
J. Plasma Phys. (2024), vol. 90, 935900103 © The Author(s), 2024.
Published by Cambridge University Press

1

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited.
doi:10.1017/S002237782300137X

Trivelpiece–Gould modes and low-frequency
electron–ion instability of non-neutral plasma

Yuriy N. Yeliseyev ,†
National Science Center ‘Kharkiv Institute of Physics and Technology’, Institute of Plasma Physics,

Akademichna st. 1, Kharkiv, 61108, Ukraine

(Received 16 May 2023; revised 28 November 2023; accepted 29 November 2023)

The frequency spectra of the Trivelpiece–Gould modes of a waveguide partially filled
with non-neutral plasma are determined numerically by solving the dispersion equation.
The modes having azimuthal number m = 1 are considered. The results are presented for
the entire acceptable range of electron densities, magnetic field strengths, for different
values of the charge neutralization coefficient. The Cherenkov resonance condition of
an ion with a diocotron mode having a finite value of the longitudinal wave vector was
studied. The characteristics of resonant low-frequency electron–ion instability caused by
relative azimuth motion of electrons and ions in crossed fields and by the anisotropy of the
distribution function of ions are discussed. Ions are created by ionization of residual gas in
the plasma volume. Due to the anisotropy, instability occurs not only in the vicinity of the
resonance, but also outside it. For typical values of plasma parameters in experiments,
estimations of the frequency growth rate are given. A conclusion is drawn that this
instability can be the cause of the low-frequency oscillations observed in linear devices
with non-neutral plasma produced in an electron beam channel.

Key words: non-neutral plasma, low-frequency instability, plasma instabilities, plasma waves

1. Introduction

The Trivelpiece–Gould (TG) modes – the electron eigenmodes of a cylindrical
waveguide completely or partially filled with a homogeneous cold neutral plasma in
a magnetic field – are well known (Trivelpiece & Gould 1959). The behaviour of the
frequencies of the TG modes of a plasma, which is at rest or moving along a magnetic
field, is determined and analysed. The motion of plasma electrons leads to a radical
rearrangement of the frequency spectrum of TG modes ω observed in the laboratory frame
of reference. Usually, electron modes are of high frequency both in the laboratory and
in the moving frames. However, the modes that propagate in the direction opposite to
the movement of electrons can become low frequency in the laboratory frame due to the
Doppler shift. Their frequencies ω can be of the order of characteristic ion frequencies. If
the electrons and ions of the plasma move at different velocities, an electron–ion instability
is possible due to the relative motion of the electrons and ions (the Buneman instability).
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The TG modes are also known in non-neutral plasma (Davidson 1974), which, along
with a longitudinal magnetic field, has a radial electric field Er due to an excess of
electrons. Under the action of crossed fields, charged particles rotate along the azimuth.
Modes propagating in the plasma in the direction opposite to the rotation of electrons can
become low frequency in the laboratory frame due to the Doppler shift. Their frequencies
can become of the order of characteristic ion frequencies. Electrons rotate faster than ions.
This is a general property of a non-neutral plasma. Electron–ion instability is possible
under these conditions. It must be universal in non-neutral plasma and must develop at
frequencies of the order of characteristic ion frequencies.

Low-frequency oscillations (ω ∼ ωci) are often observed for a wide range of
plasma parameter variations in non-neutral plasma devices, for example, in cylindrical
Penning–Malmberg traps (Peurrung, Notte & Fajans 1993; Kabantsev & Driscoll 2003;
Bettega et al. 2005) and in linear devices in which non-neutral plasma is created as
a secondary plasma in an electron beam channel (Vlasov, Dobrokhotov & Zharinov
1966; Nezlin 1982; Pierre, Leclert & Braun 1987; Sakawa & Joshi 2000; Jaeger
2010; Annaratone et al. 2011; David 2017). In Penning–Malmberg traps, the nature of
low-frequency oscillations has been reliably established and related to the instability of the
diocotron mode due to a small addition of positive ions to electron plasma (ion-induced
instability). At the same time, the nature of low-frequency oscillations in linear devices
remains as not reliably known (Jaeger 2010; Annaratone et al. 2011; David 2017). Various
instabilities were suggested to understand the cause of these oscillations (see Jaeger (2010)
and David (2017) for reviews).

This article discusses the instability of the relative azimuth motion of electrons and ions
in the model of an infinite waveguide partially filled with non-neutral plasma.

This instability was studied in the well-known paper by Levy, Daugherty & Buneman
(1969). The hydrodynamic description was used for electrons and ions. The longitudinal
wave vector kz was chosen equal to zero (kz = 0). It has been shown that if the addition of
ions is small, then the electron–ion instability occurs only in the vicinity of the resonance
of the diocotron mode with the ion rotation.

We discuss this instability in the case kz �= 0 and take into account the kinetics of ions
that are produced in crossed fields by electron impact of atoms (molecules) of residual gas.
The distribution function of such ions is anisotropic and has a non-Maxwellian dependence
on transverse energies (Dem’yanov et al. 1988). These two circumstances (ion anisotropy
and kz �= 0) bring the plasma model closer to reality. As a result, the obtained instability
picture is closer to that observed in experiments: the electron–ion instability exists not
only near the resonance of electron mode with ion rotation, but also in a wide area outside
the resonance.

In the present paper, the well-known dispersion equation (Davidson 1974) for electron
eigenmodes of potential oscillations in an infinite waveguide partially filled with cold
uniform non-neutral plasma is solved numerically (§ 3). The frequency spectra of TG
modes ω having an azimuthal number m = 1 are determined for finite value of the
longitudinal wave vector kz �= 0 and for different values of the charge neutralization
coefficient f. Particular attention is paid to the behaviour of modes in the area of low (ion)
frequencies. The Cherenkov resonance condition of an ion with a diocotron mode having a
finite value of the longitudinal wave vector kz �= 0 is studied (§ 5.1). Numerical estimations
of resonance frequencies for typical values of parameters of experiments are given (§ 5.2).
The frequency, growth rate and peculiarities of the expected low-frequency electron–ion
instability are estimated (§ 5.3). In Appendix A the areas are defined, where TG modes are
bulk in plasma, and where they are surface modes. In Appendix B the behaviour of TG
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modes of neutral plasma is analysed and compared with the results obtained by Trivelpiece
& Gould (1959).

In theoretical papers, the frequencies of the TG modes are usually represented as being
dependent on the longitudinal wave vector, ω(kz) (Trivelpiece & Gould 1959; Davidson
1974). However, in experiments, the frequencies of eigen plasma oscillations are measured
and performed depending on external fields, plasma density, etc. Just these parameters are
controlled and varied in experiments. At the same time, the wave vector kz remains most
often invariable, and frequently indefinite.

In the theory of non-neutral plasma (Levy et al. 1969; Davidson 1974), the parameter

q ≡ 2ω2
pe/ω

2
ce (1.1)

is introduced. It determines the characteristic frequencies of both electrons and ions.
Ultimately, it determines the equilibrium and stability of a non-neutral plasma. Only in
the range

0 < q < qmax ≡ 1/(1 − f ) (1.2)

the motion of electrons along the radius is finite and the equilibrium state of the ensemble
of electrons is possible, and, hence, of the plasma in total. In this paper, all results are
represented as dependences on the variable q (1.1). The calculations are carried out within
the entire acceptable range of values of q (1.2).

2. Dispersion equation under study

We solve the dispersion equation for the potential electron modes of an infinite
waveguide partially filled with a homogeneous rigidly rotating non-neutral plasma
(Davidson 1974):

kzRp
Km(kzRw)I′

m(kzRp) − K ′
m(kzRp)Im(kzRw)

Km(kzRw)Im(kzRp) − Km(kzRp)Im(kzRw)
= ε1TkzRp

J′
m(TkzRp)

Jm(TkzRp)
+ mε2. (2.1)

In (2.1) Jm is the Bessel function of the first kind of order m, Im and Km are the modified
Bessel functions, J′

m, I′
m, K ′

m are their derivatives with respect to the entire argument, Rp,w
are the plasma and waveguide radii, Rp ≤ Rw, and

T2 ≡ −ε3/ε1. (2.2)

This definition of T2 (2.2) differs from the definition given by Trivelpiece & Gould
(1959) and Davidson (1974) by a factor k2

z . The permittivity tensor of cold electron plasma
has the form

εij =
⎛
⎝ ε1 iε2 0

−iε2 ε1 0
0 0 ε3

⎞
⎠ , ε1 = 1 − ω2

pe

ν2
, ε2 = ω2

peΩe

ν2ω′ , ε3 = 1 − ω2
pe

ω′2 . (2.3)

Here ω2
pe = 4πe2ne/me is the square of the Langmuir electron frequency, ν2 ≡ ω′2 −

Ω2
e , Ωe = sgn(e)|ωce|(1 − 4eEr/(ω

2
cemer))1/2 is the ‘modified’ cyclotron frequency of an

electron in crossed fields, the radial electric field Er is due to the uncompensated plasma
space charge, Er = (me/2e)ω2

per(1 − f ) < 0, f = ni/ne, are the electron and ion densities,
0 ≤ f ≤ 1, ω′ = ω − mωe

rot is the mode frequency in the frame rotating with electrons,
ωe

rot = (−ωce + Ωe)/2 > 0 is the ‘slow’ rotation frequency of electrons, r is the distance
to the waveguide axis, ωce = eB/(mec) < 0 is the electron cyclotron frequency and e and
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me are the charge and mass of an electron (e < 0). When the waveguide is uniformly
filled with electrons and ions, the combination Er/r, frequency Ωe and other frequencies
in (2.1) are independent of the radius r inside the plasma. Ions are taken into account only
as a neutralizing background (in f ).

We consider q as an independent variable and represent the results of calculations as
being dependent on it. We normalize all frequencies up to |ωce| and express all quantities
included in the dispersion equation (2.1) as functions of q:

Ωe/|ωce| = sgn(e)[1 − q(1 − f )]1/2 < 0, (2.4)

ωe
rot/|ωce| = (1/2)sgn(e){−1 + [1 − q(1 − f )]1/2}, (2.5)

x′ ≡ ω′/|ωce|, (2.6)

x ≡ ω/|ωce| = x′ + mωe
rot/|ωce|. (2.7)

The dependences of the permittivity tensor components (2.3) on q take the form

ε1 = 1 − q/2
x′2 − 1 + q(1 − f )

, ε2 = sgn(e)q/2
x′2 − 1 + q(1 − f )

[1 − q(1 − f )]1/2

x′ , ε3 = 1 − q/2
x′2 .

(2.8a–c)
The parameters of the considered problem are: m, f , kzRp, Rp/Rw. For unambiguity, we

consider the azimuthal number m to be positive (m > 0). Frequencies x′, x can be positive
or negative.

The calculations presented in this paper were carried out for the following numerical
values of parameters: m = +1, kzRp = 1, Rp/Rw = 1/2. The calculations were carried out
for different values of the charge neutralization coefficient: f = 0; 0.25; 0.5; 0.75; 1.

3. Trivelpiece–Gould modes of waveguide partially filled with non-neutral plasma

3.1. Solutions of (2.1) are presented in figure 1(a–d). The solutions form four families:
fast (FLH) and slow (SLH) lower hybrid modes; fast (FUH) and slow (SUH) upper hybrid
modes. Their frequencies are located in the following frequency ranges (Davidson 1974):

modes of families SLH and FLH are in the interval: ω′2 < min(ω2
pe,Ω

2
e ),

modes of families SUH and FUH are in the interval: max(ω2
pe,Ω

2
e ) < ω′2 < (ωNNP

UH )
2
.

}

(3.1)

The term ωNNP
UH =

√
ω2

pe + Ω2
e defines the hybrid frequency of non-neutral plasma.

There are also two modes located separately from these families. They are indicated in
the figures by the numbers ‘1’ and ‘2’.

3.2. The families of SUH and FUH modes are located very close to each other and to
the hybrid frequency with a Doppler shift mωe

rot − ωNNP
UH (Dubin 2016) and remain in its

close vicinity when the degree of filling of the waveguide with plasma (Rp/Rw)2 and the
parameter kzRp vary. In the scale of figure 1 the modes of the SUH family merge with
frequency mωe

rot − ωNNP
UH . Similarly the modes of the FUH family merge with frequency

mωe
rot + ωNNP

UH .
As is clearly seen from figure 1, the frequencies of the families of SUH modes with

the azimuthal number m = 1 do not cross the area of low frequencies at any values of
the charge neutralization coefficient 0 ≤ f ≤ 1. And so it was when the waveguide was
completely filled with plasma (Yeliseyev 2010). SUH mode frequencies are closest to
zero at q = qmax and f = 0 (see figure 1a). They are equal here, ω/|ωce| = (1 − 21/2)/
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(a) (b)

(c) (d)

(e)

FIGURE 1. Frequencies of TG modes in the laboratory frame of reference ω/|ωce| at different
values of charge neutralization coefficient f : (a) f = 0; (b) f = 0.25; (c) f = 0.5; (d) f = 0.75;
(e) f = 1 (neutral plasma). The values of other calculation parameters are: m = 1; kzRp =
1.0; Rw/Rp = 2. Solid red and blue lines indicate the boundaries of the areas of existence of
bulk (indicated by arrows) and surface eigenmodes (see Appendix A). Thin solid black lines
show the lowest radial modes of the SLH and FLH families. The points are the results of the
numerical calculation. The quantities qmax and qt are defined in (1.2) and (A 1).
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2 ≈ −0.2. The frequencies of the FUH modes for these q and f are equal, ω/|ωce| =
(1 + 21/2)/2 ≈ 1.2. When f increases, the frequencies of SUH modes move away from
zero towards negative frequencies.

3.3. The families of SLH and FLH modes are located in the vicinity of frequency ω =
mωe

rot. In figure 1, this frequency is shown by a blue solid line dividing the SLH and FLH
families. The different radial modes are not so closely spaced as the upper hybrid modes.
As the parameter kzRp decreases, the mode frequencies approach frequency mωe

rot (ω →
mωe

rot when kzRp → 0). The frequencies of SLH and FLH modes are weakly dependent
on the degree of filling of the waveguide with plasma (R2

p/R2
w) (at a fixed value of kzRp).

Factor R2
p/R2

w < 1 leads to a shift of SLH and FLH modes with respect to frequency mωe
rot

towards positive frequencies. This is a demonstration of plasma magnetoactivity.
Every radial mode of the SLH family passes through the low (ion)-frequency area and

reaches zero frequency when q �= 0 (figure 1a–d), just as was the case when the waveguide
was completely filled with plasma (Yeliseyev 2010). The FLH modes do not reach zero
frequency when q �= 0, but pass through the low-frequency area at small q.

3.4. Mode ‘1’ in figure 1 is a diocotron mode with a finite value of the longitudinal wave
vector kz. Mode ‘2’ is called the cyclotron mode. Modes are located near, but separately
from, the families of SLH and FUH modes, and depend in noticeably different ways
on parameter q. When q → 0 they approach and merge with the corresponding family,
demonstrating relationships with the families of SLH and FUH modes.

In the long-wavelength approximation (kz = 0) the dispersion equation and its solutions
corresponding to modes ‘1’ and ‘2’ are given by expressions (2.9.7) and (2.9.8) in
Davidson (1974). For small but finite values of kz, mode ‘1’ was studied by Prasad &
O’Neil (1983) in the rarefied plasma approximation (q 	 1) and f = 0. In figure 1(a–e)
the results of calculations are shown for a considerable value of kz (kzRp = 1) and for
different values of charge neutralization coefficient f.

As can be seen from figure 1, with parameter f increasing from 0 to 1 the diocotron mode
(‘1’) shifts towards negative frequencies. The frequency of the diocotron mode crosses
zero when f < 0.25 (i.e. when f < R2

p/R2
w). Its frequency ω1 is negative within the entire

acceptable range of variation of q when f > 0.25. Such a behaviour of the mode also
follows from the analytical expression (3.2).

With increasing degree of filling of the waveguide for non-neutral plasma (R2
p/R2

w → 1),
the diocotron mode approaches the family of SLH modes and merges with it, becoming
its lowest radial mode (Prasad & O’Neil 1983).

The diocotron mode shifts upward towards the SLH family when the parameter kzRp is
decreased from 1 (and R2

p/R2
w = const.). When kzRp → 0 the frequencies of SLH modes

tend to the value ωe
rot. The frequency of the diocotron mode ω1 tends to the well-known

value ωd = (Rp/Rw)2ωe
rot (Levy et al. 1969; Davidson 1974), that is, positive and less

than ωe
rot.

Note that for kzRp = 1, the frequency of the diocotron mode ω1 is negative in most of
the range of q and f (see figure 1a–d). The reversal of the sign of the diocotron mode
frequency with increasing kzRp was discovered by Prasad & O’Neil (1983).

The behaviour of the TG modes of a waveguide partially filled with neutral plasma
( f = 1) is shown in figure 1(e). The behaviour is analysed in Appendix B.

3.5. It can be shown that the analytical expression for the frequency of the diocotron
mode for arbitrary f has the form

ω1

|ωce| = q
4

(
R2

p

R2
w

− f

)
− k2

z R2
p

4
, m = 1, kzRp 	 1, q 	 qmax. (3.2)
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(a) (b) (c)

FIGURE 2. Behaviour of the long-wavelength (kzRp 	 1) diocotron mode (‘1’) for values of
the charge neutralization coefficient close to the value f ≈ R2

p/R2
w at which the transition from

increasing to decreasing frequency occurs: (a) f = 0.24; (b) f = 0.25; (c) f = 0.26. The other
calculation parameters are: m = 1; kzRp = 0.05; R2

p/R2
w = 0.25.

Expression (3.2) agrees with the expression given by Levy et al. (1969) in § 7 for the
case kzRp = 0. The correction to the frequency ω1 due to kzRp �= 0 is defined by Prasad &
O’Neil (1983) for the case f = 0. As can be seen from (3.2) the correction is negative and
does not depend on f and q.

As follows from (3.2), as well as is seen from figures 1 and 2, the sign of the
frequency ω1 and, in general, the behaviour of the diocotron mode are determined by
three parameters: kzRp, R2

p/R2
w, f . When R2

p/R2
w > f (figure 2a), the frequency ω1 (3.2)

increases with increasing q. When

q = q0 = (kzRp)
2/[(Rp/Rw)2 − f ] (kzRp 	 1, q0 	 qmax), (3.3)

frequency (3.2) reaches zero. It becomes positive at greater values of q.
When R2

p/R2
w < f (figure 2c), the frequency ω1 decreases. It remains negative within the

entire range of acceptable values of q.
When R2

p/R2
w ≈ f (figure 2b), the frequency ω1 remains close to zero within the entire

range of acceptable values of q.
Numerical calculations according to the dispersion equation (2.1) for small values of

kzRp are presented in figure 2. They show that the behaviour of the diocotron mode is close
to (3.2) within the entire range of acceptable values of q, except for very small values of q.

The behaviour of the diocotron mode (‘1’) at not a small value of kzRp = 1 (see figure 1)
is not described by expression (3.2) and differs from its behaviour at small values of kzRp
(figure 2). However, the trend of shifting of the frequency of the diocotron mode towards
negative frequencies with increasing f is observed both at small and at considerable values
of kzRp.

3.6. Mode ‘2’ – cyclotron mode – is located near to the family of FUH modes and does
not cross the low-frequency area. When kzRp = 0 the frequency of mode ‘2’ is determined
by the expression (2.9.8) in Davidson (1974). When kzRp �= 0 the frequency of mode ‘2’
is given by

ω2

|ωce| ≈ 1 − q
4

⎡
⎣(R2

p

R2
w

− f

)
− 1

2

(
1 − R2

p

R2
w

)3
k2

z R2
p

4

⎤
⎦ , m = 1, kzRp 	 1, q 	 1.

(3.4)

As is seen, the correction to the frequency ω2 due to (kzRp)
2 is positive. Depending on

the ratio between R2
p/R2

w and f, the frequency ω2 can be either less than or more than |ωce|.
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4. Conclusions about the behaviour of TG modes of non-neutral plasma

4.1. Trivelpiece–Gould modes form four families: two families of upper hybrid modes
(SUH and FUH) and two families of lower hybrid modes (SLH and FLH).

There are also two modes that are located separately from these families: diocotron
mode (‘1’) and cyclotron mode (‘2’). The analytical expressions for their frequencies are
given by expressions (3.2) and (3.4).

4.2. The upper hybrid modes of families SUH and FUH are extremely tightly spaced
and very close to the upper hybrid frequency with a Doppler shift, ω ≈ mωe

rot ± ωNNP
UH .

These modes (with an azimuthal number m = 1) do not cross the low-frequency area at
any values of the parameters kzRp, Rw/Rp, f and q. Consequently, they cannot lead to
resonance electron–ion instability.

4.3. The lower hybrid modes (SLH and FLH families) cross the low (ion)-frequency
area. They can lead to resonance electron–ion instability.

4.4. The diocotron mode (‘1’) with a finite value of kz crosses the low-frequency area,
reaches the zero of the frequency at the value of q (3.3) and reverses the sign of frequency
only if the waveguide is sufficiently fully filled with plasma: (Rp/Rw)2 > f . In this case it
can lead to resonance electron–ion instability.

Under the condition (Rp/Rw)2 ≈ f , the long-wavelength (kzRp 	 1) diocotron mode
is in the low-frequency area (ω 	 ωce) within the entire acceptable range of values of
parameter q.

When (Rp/Rw)2 < f , the diocotron mode does not cross zero frequency and cannot lead
to resonance electron–ion instability (under the Cherenkov resonance condition n = 0 in
(5.1)).

4.5. The cyclotron mode (‘2’) does not cross the low-frequency area. Its frequency ω2
remains of the order of the cyclotron frequency of electrons |ωce| at any values of the
parameter q ≤ qmax and of the charge neutralization coefficient f.

5. The electron–ion instability of non-neutral plasma, its expected characteristics
and conditions of origin

So, the modes of the SLH family and the diocotron mode having an azimuthal number
m = 1 can be of low frequency at definite values of the parameter q. At these values, these
electron modes resonantly interact with ions. This will lead to the origin of resonance
electron–ion instability. In this section we determine these resonance frequencies and
corresponding values of q at which the frequency of the diocotron mode (‘1’) ω1 equals
the resonance ion frequencies. This will give an idea about the expected frequencies and
growth rates of instability.

5.1. Resonance of an ion with a diocotron mode
The resonance condition between the transverse motion of an ion and a wave running
along the azimuth in non-neutral plasma has the following form in the laboratory frame of
reference (Davidson 1974):

ωres ≈ mωi
rot + nΩi (m = 0,+1,+2, . . . , n = 0,±1,±2, . . .). (5.1)

Here

ωi
rot = (−ωci + Ωi)/2 > 0 (5.2)
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FIGURE 3. Resonance frequencies of ions (5.1) (denoted by black solid lines) for m = +1 and
n = +1, 0, −1 and the frequency of the diocotron mode ω1 (3.2) (denoted by a dotted line
and the number ‘1’). The intersections of the frequencies are indicated by squares. The red
square shows the Cherenkov resonance studied in the present article (n = 0). The dependence of
�ω (5.15) is also shown (blue solid line). All frequencies are normalized to ωci. Parameters of
calculation: mi = 40 a.u. (argon); kzRp = 0.03; Rp/Rw = 0.5; f = 0.1.

is the ‘slow’ ion rotation frequency, ωci = eiB/(mic) > 0 is the ion cyclotron frequency
and

Ωi = ωci[1 + (mi/me)q(1 − f )]1/2 = |ωce|[(me/mi)
2 + (me/mi)q(1 − f )]1/2 (5.3)

is the ‘modified’ cyclotron frequency of ions.
As is shown in § 3.5, diocotron mode (‘1’) (3.2) reaches the area of low frequencies and

the zero frequency only when R2
p/R2

w > f (see figure 2a). We consider this condition to be
fulfilled. The dependencies on q of the diocotron mode (‘1’) (3.2) and of the resonance
frequencies of ions (5.1) for m = 1 and multiplicities of resonances n = −1, 0,+1 are
shown in figure 3.

In experiments (Vlasov et al. 1966; Nezlin 1982; Sakawa & Joshi 2000; Jaeger 2010;
Annaratone et al. 2011; David 2017), unstable low-frequency oscillations rotating along the
azimuth in the positive direction (ω/m > 0) are observed. So, we study positive resonance
frequencies. For m = 1 the lowest positive resonance ion frequency (5.1) is realized at
n = 0. This is Cherenkov resonance between the diocotron mode and the ion rotation.
The instability near this resonance was studied by Levy et al. (1969) in the hydrodynamic
description of electrons and ions and kz = 0. We determine the position of the resonance
(ω1 = ωres) for kz �= 0. Substituting the expression for the frequency of the diocotron mode
(3.2) into the left-hand side of (5.1) and putting m = 1 and n = 0 in the right-hand side,
we obtain the following equation for q:

mi

2me

[
q

(
R2

p

R2
w

− f

)
− (kzRp)

2

]
= −1 +

[
1 + mi

me
q(1 − f )

]1/2

. (5.4)

By introducing a variable

y ≡ Ωi

ωci
=
[

1 + mi

me
q(1 − f )

]1/2

≥ 1, (5.5)

we obtain a simpler equation for y:

ηy2 − 2y − η − k2
z R2

p(mi/me) + 2 = 0. (5.6)
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In (5.6), the following notation is introduced:

η ≡ (R2
p/R2

w − f )/(1 − f ), R2
p/R2

w > f . (5.7)

We are interested in the area R2
p/R2

w > f where η is positive. As follows from (5.7), the
inequality η < 1 is always satisfied in this area.

From two roots of (5.6),

y = η−1[+1 ±
√

(η − 1)2 + η(kzRp)
2mi/me], (5.8)

only one root with the ‘+’ sign satisfies the inequality (5.5). We study only this root. It
determines the resonance frequency of the ion (5.1) and the value of q at the point of
intersection with the diocotron mode (3.2):

ωres/ωci = ( y − 1)/2, q ≡ qres = (me/mi)(y2 − 1)(1 − f )−1. (5.9a,b)

The resonance values (5.9) give an idea of the frequency and value of the parameter q near
which the resonance electron–ion instability can arise.

Expressions (5.8) and (5.9) are simplified in limiting cases. When

[η/(η − 1)2](kzRp)
2 	 me/mi, (5.10)

solutions (5.9) take the form

ωres/ωci ≈ 1 − R2
p/R2

w

R2
p/R2

w − f
, qres ≈ 4

me

mi

1 − R2
p/R2

w

(R2
p/R2

w − f )2 . (5.11a,b)

The resonance frequency ωres (5.11) is proportional to the ion cyclotron frequency (ωres ∝
ωci). The coefficient of proportionality is determined by the degree of filling of the
waveguide with plasma (R2

p/R2
w) and by the degree of plasma charge neutralization ( f ).

Expressions (5.11) do not depend on kz. They are valid for sufficiently small values of kzRp
(5.10) and for the case kzRp = 0 studied by Levy et al. (1969).

The expression for qres (5.11) gives numerical values that exactly correspond to the
coordinates of the maxima of the growth rate obtained by Levy et al. (1969). These
coordinates are presented by dotted lines in figure 2 of their article in variables f and
λ = 4(me/mi)/[q(1 − f )]. The analytical expression for resonance values of λ has the form

λres = 4
me

mi

1
qres(1 − f )

= (R2
p/R2

w − f )2

[(1 − R2
p/R2

w)(1 − f )]
. (5.12)

It is valid within the entire acceptable range of variations of f and R2
p/R2

w. Expression
(5.12) was written by Peurrung et al. (1993) for the case f = 0. The value of λres (5.12) does
not depend on the mass of the ion (me/mi).

The resonance frequency ωres (5.11) is lower than the ion cyclotron frequency (ωres <
ωci) in the area

R2
p/R2

w > (1 + f )/2. (5.13)

This area is shown in figure 4. It takes the form of a triangle. On the lower boundary of
the triangle, the equality ωres = ωci is fulfilled. On the upper boundary (R2

p/R2
w → 1), we

have ωres → 0.
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FIGURE 4. The area of low resonance frequencies (ωres ≤ ωci), with calculation using formula
(5.11). The grey-shaded area in which R2

p/R2
w < f is not considered. The inequality (5.7) is not

satisfied inside it.

If the inequality opposite to (5.10) is satisfied, the solution of the first equation (5.9)
takes the following form:

ωres/ωci ≈ 1
2

⎧⎨
⎩1 − R2

p/R2
w

R2
p/R2

w − f
+
[

(1 − f )
(R2

p/R2
w − f )

k2
z R2

p
mi

me

]1/2
⎫⎬
⎭ . (5.14)

The value of qres is determined by equation (5.9b). The second term in (5.14) is large
compared with the first term. The resonance frequency (5.14) is always high compared
with the ion cyclotron frequency (ωres � ωci). Expression (5.14) gives a larger value of
ωres than expression (5.11). With a decrease in the parameter (kzRp), the frequency ωres
decreases to the level (5.11).

When f → R2
p/R2

w the value of qres increases. Note that expressions (5.4)–(5.14), as well
as (3.2), are valid when kzRp 	 1, qres 	 qmax.

5.2. Numerical estimations of resonance frequencies for typical values of experimental
parameters

We obtain numerical values of the resonance frequencies from formulas (5.7)–(5.14) for
experiments in which non-neutral plasma was produced as secondary plasma in an electron
beam channel (Vlasov et al. 1966; Nezlin 1982; Sakawa & Joshi 2000; Jaeger 2010;
Annaratone et al. 2011; David 2017).

We choose the following typical values of the experimental parameters. Geometrical
parameters of the plasma cylinder: Rp ∼ 1 cm; length, L ∼ 100 cm. The degree of plasma
charge neutralization f = 0.1, and the working gas is argon (mi = 40 a.u., me/mi ≈ 1.36 ×
10−5), which is often used in experiments. At first we estimate the minimum value of kz
for a plasma cylinder of finite length in the ‘usual’ way: kz ∼ π/L. We give estimations for
different degrees of filling of the waveguide with plasma: Rp/Rw = 0.5; 0.75; 0.9. These
values were used in calculations by Levy et al. (1969).

The inequality opposite to (5.10) is satisfied for chosen values of the parameters. In this
case the resonance frequency ωres and qres are determined by formula (5.14). It gives the
numerical values shown in table 1. Note that the values of ωres and qres for Rp/Rw = 0.5
are consistent with the position of the resonance in figure 3 (the red square).

The resonance frequencies in table 1 are high compared with the ion cyclotron frequency
ωci. For lighter ions (for example, hydrogen, helium), a thinner or a longer plasma cylinder,
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Rp/Rw ωres/ωci qres

0.5 13 1.2 × 10−2

0.75 6.5 3 × 10−3

0.9 4.95 1.3 × 10−3

TABLE 1. The resonance frequency ωres and qres for different values of parameter Rp/Rw
(kzRp  0.03, f = 0.1, me/mi ≈ 1.36 × 10−5 (argon)). Calculations are according to formula
(5.14).

Rp/Rw ωres/ωci qres

0.5 5 1.8 × 10−3

0.75 0.95 1.1 × 10−4

0.9 0.27 2.1 × 10−5

TABLE 2. The numerical values of resonance frequencies ωres and qres for different values of
parameter Rp/Rw. The value of parameter kzRp satisfies the inequality (5.10). Calculations are
according to formula (5.11) (f = 0.1, me/mi ≈ 1.36 × 10−5 (argon)).

the left-hand side of inequality (5.10) can be of the same order as the right-hand side and
even smaller. As a result, the resonance frequency will be determined by expression (5.11),
which gives a smaller value of ωres.

In such estimations, it is important to correctly take into account the finite value of
kz in experiments because of the sharp dependence of the diocotron frequency ω1 (3.2)
on kz. The factor of finite plasma length, which is present in every experiment, greatly
complicates the theoretical consideration of the stability problem. In this regard, we note
the article by Prasad & O’Neil (1983), in which the eigenfrequencies and eigenmodes
of a long (Rp/L 	 1) plasma cylinder of finite length, located in an infinite metal
cylindrical waveguide, are determined. They showed that in such a plasma model the
diocotron mode has a longitudinal wavelength that is much longer than the plasma length:
|kz| ∼ [(1/|ε3|)(L/Rp)]1/2(1/L) 	 (1/L). Evaluating |ε3| ∼ 8/[q(1 − f )2] according to
(2.8), we find the following value of the parameter k2

z R2
p: k2

z R2
p ∼ (1 − f )2(q/8)(Rp/L).

When q 	 8(L/Rp)(me/mi) the value of k2
z R2

p satisfies inequality (5.10), and the resonance
values ωres and qres are determined by expressions (5.11). The numerical values for this case
are shown in table 2. As is seen from table 2 and figure 4, in the long-wavelength limit,
when inequality (5.10) is satisfied, the resonance frequency ωres can be both low and high
compared with the ion cyclotron frequency ωci. When the waveguide is sufficiently fully
filled with plasma (see formula (5.13)), the resonance frequency is small compared with
the cyclotron frequency or of the same order of magnitude.

5.3. Expected frequencies of electron–ion instability
What frequency ω of the discussed non-neutral plasma instability due to the relative
motion of electrons and ions along the azimuth can be expected? Generally speaking,
its frequency is not equal to the resonance frequency (5.1).

This instability was studied by Levy et al. (1969) (see also Davidson 1974). They
described thresholds and maximum growth rates of instability in detail. However, the
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expression for the real part of the unstable frequency has not been calculated and written
out explicitly. It seems that this is one of the reasons why this powerful instability, the
conditions of the origin of which always exist in non-neutral plasma, was not used to
explain the nature of low-frequency oscillations in linear devices, in which non-neutral
plasma was produced in the electron beam channel (Vlasov et al. 1966; Nezlin 1982; Pierre
et al. 1987; Sakawa & Joshi 2000; Jaeger 2010; Annaratone et al. 2011; David 2017).

There is also another reason. In the article by Levy et al. (1969) it is stated that, for
f 	 1, the instability occurs only near the resonance of the diocotron mode with the ion
rotation. The term ‘resonance’ was even included in the title of the paper. However, in
experiments, the instability is observed in a wide range of field variations, i.e. outside the
resonance too. This difference, noted by Peurrung et al. (1993), makes the instability of
Levy et al. (1969) unlike the instability observed in experiments. This shortcoming of the
theory was overcome by Fajans (1993) in the framework of the nonlinear consideration.

This shortcoming can also be overcome within the framework of the linear theory of
stability, taking into account kinetics of ions in the plasma model considered by Levy
et al. (1969).

The hydrodynamic description of ions used by Levy et al. (1969) is not applicable when
ions are unmagnetized (q ≥ me/mi). Ions are produced in experiments by electron impact
of atoms (molecules) of the working (residual) gas. In crossed fields they oscillate along
the radius with an amplitude comparable to the radius of the plasma cylinder itself. A
detailed analysis of ion kinetics in crossed fields was also carried out by Levy et al. (1969).
A solution of the kinetic equation for ions was even obtained in that paper. But these results
were not used in the study of instability. For such ions, a kinetic description is absolutely
necessary.

The equilibrium distribution function of ions, which adequately takes into account the
peculiarities of their production in crossed fields, was determined by Dem’yanov et al.
(1988). It turned out to be anisotropic and non-Maxwellian in transverse energies and,
therefore, very unstable. Due to anisotropy of ions such plasma is unstable even without
the resonance with the electron mode (Mikhailovskii 1974; Yeliseyev 2006). The stability
of non-neutral plasma with such an ion distribution function was investigated by Yeliseyev
(2010) for a waveguide completely filled with plasma, m = 1, kz �= 0 and f 	 1. It is
shown that near every harmonic of the ion resonance frequency (5.1) there exist not
one, but two ion modes. The frequency of one of them is lower than the ion resonance
frequency, the frequency of the other is higher. Both modes exist within the entire
acceptable range of variation of the parameter q. Their frequencies repeat the dependence
on q of ion resonance frequency (5.1). They are called ‘modified’ ion cyclotron modes. In
the resonance area the electron mode is unstable with a fast growth rate. In a wide region
outside the resonance, where q < qres, the lower modified ion cyclotron mode is unstable,
but with a slower growth rate (Im ω ≡ γ ∼ ωpi). The real part of the frequency (Reω) of
the unstable mode in the area q < qres remains lower than the resonance frequency (5.1)
by the value �ω (Yeliseyev 2010):

�ω ≡ |Reω − ωi
rot| ∼ γ ∼ ωpi = ωce[q( f /2)(me/mi)]1/2

= ωci[q( f /2)(mi/me)]1/2  Ωi[ f /(1 − f )]1/2. (5.15)

The dependence of �ω (5.15) on q is shown in figure 3.
The resonance frequency (5.1) does not depend on the degree of filling of the waveguide

(R2
p/R2

w). So, it can be supposed that the value of �ω (5.15) has the same order of
magnitude when the waveguide is partially filled with plasma (R2

p/R2
w < 1). Because of

the decrease in the value of �ω (5.15), the real part of the frequency Reω can become
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comparable to the cyclotron frequency ωci. The real part of the frequency Reω will behave
depending on q in a manner similar to how �ω behaves in figure 3.

In addition, the resonance frequency ωres (5.1), which in the considered case of
Cherenkov resonance equals ωi

rot (5.2), itself decreases with a decrease in q. With it the
frequency of unstable oscillations Reω decreases (see figure 3). Taking into account these
two circumstances, the triangular area in figure 4, where ωres/ωci ≤ 1, must be larger than
is shown in the figure.

The equalities (5.15) contain also an estimation of the growth rate of instability Im ω =
γ . This is consistent with the frequency correction �ω. So the dependence of the growth
rate γ on q looks like the dependence of �ω in figure 3. From (5.15) it follows that the
growth rate exceeds the ion cyclotron frequency (γ > ωci) in the area where qf > 2me/mi.
This inequality is satisfied in a wide range of acceptable parameter values.

Summarizing the above, we conclude that the diocotron mode interacting with
ions having an anisotropic distribution function can lead to electron–ion instability at
frequencies Reω, which can be comparable to the ion cyclotron frequency ωci, and have
fast growth rates (Im ω = γ > ωci) within a wide range of variations of parameter q, as is
observed in experiments.

There is also an area of parameters in which the instability frequencies are large
compared with the cyclotron frequency. Note that in different experiments with
non-neutral plasma, produced in an electron beam channel, unstable oscillations are
observed both at low frequencies ω <ωci (Jaeger 2010; Annaratone et al. 2011; David
2017) and at much higher frequencies (5–10) ωci (Sakawa & Joshi 2000).

5.4. About the instability of SLH modes
The family of SLH modes also passes through zero frequency and through the
low-frequency area and can also be the cause of electron–ion instability. In the
long-wavelength limit (kzRp 	 1), SLH modes pass zero frequency at small values of
q, while the diocotron mode crosses the value of zero of frequency at larger values of
q (see figure 1a). Correspondingly, the growth rate of the instability associated with the
diocotron mode is faster than the growth rates associated with the SLH modes. Note that
the instability associated with the diocotron mode must develop at higher frequency than
the instabilities associated with the SLH modes.

In the long-wavelength limit (kzRp 	 1), the SLH modes are closely spaced around
the value of ω = ωe

rot. Different radial modes of this family can be excited with a small
variation of the parameter q. However, in experiments, within a wide range of variation
of fields, only the lowest radial mode is excited. This circumstance does not allow one
to associate the observed low-frequency oscillations with SLH modes. The diocotron
mode interacting with ions seems to be more preferable for explaining the nature of
low-frequency oscillations observed in experiments with non-neutral plasma in linear
devices (Vlasov et al. 1966; Nezlin 1982; Sakawa & Joshi 2000; Jaeger 2010; Annaratone
et al. 2011; David 2017) and other similar experiments.

6. Conclusions

We discussed the electron–ion instability that arises in non-neutral plasma due to the
interaction of the diocotron mode with ions. It occurs due to the relative motion of
electrons and ions along the azimuth, due to the anisotropy of the ion distribution function
and finite value kz �= 0. This instability has the same characteristics as the low-frequency
oscillations observed in experiments in linear devices, where non-neutral plasma is created
as a secondary plasma in the electron beam channel (Vlasov et al. 1966; Nezlin 1982;
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Pierre et al. 1987; Sakawa & Joshi 2000; Jaeger 2010; Annaratone et al. 2011; David
2017):

(1) The discussed instability can be of low frequency (ω ∼ ωci) in the long-wavelength
limit kzRp 	 1, like the oscillations observed in experiments.

(2) The instability occurs within a wide range of variations of external fields and plasma
parameters both near the resonance of the diocotron mode with ions and outside this
resonance area (q < qres).

(3) The unstable mode has the structure of the lowest radial mode (see Prasad & O’Neil
1983). Oscillations with only such a radial dependence are observed in experiments.

(4) The growth rate of the discussed instability can be fast compared with the cyclotron
frequency (γ > ωci) within a wide area of parameter variations (qf > 2me/mi). A
fast increase of the amplitude of low-frequency oscillations (during a time less than
the period of oscillations) is observed in experiments (Jaeger 2010; David 2017).

In non-neutral plasma, there is always a relative motion of electrons and ions along
the azimuth and there is always an anisotropy of produced ions. Thus, there are always
conditions for the origin of the instability caused by these reasons. This instability can
be the cause of the observed low-frequency oscillations of non-neutral plasma in linear
devices.
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Appendix A. Areas of existence of bulk and surface modes

We determine the areas where the TG modes in the plasma are bulk or surface modes.
This is determined by the sign of T2 (2.2). Modes located in the area T2 > 0 are bulk
modes. The dependence of their potential on the radius has the form Jm(Tkzr) in plasma.
Modes located in the area T2 < 0 are surface modes. The dependence of their potential
has the form Im(|T|kzr). The boundaries between the areas are located on the lines where
the function T2 reverses sign. This is determined by the reversal of the sign of the tensor
components ε1 and ε3.

In variables (ω′2/ω2
ce, q) the shape of the boundaries has an extremely simple form

(figure 5). The areas where T2 > 0 and modes are bulk are indicated by arrows. In
non-neutral plasma ( f < 1) the areas are two triangles. In neutral plasma ( f = 1) the
areas are two bands. In both cases, the two areas touch at the point with coordinates

q = qt ≡ 2/(3 − 2f ), ω′2/ω2
ce = qt/2 = 1/(3 − 2f ). (A1a,b)

At the touchpoint the equalities ω′2 = ω2
pe = Ω2

e are satisfied (Davidson 1974).
In other areas, we have T2 < 0. The modes located in these areas are surface modes.
Function T2 (2.2) does not depend on the degree of filling of the waveguide (R2

p/R2
w) and

on the longitudinal wavelength kzRp. The position of the borders does not depend on them
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(a) (b)

(c) (d)

(e)

FIGURE 5. The areas of existence of bulk modes (indicated by arrows) and surface modes on
the plane of variables (ω′2/ω2

ce, q) for different values of the charge neutralization coefficient f :
(a) f = 0; (b) f = 0.25; (c) f = 0.5; (d) f = 0.75; (e) f = 1. The red and blue solid lines show
the zeros and poles (ε1,3 = inf) of tensor components ε1 and ε3 (2.8). Parameters qmax and qt
are defined by (1.2) and (A 1).
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either. The simplicity of figure 5 indicates the successful choice of variables with which
the figures are built.

On the plane of variables (ω/ωce, q) (see figure 1), the areas of bulk modes (T2 > 0)
are transformed into four areas. They have the form of curvilinear triangles. In figure 1
they are indicated by arrows.

From figure 1 it can be seen that families of FLH, SLH, FUH and SUH modes are
located within the bulk areas. The areas of the bulk modes in figure 5 are consistent with
the areas where the inequality (3.1) is satisfied.

It can be seen from figure 1 that diocotron (‘1’) and cyclotron (‘2’) modes are bulk
modes at sufficiently small q. They are surface modes at larger values of q.

Appendix B. Trivelpiece–Gould modes of waveguide partially filled with neutral
plasma

B.1. The solutions of the dispersion equation (2.1) for neutral plasma ( f = 1) are shown
in figure 1(e). Solutions exist for all values of q from the interval 0 < q < ∞. In figure 1(e)
they are represented within the interval 0 ≤ q ≤ 10.

The structure of the solutions for neutral plasma is, in general, the same as that for
non-neutral plasma. The solutions form four families of modes marked FLH, SLH, FUH
and SUH. But the meanings of the terms ‘fast’ (F) and ‘slow’ (S) modes in a neutral
plasma are lost, because plasma does not move and there is no Doppler shift (ω′ = ω).
These four families are located in the frequency intervals (3.1). In expressions (3.1) it is
necessary to replace ω′ → ω, Ωe → ωce.

When plasma partially fills the waveguide, the mode frequencies of all four families
are slightly shifted upward, towards positive frequencies. The frequencies of the modes
of FUH and SUH families shift negligibly. The asymmetry in the location of modes is
caused by the last term on the right-hand side of the dispersion equation (2.1) and is a
demonstration of the plasma magnetoactivity.

Along with the four families of modes, there are two more separate modes, indicated
in figure 1(e) as ‘1’ and ‘2’. In non-neutral plasma mode ‘1’ is called a diocotron mode.
In neutral plasma, the frequency of this mode (azimuthal phase velocity ω1/m) is always
negative. This also follows from expression (3.2).

The frequency of mode ‘2’ is always positive and always exceeds the cyclotron
frequency: |ωce| < ω2 < ωUH (ωUH =

√
ω2

pe + ω2
ce is a hybrid frequency of the neutral

plasma). This follows from expression (3.4).
At sufficiently small q, modes ‘1’ and ‘2’ are located in the frequency range (3.1) and

are bulk modes. As q grows, they go beyond the frequency areas (3.1) and become surface
modes.

As the degree of filling of the waveguide with plasma increases ((Rp/Rw)2 → 1), mode
‘1’ approaches the family of SLH modes. Mode ‘2’ moves away from the FUH family of
modes and approaches the frequency |ωce|. These peculiarities of the behaviour of modes
‘1’ and ‘2’ are also seen from expressions (3.2) and (3.4).

When q �= 0, no TG modes pass through the low-frequency region, do not cross zero
frequency and, therefore, cannot lead to the resonance electron–ion instability.

B.2. The frequencies of potential modes of a waveguide partially filled with neutral
plasma were determined and studied by Trivelpiece & Gould (1959). The dependences of
frequencies of TG modes on the longitudinal wave vector kz are represented in figure 8 of
their paper. In figure 6 the solutions of the dispersion equation (2.1) are shown for the same
values of the parameters, with the difference that in present paper the azimuthal number
m is considered positive (m = +1 > 0), and the mode frequencies ω can be positive and
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FIGURE 6. Trivelpiece–Gould modes of a waveguide partially filled with neutral plasma
( f = 1). The calculation parameters are the same as in figure 8 of Trivelpiece & Gould (1959):
m = 1; f = 1.0; Rw/Rp = 2.0; q = 8.0. The lowest radial modes of the FLH, SLH, FUH and
SUH families and modes ‘1’ and ‘2’ are indicated by dashed lines. The arrows indicate the bands
where the modes are bulk modes. The borders of the bands are delimited by solid blue and red
lines.

negative. In the paper by Trivelpiece & Gould (1959), the frequencies ω were considered
positive, and the azimuthal number m was considered positive and negative (m = ±1).

Comparison of figure 8 of Trivelpiece & Gould (1959) and figure 6 here shows that the
modes located at the bottom of figure 8 marked ‘+1’ and ‘−1’ correspond in figure 6 to the
lowest radial modes of the FLH and SLH families, respectively (indicated by dotted lines).
The modes located at the top of figure 8 of Trivelpiece & Gould (1959), marked ‘n = +1’
and ‘−1’, correspond in figure 6 here to the modes marked by the numbers ‘2’ and ‘1’,
respectively. The upper hybrid modes of the FUH and SUH families are not displayed in
figure 8 of Trivelpiece & Gould (1959). They are located above the frequency range shown
in the figure.

The behaviour of the modes in both figures looks identical, but in figure 6, the
frequencies ω are normalized to |ωce|, while in figure 8 of Trivelpiece & Gould (1959),
the normalization to ωp is erroneously indicated. The normalization to |ωce| is correct.

Note that mode ‘2’ is a surface mode within the entire range of values of parameter
kzRp presented in figure 6. Mode ‘1’ is a bulk mode at rather small values of kzRp,
approximately at kzRp < 1.2. At larger values of kzRp, mode ‘1’ becomes a surface mode.

REFERENCES

ANNARATONE, B.M., ESCARGUEL, A., LEFEVRE, T., REBONT, C., CLAIRE, N. & DOVEIL, F. 2011
Rotation of magnetized plasma. Phys. Plasmas 18, 032108.

BETTEGA, G., CAVALIERE, F., CAVENAGO, M., ILLIBERI, A., POZZOLI, R. & ROMÉ, M. 2005
Experimental investigation of the ion resonance instability in a trapped electron plasma. Plasma
Phys. Control. Fusion 47, 1697.

DAVID, P. 2017 Tomography in a linear magnetized plasma. PhD thesis, Aix-Marseille Universite.
DAVIDSON, R.C. 1974 Theory of Nonneutral Plasmas, 215 p. Benjamin.
DEM’YANOV, V.G., YELISEYEV, Y.N., KIROCHKIN, Y.A., LUCHANINOV, A.A., PANCHENKO, V.I. &

STEPANOV, K.N. 1988 Equilibrium and nonlocal ion cyclotron instability of plasma in crossed
longitudinal magnetic and strong radial electric fields. Sov. J. Plasma Phys. 14, 494.

https://doi.org/10.1017/S002237782300137X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782300137X


Trivelpiece–Gould modes 19

DUBIN, D.H.E. 2016 Penning traps and plasma modes. In Trapped Charged Particles: A Graduate
Textbook with Problems and Solutions (ed. M. Knoop, N. Madsen & R.C. Thompson). World
Scientific.

FAJANS, J. 1993 Transient ion resonance instability. Phys. Fluids B 5, 3127–3135.
JAEGER, S. 2010 Etude theorique et experimentale des instabilites basses frequences dans un plasma en

champs magnetique et electrique croises. PhD thesis, Aix-Marseille Universite.
KABANTSEV, A.A. & DRISCOLL, C.F. 2003 Diocotron instabilities in an electron column induced by a

small fraction of transient positive ions. AIP Conf. Proc. 692, 61–68.
LEVY, R.H., DAUGHERTY, J.D. & BUNEMAN, O. 1969 Ion resonance instability in grossly nonneutral

plasma. Phys. Fluids 12, 2616–2629.
MIKHAILOVSKII, A.B. 1974 Theory of Plasma Instabilities, V. 1: Instabilities of a Homogeneous Plasma.

Consultants Bureau.
NEZLIN, M.V. 1982 Beam Dynamics in Plasma. Energoizdat (in Russian).
PEURRUNG, J., NOTTE, J. & FAJANS, J. 1993 Observation of the ion resonance instability. Phys. Rev.

Lett. 70, 295–298.
PIERRE, T., LECLERT, G. & BRAUN, F. 1987 Magnetized double-plasma device for wave studies. Rev.

Sci. Instrum. 58, 6–11.
PRASAD, S.A. & O’NEIL, T.M. 1983 Waves in a cold pure electron plasma of finite length. Phys. Fluids

26, 665–672.
SAKAWA, Y. & JOSHI, C. 2000 Growth and nonlinear evolution of the modified Simon-Hoh instability in

an electron beam-produced plasma. Phys. Plasmas 7, 1774–1780.
TRIVELPIECE, A.W. & GOULD, R.W. 1959 Space charge waves in cylindrical plasma columns. J. Appl.

Phys. 30, 1784–1793.
VLASOV, M.A., DOBROKHOTOV, E.I. & ZHARINOV, A.V. 1966 Instability of a hot-cathode discharge in

a magnetic field at low pressures. Nucl. Fusion 6, 24–34.
YELISEYEV, Y.N. 2006 Nonlocal theory of the spectra of modified ion cyclotron oscillations in a

non–neutral plasma produced by gas ionization. Plasma Phys. Rep. 32, 927–936.
YELISEYEV, Y.N. 2010 Oscillation spectrum of an electron gas with a small density fraction of ions.

Plasma Phys. Rep. 36, 563–582.

https://doi.org/10.1017/S002237782300137X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782300137X

	1 Introduction
	2 Dispersion equation under study
	3 Trivelpiece--Gould modes of waveguide partially filled with non-neutral plasma
	4 Conclusions about the behaviour of TG modes of non-neutral plasma
	5 The electron--ion instability of non-neutral plasma, its expected characteristics and conditions of origin
	5.1 Resonance of an ion with a diocotron mode
	5.2 Numerical estimations of resonance frequencies for typical values of experimental parameters
	5.3 Expected frequencies of electron--ion instability
	5.4 About the instability of SLH modes

	6 Conclusions
	A Appendix A. Areas of existence of bulk and surface modes
	B Appendix B. Trivelpiece--Gould modes of waveguide partially filled with neutral plasma
	References

