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ASYMPTOTIC DISTRIBUTION OF
LIUSTERNIK-SCHNIRELMAN EIGENVALUES FOR ELLIPTIC

NONLINEAR OPERATORS
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Asymptotic formulae are given for the distribution of Liusternik-Schnirelman eigenvalues of certain pairs of
nonlinear functionals generalising the usual Weyl theory for linear pairs of elliptic operators. In particular an
application is made to the von Karman theory of buckled plates.
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Introduction

Let V be a reflexive Banach space and s#(u), 88{u) two real valued C1 functionals on
V. For c a real constant, set Mc = {ue V: s/{u) = c}. Under certain technical conditions
the variational theory of Liusternik-Schnirelman provides a natural generalisation of
the Courant-Weinstein mini-max principle establishing the existence of an infinite
number of distinct eigenpairs (Xk,uk), ukeMc, AkeR, of the Euler-Lagrange equations
associated to the pair

(see [6, 9]).
In two papers [7, 8] Chiappinelli discussed the question of the determination of the

properties of the asymptotic distribution of eigenvalues: v(t)= #{k:At^t}. In the
problems discussed in [7, 8], {$4,88) were chosen to be functionals related in V = HQ(Q)
to the pair of operators ( — Au,u + /(u)) and (Lu + f(x, u), u) respectively, where /(«)
satisfied a certain growth condition and f(x,u) was taken to be sublinear and odd in u
with L as a second order linear selfadjoint elliptic operator. Nevertheless lacunae were
left and in the present paper we consider various variational problems in which we
assume that V is a closed subspace of the real Sobolev space Hm(Q), Q a Sobolev
domain in R" and H$(n)c V, 2m*tn. Let s40{u) and 880{u) be the quadratic functionals
associated with the self-adjoint linear differential operators in divergence from Ao, Bo of
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382 V. B. MOSCATELLI AND M. THOMPSON

orders 2m = 2mQ + 2m' and 2m' respectively, mo>0, m'^0, whose coefficients are Holder
continuous of order s, 0 < s ^ l , uniformly on fi. Then more specifically we consider
pairs of non-linear functionals (jrf(u), @){u)) taken in the form:

where /(u) and h(u) are nonquadratic functionals satisfying certain technical conditions
(/(M) satisfies essentially the conditions (5) of [6] and /, h are C1 even potentials and
h'(u) is compact in V*, the normed conjugate of V, on bounded closed subsets of V).

We set vo(t)=#{k:nk^t;Aou
o

k=nkBuo
k}. It is known that v°(r)=g<5t'/2mo +

0(r(n-s/s+i)/2mo) a s t_>00> where <5 = |fi|, the Lebesgue measure of fi, and g is a geometric
constant. Let

2ms / 2ms .. A " l
 n „

; 0 = - ——+ mo(2m-n) <n/2, 2m>n.
s +1 \s +1 y

In case / = 0 and /i satisfies conditions H3, the corollary to Theorem 1, states that for
2m>n, then setting v(t) = #{k:X^t), we have

) as r->oo,

and

~<') asr^oo, incaseO<;<j0,

where

_m — jn 1 .
~n-2j2m 2

While in case 2m = n, we have merely that v(t)xv°(t) as t-»oo at level Mc. With the
same conditions on h but with /(u) satisfying more general growth and coercivity
conditions, we establish in Theorem 2, that for c sufficiently large v(t)wv°(t) as t->oo at
level Mc. Theorem 1 uses nonintegral interpolation estimates and Theorem 2 these
together with the use of a radial odd homomorphism from Mc to the level set
I.c = {u:stf0(u) = 2c}. We also give a result for the von Karman equations describing plate
buckling, taking advantage of the special form of the pairs, where h=0 and f(u) is
positive and compact on bounded closed subsets in V = H%{Cl). Theorem 2' states that in
this case v(t)=^t + 0(t(2~s/s+1)/2) as t^oo at level MC. Here it should be noted that /(u)
is not a polynomial type expression in the derivatives of u as it effectively involves
pseudo-differential operators.

The first author (VBM) acknowledges the support of the Ministero della Publica
Instruzione (Italy) and the second (MT) the support of ICTP (Trieste) and the CNPq
(Brazil) while visiting Trieste and Lecce.
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1. Preliminaries

Let Cl be an open bounded region in R" with a sufficiently regular boundary (see [10]
and the references given there). We denote the norm on the standard Sobolev spaces
H'-"(n) by || ||r,p, the Lp-norms by || ||p and more briefly we denote H2p(Q) by H\Q.).
//'0(fi) denotes the completion of CQ(Q) in the norm || ||, 2.

For two functions $ and ifr defined on a common domain D of some R" we write
(f>(y)~\l)(y) and <f>(y)~4f(y) to mean respectively that for yeD and y-»oo we have

and

We assume the following hypotheses.

Hl(a) Let V be a closed subspace of Hm{Cl) such that f/J?(fi) c V.

We consider two formally symmetric strongly elliptic operators in divergence form
A0,B0 of order 2m = 2mo + 2m' and 2m' respectively, mo>0, m'^0 such that their
associated bilinear forms srf0 and 3S0 satisfy the following conditions with positive
constants c0, b0, y.

Hl(b) ^o(«.«) + )-|H|^co|H|l2, ueV.

Hl(c) 3S0(u,u)^b0\\u\\2
m,t2, usV.

Hl(d) The coefficients of Ao and Bo are uniformly Holder continuous of order s,
g l , on fi.

We set j2/o(u) = ^o(u,u) and 3S0{u) = $0(u, u). As remarked earlier we consider pairs of
nonlinear even functionals s/(u) = %$fo(u) + f(u), $l(u) = i^0(") + M"). M e K In Theorem 1
we deal with the degenerate case f = 0 while in the case of the von Karman equations
h(u) = 0. Both these cases may be placed within the context of the theory as formulated
in Theorem 6.6.11 of [4], where by Propositions 5.2, 6.4 and Theorem 7 of [6] we may
take both si and ^ to be C1.

H2(a) s/'(u) is a C1 odd gradient operator with $4\0) = Q and for any u#0, s/'(su).u
is a strictly increasing function of the positive real variable s.

H2(b) The functional ^/(u) is coercive.

H2(c) When un-*u weakly in V and s/'(un) converges strongly in V* then
sf(un)^stf{u) and un-^u in V.

The last hypothesis stated there is replaced by the following in Sections 2, 3 and 4.1
taken together with Hl(c,d).
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384 V. B. MOSCATELLI AND M. THOMPSON

H3(a) Let H(x,£) be a function defined on fixR1, measurable in x and C1 in £ on
R1, for each fixed x outside of a nullset in fl

H3(b) d4H(x, - £ ) = -^H(x ,£) , xefi,

H3(c) d{H(

H3(d) |34JJ(x,£)|gc|§|«, l < g = n( / i -2 ; r 1 , *efi, {eU1, where 0<j<n/l

Then we define /i(u) by /i(u) = jn//(x,u(x))dx, ueV. These hypotheses lead to

H2(d) (1) h(u) is well defined, bounded on bounded subsets and of class C1 on V;

(2) /J'(U) is compact on each bounded closed subset of V;

(3) h(u) = Jo h'(su)uds is even and positive.

Note that these properties given in H2(d) follow as in the Appendix to Section 1 of
[5]. H2(d) gives the last hypothesis of Theorem 6.6.11 of [4].

In the case / = 0, H2 is trivially satisfied, while for the von Karman equations all the
necessary verifications are given in Section 4.2 to establish (iv) of Theorem 6.6.11 of [4].

We consider the eigenvalue problem

a(u,v) = Xb{u,v), for all veV, (1.1)

where a(u,w) = (s/'(u),v) and b(u,v) = (@'(u),v). Let Mc = {we V: s/{u) = c}.
The Liusternik-Schnirelman max-min theory states that there exist an infinite

number of distinct elements of ukeMc such that (1.1) is satisfied with a corresponding
kksR. More specifically let Sk = {KcMc:K symmetric compact and catK^.k}. Each
eigenvalue pair (Xk, uk) is associated with a critical level ck determined by

cfc=sup inf &{u) (1.2)

such that

m.«k) = ck; (1.3)

and

(&{u)-uk)
) ( L 4 )

(see [6, 4, Chapter 6, 9]).
We expect that under reasonable conditions

=
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LIUSTERNIK-SCHNIRELMAN EIGENVALUES 385

Note that in case / = 0, h = 0, a quadratic pair, Mc is the simpler level set Zc =
{ueV:^0(u) = c}.

Let us recall that the eigenvalues A° of the linear problem Aou° = X°Bou° are given by

A?=(2c)''sup inf @0{u) (1.6)

(see Lemma A 6,7A of [4]).
It follows that our principal task is to show that the right hand sides of (1.5) and (1.6)

are asymptotic as k->oo. It is useful to recall that the class Sk is preserved under radial
odd homeomorphisms T of submanifolds of V invariant under the involution n:u—> — u.
This follows from Lemma 1.2d of [6].

Although we maintain the same hypotheses as h(u) in Section 4.1 the preceding
formulation is not adequate to deal with the more general nonlinear functionals
introduced in 4.1. However, in this case we note that the technical hypotheses on f{u)
are those of Theorem 10 of [6] while it is readily seen that under conditions H3 the
underlying abstract elements of the theory given in Theorem 8 of [6] may be established
and the results of Theorem 10 of [6] taken over without modification, namely those
listed in equations (1.2) to (1.4).

We introduced the vector space RSm whose elements are £(m) = {£a:|a|^im}. Let
F(x,£im)) be the function defined on the trivial jet bundle fix/?1"1-*/?1, which defines an
operator on functions on Q, assigning to each u another function v on Q with
y(x) = F(x,£(m>(u)(x)), xeQ, where ^"l)(u)(x) = {D'w(x), |a|gm}. Define the nonlinear
functional / (u)=j n F(x, £(m)(u)(x)) dx.

We consider even functionals

Associated with the functional s#(u) is the Euler-Lagrange operator

A(u) = Aou+ £ (-l

where Fia is the partial derivative of the function F with respect to <!;„. Such functionals
are well defined under hypotheses given in the Appendix to Section 1 of [5].

We refer to such hypotheses as being the "usual hypotheses" and observe that under
these hypotheses the following properties hold (see [5] or [6]).

PI f(u) is well defined, bounded on bounded subsets and of class C1 on V. For each
u,veV

/(«,»)= I (Fa(-,?
m\u),D*v)

\a\Sm

is well defined and f'(u) • v = f(u, v) for all u, v e V.
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P2 /'(") satisfies condition (S) of Section 6, Definition 6.1 of [6], and is bounded on
bounded subsets.

P3 / '(")-"£c1| |u|£,2-c2| |«| |m,2, for all ueV.

P4 There exists a continuous positive function t/^x), xeR, such that

Note that the eigenvalue problem (1.1) is equivalent to

a(u, v) = a(u, v) + bo lyb(u, v) = (X + b^ ly)b{u, v) (1.7)

for all veV, and so causes a shift in the eigenvalues k-*A + bo~ly. As characteristically
there exists a sequence of eigenvalues Xn-> oo this will not make a difference to the
asymptotic properties of Xn as n-»oo. Note that Hl(b,c) and P3 imply that

a(U,M)^(co + c1) | |^.2-c2 |H|m,2 . (1.8)

From (1.7), (1.8) it follows without loss of generality we may assume that y=0.
Let rao = {u:ue F;||u||^ 2 = ^ 0 } . From (1.8) it follows that there exists a fc>0 such that

for <50 ^ k,

50. (1.9)

Then as in [5], setting u = rv, ||u||m,2 = fc

We conclude that

\M\i,.2=k

taking d0 sufficiently large.
Note that (1.10a) implies that J2/(M)-»OO with ||u||m 2-»oo. Also note that the

hypotheses H2(d) imply the existence of a constant c4 > 0 such that

^ \ 4 m . 2 ) = W\\u\U2). (1.10b)
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Hence, if s/(u) = c->ao it follows from (1.10b) that ||u||CTI<2—»-oo. Therefore for c sufficiently
large ||u||m 2^& so that (1.10a) is satisfied and we obtain the bound

max \s/(v)\), (1.10c)

u eMc, c sufficiently large.
The following property holds:

P5 Under the hypotheses HI, H3 and the "usual" hypotheses on / , for c sufficiently
large, $?(«)> 0 for ueMc, and given d>0, there exists dl>0 such that for all ueMc with
@{u)~£d then

Now (1.10c) holds so that ||«||m2^const, ueMc, also by H2(d) it follows from the
Appendix to Section 1 of [5] that 3D'{\i) is compact on closed bounded subsets of V.
Suppose then there exists a sequence wnsMc, un^u, such that both @(un)^.d and
(&'(un)un)-*0. Then we conclude that &8'(u)u = 0 by compactness and weak conver-
gence and by positivity $?0(u)=0 so that ||u||m,2 = 0 which implies 08(u) = Q, while the
potential formula implies that lim &8(un) = &8{u) ̂  d a contradiction.

The last property is proved in Lemma 3 and may be announced as follows:

P6 For c sufficiently large each ray from the origin hits Mc in exactly one point.

2. A technical lemma

Let us recall the Sobolev embedding

for 2 ^ / ^ 2 n ( « - 2 j ) - 1 , (2.1)

valid for all 0<j<n/2 (see [12, §4.6.1]). In the subsequent analysis, for definiteness, we
set

l = 2q = 2n(n-2j)-1.

Further recall the interpolation inequality in the Hs(il) Sobolev spaces:

|<2'"-fl/1|«||r2. (2-2)

This is a so-called multiplicative inequality familiar from interpolation theory (see [12,
Remark 6, §2.4.2]). For a proof we refer to [12, Theorem 1, §4.3.1; Theorem 1, §2.4.2 and
formula (v) of that theorem]. Note that the W'p(fi) spaces defined in [12] coincide with
H'"(Q) in the case p = 2.

We set
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m n-

Then we have the following lemma.

Lemma 1. Under hypotheses HI, H3 and properties PI to P4 there exists a constant
K{£i, c) such that

\\u\\l+e, ueMc, (2.3a)

and

h'(u)-u^K(Q,c)\\u\\l
2

+e, ueMc, (2.3b)

if c is taken sufficiently large.

Proof. By hypotheses and the formula for potential operators we have h'(xu)u =
^(x, xu(x)) dx ̂  Cx" Jn |u(x)|«+1 dx, 0gx g 1, and

From Schwartz's inequality it follows that

/i(u)gconst||u||f||«||2. (2.4)

Then using (2.1) and (2.2) we have

and from (2.4)

Then (1.10c) yields the upper bound, if c is taken sufficiently large,

h(u)^K(Q,c)\\u\\l
2

+e,

similar estimates give (2.3b).
Note that in the case / = 0 the value of c is unrestricted. Recall that in case 2m>n, u

can be modified on a set of measure zero so that ueC°(Cl) and one has the well known
interpolation inequality (see Lemma 13.2 of [1]):

|"W|^7s||M||"J2m||u||i-'2m. (2.5)
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This leads to an estimate of the form

However, as

. n m-j 2m-n n m-(n/2) (. n \f n
n — 2jm 2m n — 2j m \ n — 2jj\ 2m

we see that in (2.3a) and (2.3b) we have attained a higher power of ||w||2 which is
desirable in the asymptotic analysis as we shall subsequently. Also any fixed value of
q > 1 may be attained by choosing j suitably.

3. The distribution of eigenvalues / = 0, 2m ̂  n

In the subsequent analysis we <5 = |fi|, the Lebesgue measure of Q.
We recall a basic result which may be derived following the line of arguments given

in [10, 11]. Although the latter paper deals with much more general bilinear (matrix)
pairs and accordingly does not give explicit expressions for the second term in the
asymptotic formula for the distribution function, it is evident that the estimates for
scalar bilinear pairs as considered here may be obtained as in [9]. Using (1.9), (1.3) and
(1.4) it follows that

c° = c(gS)2mol"t ~ 2mo/" + 0(t ~((2mo/n)+((s/s + x )/n))) (3.1)

We now establish a fundamental lemma. We set

.f
n — 2j 2m 2

Lemma 2. Under hypotheses HI, H2 and with / = 0, we have

c, = cr
0+0(r(2mo/n)(1+<')) as t->oo.

Proof. By hypothesis i&0(u)^8&(u), ueMc = Zc, so that it follows immediately that

c°<c (32)

For an upper bound we note that from Lemma 1 and Hl(c) we have

sup inf ^ ( u ) ^ s u p inf (3S0(u))
It rz V , , - V-f w- tf — C , , _ V r- \jf
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where <f>(x) is the continuous positive increasing function

Then by an observation of Chiappinelli in [7, §3] we have

sup inf (0&o{u))<L4> sup inf @0(u)\. (3.4)

JCeSt ueK^Mc \_KeS, ueK^Mc J

It follows that from (3.1), (3.2) and (3.4)

2mo/'I)(1+'')) as t-ao. (3.5)
Theorem 1. Suppose that / = 0, 2m^n, and hypotheses HI and H2 are satisfied.Then

l - 1=cc,o + 0(r(2mo/'1)(1+'r)) as r-»oo at level MC.

Proof. Recall that from (1.3), (1.4) and (^ ' ("r) ' "<) = 2c we have

Set W, = (^h'(u,)-ut-h(ut))c~l. Then by inequalities (2.3a,b) we have

| l^ |gic-1K(ac) | | t t , | | i + 9 i ic

using Hl(c),
1"12, by

Sl,c)t <2l"o/n)(i+o)> using Lemma 2. (3.6)

From (3.5) and (3.6) we have

Corollary. Set

2ms ( 2ms

in the case 2m>n

(a) If jog, j^n/2, then
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v(t)=g«5rn/2mo + (Xt<n~(s/s+1))/2mo) as t-»oo at level Mc.

(b) If 0<j<jo, then

v(t)=gdtnl2mo + 0(tinl2mo)-a) as t->oo at level Mc

(c) In the case 2m ~ n, then

v(t)xfi2mo as t-+co at level Mc.

Proof. First note that since mo(2m — n) > 0, in the case 2m > n, then ; 0 < n/2.
We deal with cases (a) and (b). By (3.1) and Theorem 1 we have

V 1=(£<5)2mo/nt~<2mo/n)+0(£i) + 0(£2) as t-*co. (3.7)

where £ 1 = r(2mo+<s/s+1)>/n and £ 2 = r(2mo/' l ) (1+' ' ). It follows that £ , or E2 will be
dominant in second order asymptotics depending as to whether

2moai'
s+ l

or as to whether

mo(2m~ri)j s

m(n-2j) ^s+l'

leading to the inequalities j%j0. In the case jo^j<n/2, (a) holds and, in the case,
0 < 7 < 7o (b) holds.

Finally, if 2m = n, from (3.1) and Theorem I we see that

1 ^ ,2mo/n

giving result (c).

4.1 Estimates in the general case 2m ̂  n

An important element in the theory of Liusternik-Schnirelman as given in [6,
Theorems 10 and 8] is the property previously indicated, (P6). The following lemma
establishes P6 in this case, the last property necessary to apply the theory of [6].

Lemma 3. Under conditions which guarantee properties PI, P2, P3, P4 (the "usuar
hypotheses) together with Hl{b) and Hl(d) each ray from the origin hits Mc in exactly
one point if c is taken to be sufficiently large.
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Proof. Let ueMc. If this property does not hold then there exists a positive t#0,1
such that ueMc. Consider first the possibility that 0 < t < 1. Then we have

so that setting a' = 1 — t2 and st = T, we observe that

V f {f\xu)-u)dx =

Subtracting this from si{u) = c, we see that

]• f'(zu) • zu
d% = 0.

Using property P3, we conclude that

f'{tu)-ZU^ClT
2\\u\\it2-C2T\\u\\mt2

and, hence, that
i

0^iff'Co|H|i.2+ I (ClT|H|i.2-C2|H|».2)dT.
v/1 -a'

Moreover, for c sufficiently large | |u| |mi2^k>0 from (1.10b) and we conclude that

or

However, from (1.10b), we have seen that ||n||m 2->oo as c-»oo, ueMc. It follows that for
c sufficiently large to guarantee

II II . *£i

the preceding inequality yields a contradiction, ruling out the possibility that 0 < t < 1.
The hypotheses that t>\ may be dealt with similarly, setting a' = t2 — 1, with an
argument which leads to the inequality
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once again leading to contradiction for c sufficiently large.

As an immediate consequence of Lemma 3 it follows that ?(u) = (l — (/(u)/c))~1/2u is
an odd, radial, one-one onto map of Mc to Sc, when c is sufficiently large. We

setT(u)=(1 - (f(u)/c)) -"2 = y/tes/oiu) ~1/2, u e Mc.

In fact, a simple modification of the argument given in Proposition 6.4 of [6] serves
to show that i(u) is a homeomorphism (in fact, a diffeomorphism of the Finsler
manifolds involved). In order to see this, renorm V by the equivalent norm |||u|||2 =
{2c)~l$t0(u). This equivalence follows from Hl(b), with y = 0 as we always suppose,
together with J^o(M) = c4||"||m,2> which follows from Hl(d). Then "Lc becomes the unit ball
in norm ||| ||| and one may apply the result cited above.

Theorem 2. Assume that the hypotheses HI, H2 hold together with the usual
hypotheses on f that 2m>n and that c is taken sufficiently large as in Lemma 3. Then we
have v(t)«tn/2mo as t->ca at level Mc.

Proof. Under the conditions we have assumed all the conclusions of Theorem 10 of
[6] are applicable. It follows that

r = sup inf
VeS, UEKCMC

inf (d°®m+ J h'(si(u)r(u))ds)
VeS, f|u)er

inf
VeS, U6K<=EC

= sup inf 38(u) = c,,

by the invariance of the class St under the odd radial homeomorphism f(w). However,
Lemma 2 may be applied to c, and we obtain

https://doi.org/10.1017/S001309150000482X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150000482X
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c,gc,°(l+0(l)) as r-KX>. (4.1)

For an inequality in the reverse direction observe that

c, = sup inf 38(v)
VeS, veV<=Lc

= sup inf \r(u)2^
L ^VeS, ueVcMcL ^ 0

using the invariance of S, under the odd radial homeomorphism f"1,

^sup inf (
VeS, ueV<=Mc\_

using Lemma 1, so that

c,^constsup inf [||"||m,2^(")+ ||«||m,(I + 1)^(
VeS, ueV^Mc

using Hl(b), Hl(c) and ^ 0 ( u ) ^ ( u ) . By (1.10b), ||u||m2^fc for c sufficiently large and
hence we have

c, ^ const sup inf {^(u) •+ @{u){ l + 9)/2}
VeS, ueV<=Mc

^ const (c, + (c,)(1+e)/2)

c(
0 + 0((cJ))(1+<"/2), as t ^oo , (4.2)

using (4.1)
From (4.1) and (4.2) we conclude that
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c,xc° as t->oo. (4.3)

Recall that by (1.4)

By (1.9) we have for | |u | |m 2^k,

and since by (1.10b), ||u||m-2^fe for c sufficiently large

(s/'(u,)-u.)>———k2. (4.5)
2

Also from (1.10b) we have

We conclude from (1.10c) and (4.6) that

1y
i[.c + max \s/(v)\). (4.7)

ll»lli,,2=* /

Now (4.5) and (4.7) imply that there exist positive constants Ax and A2 such that

A^Xu,) • u.) fZ X; i g A2(&(u,) •«,). (4.8)

As in Theorem 1 one shows that

satisfies

(4.9)

Remembering ct=@)(u,), by (1.3), and using (4.3), (4.8) and (4.9) we have established that
A~' «c(° as t-*co at level Mc, for c sufficiently large and the theorem is established.
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4.2 The von Karman equations for buckled plates

In this special case the result given in Theorem 2 may be considerably refined.
It is convenient to introduce the notation

[/. 8] = (fyygx ~ fxygy)x + (fxxgy ~ fxygx)y

The von Karman equations for deformations produced in a two dimensional elastic
plate of shape QczR2 subject to compressive forces of magnitude k on its boundary dil
may be written (see [4, §1.1, 2.5c, 6.2b]) in the form

4>] infi (4.10)

, " ] ; (4.11)

u = ux = uy = 0

on

In (4.10), (4.11) <J> + A represents the Airy stress function and u is the vertical deflection
of the plate from its undeformed state.

H'(a) We assume that the matrix

is Holder continuous of order s, 0 < s g l , and strictly positive definite on Q. The usual
Garding estimate (see [1, Theorem 7.6]) implies that defining

^o(w)=([<D,w],w) for all

we have

with some positive constants c0 and Cj.
More strongly we assume that:

H'(b) ^0(w)^c3||w||2,2, weHl(Q),

with some positive constant c3.
For completeness and as some of our results are formulated in a slightly more precise

form than in [4, 2], we derive a number of basic properties of the von Karman
equations.
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Let us introduce the bilinear form s40(u, v) = (AM, AV) for all u,ve HQ(Q). This bilinear
form is continuous and the associated quadratic functional ^0(") is positive on Hl(Q).

Accordingly, we may define a linear bounded selfadjoint operator U:HI(£1)->HQ(Q)
via the theorem of Lax-Milgram (see [1, Theorem 8.11]) such that

s/0(Uu,u) = (u,v)2i2 for all u,veHl(il).

Since by the Poincare lemma the norm induced by s#0{u) o n H o P is equivalent to
|| 112,2 the inverse U'1 of U exists and is bounded. For all u,v,ij/eHl(Q), we set

Q{u, v,ip) = j {(uyywx - uxywy)il/x + (uxxwy - uxywx)ij/y) dx.
a

Integration by parts shows that Q(u,v,ij/) is a symmetric function of its variables. We
use the notion of negative norm || ||_s on Hl{Q) due to P. Lax (see [13, 111.10, Theorem
1]). Note that /ef/£(fi)* thus by Riesz's theorem exists a JfeHl{Q) such that
(Jf>v)2,2 = (f>v) since (/,v) is a continuous functional on HQ(£2). It follows that the weak
solution of the equations J&0(U, v) = (/, v), feHl(Q.)* and all yeHj(Q) is given by
u = U'iJfeHl(Q). Now we have

([u,u],v)=-Qiu,u,v) for all u,»eHg(Q),

integrating by parts and, hence,

by Holder's inequality,

gconst||M||ii2||t>||2,2

by Sobolev's inequality, for all veHl(Q), ||t>||2i2g 1. Hence,

||[M,«]||_2gconst|H|i.2.

Note that equations (4.10) and (4.11) may be reformulated in the form:

s/0(u,v) = k^0(u,v)-([u,U-1J[_u,uJ],v), for all veH2
0(Q);

4>=~U-1J[_u,ul (4.12)

That the formulation given in (4.12) is, in fact, well defined is a consequence of the
following lemma. Part (a) of the lemma refines the estimate given above. For u e Hl(Q),
we set C(u) = [M,t/-1J[u,u]] and /(a)=i(C(«),«).

Lemma 4. (a) ||l/-1J[u,ii]||2,2^const||H||i(i||u||J(2
2 for all u
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(b) /(u)^const||H||!(2
2||u||J(! for all ueHj^fi).

(c) / (u )^0 for all ueH2
0(Q).

Proof. Recall that Hg(Q)<=//3/2'2(Q) taken together with the Sobolev and interpola-
tion estimates (see the references in Section 2) yield:

| | | | | | | | | | } ( | | | u | | J ( | . (4.13)

Then we have for u, \ji e Hl(Cl),

= — (Q(«, u, \ji'), by integration by parts.

It follows by Holder's inequality and (4.13) that

for all il/eH&Q), | | i^ | | 2 ,2gl. We conclude that

Now set <t> = U~lJ[u,u]. Then / ( U ) = 4 < [ M , 0 ] , £ / " 1 M ) = -iQ.{u,<t>,U~lu). It follows that

by Sobolev's inequality

by part (a).
Finally, note that

>, u) = &<t>, l(uyyux - uxyuy)x + (uxx uy - uxyuy)y),

by symmetry and integration by parts,
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=i||l/-1/2J[«,M]||i2^0, for all ueH&il).

Lemma 5. (a) The operator C(u) is completely continuous from Hl(Q.) to Hl(Q)*
with norm ||C(u)||_2^const||u|$|||u||l(| for all ueHl(Cl).

(b) The functional f(u) is weakly sequentially continuous on Hl(Q).

Proof. Suppose that un-^in Hl{£l). Then supn ||wn||2,2 < oo.
We first show that t/"V[u,u] is completely continuous. One has as before

It is readily seen that

\Q(u, u, r) - Q(un, un, V) | ^ \Q(u, u, 4>') - Q(un, u, W|

+ \Q(un,u,il,')-Q(un,un,4>')\

by the symmetry of Q,

||u||2,2 + sup||un||2t2}||u-un||1,4||i/'||2>2->0 as M-CO,

for all ij/eH&n), \\\l/\\^l, using the fact that Hg(fi) is embedded in HlA(Q)
continuously.

It follows that

||t/-1J[M,M]-C/-1J[un,Mn]||2,2^0 as M-OO. (4.14)

The estimate

https://doi.org/10.1017/S001309150000482X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150000482X


400 V. B. MOSCATELLI AND M. THOMPSON

for all tl/eH&Q), ||^||2 2 g l , implies that C{u)eH&Q)*, with negative norm ||C(u)||_2g
const|JM||l{lj|u||t{l. Also

u) - C(un), +)\ g \Q(4>, <t>,u)\- QM, 0 , «.)|

as above, by symmetry, so that,

It follows that

as n-+oo, by (4.14) and the fact that HQ(Q) is compactly embedded in H14(Q).
Finally since /(u) = |(C(u),u) and C(un)-**C(u) in tfg(fi)* if un^u in #g(O), it is

immediate that f(un)-*f(u).

Observation. Conditions (i), (ii) and (iv) of Theorem 6.6.1 in [4] are obviously
satisfied. If un^u in tfg(fi) and s/'(un)±s/'(u) in H&Q)* then rf'(un).un-+s/'(u).u.
However, by Lemma 5(a) f'{un)-**f'(u) in Hg(fi)* so that Aoun-^Ao(u) in Hg(fi)* and,
hence, jrf(un)->s/0(u). This implies that linin..^ ||un||2 2 = ||u||| 2. It follows that uu-^u in
Ho(Q). By t n e weak sequential continuity of /(«), f(ua)-*f(u) and we conclude that
.s/(wn)->,£/(w) as n->oo. It follows that condition (iii) of Theorem 6.6.1 in [4] is satisfied.

It follows from (4.12) that we may formulate the Liusternik-Schnirelman theory with
respect to the pair of functionals {s4{u),S%0{u)), where JJ/(U) = %sfo{u) + /(u) at level
Mc = {u:ss?(u) = c\.

As before the map ?(U) = T(M)M is an odd radial one-one onto map of Y.c into Mc,
where

is the solution of the equation T2C + T4/(M) = c. In fact, this map is the inverse of
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T: U-

of Mc->£c. It follows that f is a homeomorphism since f is a homeomorphism by the
same argument as given in Section 4.1.

Theorem 2'. For the von Kdrmdn equations for buckled plates under the hypotheses
H' the asymptotic distribution of eigenvalues v(t) is given by

( ) £ s / s + 1 ) ) / 2 ) as t-»oo

at any level Mc, c>0.

Proof. First,
c,° = sup inf

VeS, UEV<Z£

^ sup inf

inf l + ^ p p , w = f(u),

by the invariance of the class S, under the homeomorphism f. Hence,

cfgsup inf ( ( l + K ^ l l u H } ^ ) ^ ^ ) , (4.15)

using Lemma 4(b) and the estimate | | u | | 2 2 ^ const c1/2 for u e S c

Also, we have the inequality

(4.16)

by Lemma 4(b), and ||u||2 2 ^ cons t c l / 2 for M6ZC. From (4.15) and (4.16) we conclude
that

inf
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and by H'(b)

inf (1+K4(c)^o(w)1 / 4)^^) ( 4 1 7 )

= c, + 0((cf)
5/4) as t-»oo. (4.18)

On the other hand, an argument similar to that given in Theorem 2 shows that

ct^c° as t-KX>. (4.19)

From (4.18) and (4.19) we conclude that

c, = c,° + 0((c?)s/*) as r-oo at level MC. (4.20)

Finally, we observe that

One has {stf'(u,)u,) = s/0(ut) + (C(u,)u,) and by Lemma 5(a)

g const ||II,||1{2
2*O(«,)1/4, (4-22)

by the coercivity of s/0(u), the positivity of f(u) and u, e Mc together with H'(b).
From (4.20), (4.21) and (4.22) it follows that

A,"' = 2c?(2c + CXC,0)1/4)- »(1 +0((c(°)1/4)

= c-1c(°+0((cI°)5/4) as t-»oo. (4.23)

Recalling that ^ " ^ c " 1 ^ 0 , we conclude from (4.23) that

Mt f ' t f 5 ' 4 ) as t̂ oo (4.24)

at level Mc. The conclusion of the theorem follows immediately from (4.24) and (3.1)
since

? (g ) ( ) as t̂oo

and

(A,°)-5/4=0(r(1+(s/2(s+1)))), 0 < s g l , as t -oo.
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Observation. The assumption made in Theorem 6.7.16 of [4] where it is shown
An^0, An->oo as n-»oo is equivalent in our notation to (Bou, u)>0, by compactness this
hypothesis implies H'(b). Bifurcation type results are given in [2, 3].
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