sσ + κσu · n,

⎫⎪⎬
⎪⎭ (A26)

where we have used (A5), (A20) and the fact that [[〈τ 〉u]] is zero because 〈τ 〉 is constant
and u is continuous across the interface. Combining (A25) and (A26) and using the
divergence theorem yields the integral form of the kinetic energy equation for a two-fluid
flow,∫

V

(
ρ

(
∂(u · u)/2

∂t
+ u · ∇(u · u)/2 + Sz

∂(u · u)/2
∂x

+ Su1u3

)
− ∇ · (τ ′u) + τ ′ : ∇u

)
dV

=
∫

Σ

(u · ∇sσ + κσu · n) dA. (A27)
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Appendix B. Turbulence kinetic energy equations in DLHST

We now derive the balance equations for the TKE of the carrier fluid Vc, droplet fluid Vd
and combined fluid V , starting from the approach used in Appendix B by Dodd & Ferrante
(2016) for isotropic turbulence to extend it to HST. We consider decaying homogeneous
isotropic turbulence laden with droplets with a constant surface tension coefficient, σ , in
a periodic domain. Up until now, we have considered only two volumes of fluid, Vc and
Vd, separated by an interface as depicted in figure 23. When deriving TKE equations for
droplet-laden turbulence, we take the control volume V to be the two-fluid flow, which
includes Nd droplets with volumes V(1)

d ,V(2)
d , . . . ,V(Nd)

d immersed in the carrier-fluid
volume Vc. An example of this configuration with Nd = 4 is shown in figure 41 of Dodd
& Ferrante (2016).

The two-fluid TKE, k, is defined as the spatial average of the kinetic energy (per unit
volume) of the fluctuating velocity field, u(x, t), (i.e. u = U − Ū , where U is the total
velocity and Ū is its mean),

k ≡ 1
2

1
V

∫
V

ρu · u dV = 1
2
〈ρu · u〉, (B1)

where 〈· · · 〉 denotes spatial averaging of the enclosed quantity. Likewise, we define the
carrier-fluid TKE as

kc ≡ 1
2

1
Vc

∫
Vc

ρcu · u dV = 1
2
〈ρcu · u〉c (B2)

and the droplet-fluid TKE as

kd ≡ 1
2

1
Vd

Nd∑
n=1

∫
V(n)

d

ρdu · u dV = 1
2
〈ρdu · u〉d, (B3)

where V(n)
d is the volume of the nth droplet and Vd is the total volume of the droplet fluid

(i.e. Vd = ∑Nd
n=1 V(n)

d ). The summation is performed over the total number of droplets Nd.
We first derive the TKE evolution equation for the carrier fluid. From (A22) and

invoking incompressibility (dρ/dt = 0) yields∫
Vc

∂(ρcuiui)/2
∂t

+ ∂(ρcuiuiuj)/2
∂xj

+ Sz
∂(ρcuiui)/2

∂x
+ Sρcu1u3 dV

=
∫

∂Vc

τ ′
ijuinj,c dA −

∫
Vc

τ ′
ij
∂ui

∂xj
dV . (B4)

Then, by applying the divergence theorem to the first term on the right-hand side of (B4)
and using (A19) we obtain∫

Vc

∂(ρcuiui)/2
∂t

+ ∂(ρcuiuiuj)/2
∂xj

+ Sz
∂(ρcuiui)/2

∂x
+ Sρcu1u3 dV

=
∫
Vc

[
∂(T ′

ijui)

∂xj
− ∂(uip)

∂xi

]
dV −

∫
Vc

T ′
ijS

′
ij dV, (B5)

where T ′
ij = 2μS′

ij. For immiscible fluids, there is no convective transport of TKE between
the carrier fluid and droplet fluid, and, therefore, the second and third terms on the
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P. Trefftz-Posada and A. Ferrante

left-hand side of (B5) are zero. By dividing (B5) by Vc and rewriting the resulting equation
in non-dimensional form, we obtain

dkc

dt︸︷︷︸
rate of change of
carrier-fluid TKE

= Pc︸︷︷︸
carrier-fluid
production

− εc︸︷︷︸
carrier-fluid

dissipation rate

+ Tν,c︸︷︷︸
carrier-fluid

viscous power

+ Tp,c︸︷︷︸
carrier-fluid

pressure power

, (B6)

where

Pc ≡ −S〈ρcu1u3〉c, εc ≡ 1
Re

〈T ′
ijS

′
ij〉c, Tν,c ≡ 1

Re

∂〈T ′
ijui〉c

∂xj
, Tp,c ≡ −∂〈uip〉c

∂xi
.

(B7a–d)

The terms in (B6) are, from left to right, the rate of change of carrier-fluid TKE, the
production of TKE in the carrier fluid, the dissipation rate of TKE in the carrier fluid,
the pressure power of the carrier fluid (transport of TKE due to pressure) and the viscous
power of the carrier fluid (transport of TKE due to viscous stresses). The TKE equation for
the droplet fluid is found by writing the TKE equation for each droplet and then summing
over all droplets. The final result is

dkd

dt︸︷︷︸
rate of change of
droplet-fluid TKE

= Pd︸︷︷︸
droplet-fluid
production

− εd︸︷︷︸
droplet-fluid

dissipation rate

+ Tν,d︸︷︷︸
droplet-fluid

viscous power

+ Tp,d︸︷︷︸
droplet-fluid

pressure power

, (B8)

where

Pd ≡ −S〈ρdu1u3〉d, εd ≡ 1
Re

〈T ′
ijS

′
ij〉d, Tν,d ≡ 1

Re

∂〈T ′
ijui〉d

∂xj
, Tp,c ≡ −∂〈uip〉d

∂xi
.

(B9a–d)

The TKE equation for the two-fluid flow, which includes the interface, is found by adding
the two equations of (A22), resulting in∫

V
ρ

(
∂(u · u)/2

∂t
+ u · ∇(u · u)/2 + Sz

∂(u · u)/2
∂x

+ Su1u3

)
dV

=
∫

∂Vc

τ ′u · nc dA +
∫

∂Vd

τ ′u · nd dA −
∫
V

τ ′ : ∇u dV . (B10)

Because V is periodic, the left-hand side of (A24) is zero such that∫
∂Vc

τ ′u · nc dA +
∫

∂Vd

τ ′u · nd dA =
∫

Σ

[[τ ′u]] · n dA. (B11)

For constant σ , integration of (A26) over Σ gives∫
Σ

[[τ ′u]] · n dA =
∫

Σ

κσu · n dA. (B12)

Substituting (B12) in (B11) yields∫
∂Vc

τ ′u · nc dA +
∫

∂Vd

τ ′u · nd dA =
∫

Σ

κσu · n dA, (B13)
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On the interaction of droplets and turbulence

and substituting (B13) into (B10) gives∫
V

ρ

(
∂(u · u)/2

∂t
+ u · ∇(u · u)/2 + Sz

∂(u · u)/2
∂x

+ Su1u3

)
dV

=
∫

Σ

κσu · n dA −
∫
V

τ ′ : ∇u dV . (B14)

We transform the surface integral term in (B14) to a volume integral as∫
Σ

κσu · n dA = 1
We

∫
V

u · f σ dV, (B15)

where we recall that f σ ≡ κδ(s)n is the surface tension force, and that σ = 1/We is
constant. By using (B15) in (B14), invoking incompressibility and noting that because
V is periodic, the convective terms from the fluctuating velocity field in (B14) are equal to
zero, ∫

V
u · ∇(u · u)/2 dV = 0,∫

V
Sz

∂(u · u)/2
∂x

dV = 0,

⎫⎪⎪⎬
⎪⎪⎭ (B16)

we obtain, after reorganizing,∫
V

∂(ρuiui)/2
∂t

dV = −
∫
V

Sρu1u3 dV −
∫
V

T ′
ijS

′
ij dV + 1

We

∫
V

ujfσ,j dV . (B17)

Because V was not chosen arbitrarily in this derivation, the integrals in (B17) must be
retained. By dividing (B17) through by V , rewriting the equation in non-dimensional form
and noting that the time differentiation and integration commute, we obtain the following
TKE evolution equation for the two-fluid flow:

dk
dt︸︷︷︸

rate of change
of TKE

= P︸︷︷︸
production

− ε︸︷︷︸
dissipation rate

+ Ψ ′
σ︸︷︷︸

power of the
surface tension

. (B18)

Here,

P ≡ −S〈ρu1u3〉, ε ≡ 1
Re

〈T ′
ijS

′
ij〉, Ψ ′

σ ≡ 1
We

〈uj fσ,j〉. (B19a–c)

The terms in (B18) are, from left to right, the rate of change of TKE for the two-fluid flow,
the production of TKE for the two-fluid flow, the dissipation rate of TKE for the two-fluid
flow and the power of the surface tension due to the fluctuating velocity. To summarize,
we have derived the TKE evolution equations for the

(i) carrier fluid
dkc

dt
= Pc − εc + Tν,c + Tp,c, (B20)

(ii) droplet fluid
dkd

dt
= Pd − εd + Tν,d + Tp,d, (B21)

972 A9-35

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

64
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.647


P. Trefftz-Posada and A. Ferrante

(iii) two-fluid flow

dk
dt

= P − ε + Ψ ′
σ . (B22)

A useful identity, which comes from using (B15) in (B13) and invoking the divergence
theorem, is

VΨ ′
σ = Vc(Tν,c + Tp,c) + Vd(Tν,d + Tp,d), (B23)

and after dividing (B23) throughout by V , we obtain

Ψ ′
σ = (1 − φv)(Tν,c + Tp,c) + φv(Tν,d + Tp,d), (B24)

where φv ≡ Vd/V is the droplet volume fraction. Equation (B24) shows that the power
of the surface tension due to the fluctuating velocity is equal to the sum of the volume
weighted carrier and droplet-fluid viscous and pressure powers.

Appendix C. Relationship between the rate of change of total interfacial surface area
and the power of the surface tension due to the total velocity for closed surfaces

In this section we derive the relationship between the rate of change of interfacial energy
((d/dt)

∫
Σ

σ dA) and the power of the surface tension due to the total velocity (Ψσ ),
starting from the approach used in Dodd & Ferrante (2016, Appendix C) for isotropic
turbulence to extend it to HST. We begin be deriving the relationship for a single droplet
and then generalize it for an arbitrary number of droplets Nd. Starting from the analog of
the Reynolds transport theorem for a surface (Aris 1989, p. 230), under the assumption
that fluid parcels do not cross the interface, Joseph (1976, p. 243) derived the following
transport equation for the surface tension:

d
dt

∫
Σ(n)

σ dA =
∫

Σ(n)

(
∂σ

∂t
− UΣ · ∇sσ − κσUΣ · n

)
dA +

∫
∂Σ(n)

σUΣ · m d�.

(C1)

In our case, Σ(n) is the interface of the nth droplet and ∂Σ(n) is the contact line as defined
in Appendix A and figure 23. Because Σ(n) forms a closed surface, ∂Σ(n) is inexistent, and
therefore the last term in (C1) is null. Also, if the surface tension coefficient is constant in
space and time (i.e. σ(x, t) = σ ), then (C1) reduces to

σ
dA(n)

dt
= σ

∫
Σ(n)

−κUΣ · n dA, (C2)

where A(n) = ∫
Σ(n) dA is the surface area of Σ(n). We can also transform the right-hand

side of (C2) from a surface integral to a volume integral to obtain

σ
dA(n)

dt
= −σ

∫
V(n)

U · f σ dV, (C3)

which relates the rate of change of surface area of droplet n to the power of the surface
tension due to the total velocity. To derive a relationship for the more general case of
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On the interaction of droplets and turbulence

multiple droplets, we sum over Nd droplets,

Nd∑
n=1

(
σ

dA(n)

dt

)
= −σ

Nd∑
n=1

(∫
V(n)

U · f σ dV
)

. (C4)

Interchanging the summation and differentiation and defining A ≡ ∑Nd
n=1 A(n) and V ≡∑Nd

n=1 V(n) in (C4) yields

σ
dA
dt

= −σ

∫
V

U · f σ dV . (C5)

Using 〈· · · 〉 to denote spatial averaging and dividing (C5) by V yields

σ
1
V

dA
dt

= −σ 〈U · f σ 〉. (C6)

Recalling that σ = 1/We (§ 2.1), and by defining the power of the surface tension due to
the total velocity as

Ψσ ≡ 1
We

〈U · f σ 〉, (C7)

then, (C6) gives

Ψσ = − 1
We

1
V

dA
dt

. (C8)
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