FINITE-DIMENSIONAL SIMPLE MODULES OVER QUANTISED WEYL ALGEBRAS

Nobuyuki Fukuda

We classify finite-dimensional simple modules over quantised n-th Weyl algebras $A_{n}^{\bar{q}, \Lambda}$ over an algebraically closed field under a certain condition on the parameters.

0. Introduction

Several authors have proposed various algebras as q-analogues to the Weyl algebras. See, for example, $[\mathbf{3}, \mathbf{1}, \mathbf{5}, \mathbf{2}]$. Since the n-th Weyl algebra is the algebra of differential operators on the n-dimensional affine space, these q-analogues to the n-th Weyl algebara have been regarded as the algebras of quantised differential operators on n-dimensional quantum affine spaces. In this paper we deal with the quantised Weyl algebras $A_{n}^{\bar{q}, \Lambda}$ studied in $[1,5]$ et cetera.

Although the Weyl algebras (over a field of characteristic 0) have no non-zero finitedimensional module, the quantised Weyl algebras have them. The purpose of this paper is to classify finite-dimensional simple modules over the quantised Weyl algebras $A_{n}^{\bar{q}, \Lambda}$ under a certain condition on the parameters. For this end, the classification result for $n=1$ due to Jordan [4] is crucial.

Throughout this paper, let k be an algebraically closed field of arbitrary characteristic.

1. Quantised Weyl algebras $A_{n}^{\bar{q}, \Lambda}$

Definition 1.1: ([1].) Let $\Lambda=\left(\lambda_{i j}\right)$ be an $n \times n$ matrix over the multiplicative group k^{\times}of k such that $\lambda_{i i}=1$ for each i and such that $\lambda_{i j}=\lambda_{j i}^{-1}$ for each i, j, and let $\bar{q}=\left(q_{1}, \cdots, q_{n}\right)$ be an n-tuple of elements of $k \backslash\{0,1\}$. The n-th quantised Weyl algebra $A_{n}^{\bar{q}, \Lambda}$ is by definition the k-algebra generated by $2 n$ elements $y_{1}, \cdots, y_{n}, x_{1}, \cdots, x_{n}$ with relations

$$
x_{i} x_{j}=q_{i} \lambda_{i j} x_{j} x_{i}
$$

[^0]\[

$$
\begin{align*}
y_{i} y_{j} & =\lambda_{i j} y_{j} y_{i}, \\
x_{i} y_{j} & =\lambda_{j i} y_{j} x_{i} \tag{1.2}\\
y_{i} x_{j} & =q_{i}^{-1} \lambda_{j i} x_{j} y_{i}, \\
x_{j} y_{j}-q_{j} y_{j} x_{j} & =1+\sum_{l=1}^{j-1}\left(q_{l}-1\right) y_{l} x_{l}, \\
\left(x_{1} y_{1}-\right. & \left.q_{1} y_{1} x_{1}=1\right),
\end{align*}
$$
\]

where $1 \leqslant i<j \leqslant n$. When $n=1, \Lambda=(1)$ and $\bar{q}=\left(q_{1}\right), A_{1}^{\bar{q}, \Lambda}$ is abbreviated to A_{1}^{q}, where $q=q_{1}$.

For $1 \leqslant i \leqslant n$, let $z_{i}=1+\sum_{j=1}^{i}\left(q_{j}-1\right) y_{j} x_{j}$. These elements of $A_{n}^{\bar{q}, \Lambda}$ are called the Casimir elements, and play an important role in investigating the quantised Weyl algebras. By a direct computation we get the following result (see [5, 2.8]).

Lemma 1.3. The Casimir elements z_{1}, \cdots, z_{n} of $A_{n}^{\bar{q}, \Lambda}$ satisfy the following relations:

$$
z_{j} y_{i}=\left\{\begin{array}{ll}
y_{i} z_{j} & \text { if } j<i, \\
q_{i} y_{i} z_{j} & \text { if } j \geqslant i,
\end{array} \quad z_{j} x_{i}=\left\{\begin{array}{ll}
x_{i} z_{j} & \text { if } j<i, \\
q_{i}^{-1} x_{i} z_{j} & \text { if } j \geqslant i,
\end{array} \quad z_{i} z_{j}=z_{j} z_{i}\right.\right.
$$

for $1 \leqslant i, j \leqslant n$.
For $1 \leqslant i \leqslant n$, let $\mathcal{Y}_{i}=\left\{y_{i}^{j}\right\}_{j \geqslant 1}, \mathcal{X}_{i}=\left\{x_{i}^{j}\right\}_{j \geqslant 1}$ and $\mathcal{Z}_{i}=\left\{z_{i}^{j}\right\}_{j \geqslant 1}$ in $A_{n}^{\bar{q}, \Lambda . ~ N o t e ~ t h a t ~}$ $\mathcal{Y}_{1}, \cdots, \mathcal{Y}_{n}, \mathcal{X}_{1}, \cdots, \mathcal{X}_{n}, \mathcal{Z}_{1}, \cdots, \mathcal{Z}_{n}$ and the product $\mathcal{Z}=\mathcal{Z}_{1} \cdots \mathcal{Z}_{n}$ are Ore sets in $A_{n}^{\bar{q}, \Lambda}$. We denote by $B_{n}^{\bar{q}, \Lambda}$ the localisation of $A_{n}^{\bar{q}, \Lambda}$ at \mathcal{Z}. It is proved in [5, Theorem 3.2] that, if no q_{i} is a root of unity, then $B_{n}^{\bar{q}, \Lambda}$ is simple, so that $B_{n}^{\bar{q}, \Lambda}$ has no non-zero finite-dimensional module, since $B_{n}^{\bar{q}, \Lambda}$ is infinite-dimensional over k.

2. Finite-dimensional simple modules over $A_{n}^{\bar{q}, \Lambda}$

Lemma 2.1. Fix $1 \leqslant i \leqslant n$. Suppose that q_{i} is not a root of unity. Let V be a finite-dimensional $A_{n}^{\bar{q}, \Lambda}$-module. If V is \mathcal{Z}_{j}-torsion-free for some $j \geqslant i$, then the endomorphisms induced by x_{i} and y_{i} on V are nilpotent.

Proof: If x_{i} does not act on V as a nilpotent endomorphism, there is a non-zero eigenvalue $\mu \in k$ for the action of x_{i} on V. Let $v \in V$ be a eigenvector with the eigenvalue μ. It follows from the assumption that $v z_{j}^{m} \neq 0$ for each $m \geqslant 0$. Hence by Lemma 1.3 one sees that x_{i} has infinitely many eigenvalues $\left\{q_{i}^{-m} \mu\right\}_{m \geqslant 0}$ on V, which contradicts the fact that V is of finite dimension. The same argument is valid for y_{i}.

In [4] Jordan classified finite-dimensional simple modules over certain iterated skew polynomial rings, which include the first quantised Weyl algebra A_{1}^{q}. We shall describe the classification result for A_{1}^{q} when q is not a root of unity.

Definition 2.2: [4] Let $q \in k \backslash\{0,1\}, R=A_{1}^{q}$. For $\mu \in k^{\times}$, denote by $C(\mu)$ the right R-module

$$
R /(z R+(y-\mu) R)
$$

If we denote by v the image of 1 via the canonical surjection $R \rightarrow C(\mu)$, one sees that

$$
C(\mu)=k v, \quad v y=\mu v, \quad v x=\frac{1}{\mu(1-q)} v
$$

(In [4] the R-module $C(\mu)$ is denoted by $C(0, \mu)$.)
Proposition 2.3. ([4].) Suppose that q is not a root of unity. Then every finite-dimensional simple module over A_{1}^{q} is isomorphic to $C(\mu)$ for some $\mu \in k^{\times}$.

Next we consider finite-dimensional simple modules over n-th quantised Weyl alge$\operatorname{bras} A_{n}^{\bar{q}, \Lambda}$ for $n \geqslant 2$.

LEMMA 2.4. Suppose that q_{1} is not a root of unity. Let V be a finite-dimensional simple module over $A_{n}^{\bar{q}, \Lambda}$.
(i) Both $x_{1} y_{1}$ and $y_{1} x_{1}$ act on V as the scalar $\left(1-q_{1}\right)^{-1}$,
(ii) $V x_{i} y_{i}=V y_{i} x_{i}=0$ for $2 \leqslant i \leqslant n$.

Proof: Since $A_{1}^{q_{1}}$ is a subalgebra of $A_{n}^{\bar{q}, \Lambda}, V$ contains $C(\mu)$ for some $\mu \in k^{\times}$by Proposition 2.3. Thus there is a non-zero element $v \in V$ such that $v y_{1}=\mu v, v x_{1}=$ $\left(\mu\left(1-q_{1}\right)\right)^{-1} v$. In particular it follows that y_{1} is not nilpotent on V, so that by Lemma 2.1, V is \mathcal{Z}_{j}-torsion, equivalently $V z_{j}=0$ for $j=1, \cdots, n$. By using the relations (1.2), the lemma follows.

Corollary 2.5. If q_{1} is not a root of unity, then there exists no non-zero finite-dimensional module over $B_{n}^{\bar{q}, \Lambda}$.

Proof: Suppose that there is a finite-dimensional non-zero $B_{n}^{\bar{q}, \Lambda}$-module V. Since z_{1} is a unit in $B_{n}^{\bar{q}, \Lambda}, V$ is \mathcal{Z}_{1}-torsion-free, so that x_{1} and y_{1} act nilpotently on V by Lemma 2.1. On the other hand, it follows from Lemma 2.4(i) that V contains a non- \mathcal{X}_{1}-torsion element, which is a contradiction.

From relation (1.2) and Lemma 2.4, we get the following lemma in the same way as the proof of [6, Lemma 4].

Lemma 2.6. Suppose that q_{1} is not a root of unity. Let V be a finite-dimensional simple module over $A_{n}^{\bar{q}, \Lambda}$. Then the endomorphisms on V induced by $x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{n}$ are diagonalisable.

Lemma 2.7. Suppose that q_{1} is not a root of unity. Let V be a finite-dimensional simple module over $A_{n}^{\bar{q}, \Lambda}$. Fix $1 \leqslant i<j \leqslant n$.
(i) If $\lambda_{i j}^{m} \neq 1$ for any positive integer $m \leqslant \operatorname{dim} V$, then $V y_{i}=V x_{i}=0$ or $V y_{j}=0$.
(ii) If $\left(q_{i} \lambda_{i j}\right)^{m} \neq 1$ for any positive integers $m \leqslant \operatorname{dim} V$, then $V y_{i}=V x_{i}=0$ or $V x_{j}=0$.
Proof: Let W be a $A_{n}^{\bar{q}, \Lambda}$-module. For $r \in A_{n}^{\bar{q}, \Lambda}, \mu \in k$, write

$$
W(r ; \mu)=\{w \in W \mid w r=\mu w\}
$$

the eigenspace of r corresponding to the eigenvalue μ. By a direct computation using relations (1.2) it follows that for $m \geqslant 0$

$$
\begin{array}{ll}
W\left(x_{i} ; \mu\right) x_{j}^{m} \subset W\left(x_{i} ;\left(q_{i} \lambda_{i j}\right)^{-m} \mu\right), & W\left(y_{i} ; \mu\right) x_{j}^{m} \subset W\left(y_{i} ;\left(q_{i} \lambda_{i j}\right)^{m} \mu\right) \\
W\left(x_{i} ; \mu\right) y_{j}^{m} \subset W\left(x_{i} ; \lambda_{i j}^{m} \mu\right), & W\left(y_{i} ; \mu\right) y_{j}^{m} \subset W\left(y_{i} ; \lambda_{j i}^{m} \mu\right)
\end{array}
$$

where $i<j$. By taking W to be V in the above, the lemma follows immediately.
Put $R=A_{n}^{\bar{q}, \Lambda}$. For an n-tuple $\mu=\left(\mu_{1}, \cdots, \mu_{n}\right)$ of elements of k with $\mu_{1} \neq 0$, denote by $D(\mu)$ (respectively $D^{\dagger}(\mu)$) the right R-module

$$
\begin{aligned}
& R /\left(\sum_{i=1}^{n}\left(y_{i}-\mu_{i}\right) R+\left(x_{1}-\left(\mu_{1}\left(1-q_{1}\right)\right)^{-1}\right) R+\sum_{i=2}^{n} x_{i} R\right) \\
& \left(\text { respectively } R /\left(\left(y_{1}-\mu_{1}\right) R+\sum_{i=2}^{n} y_{i} R+\sum_{i=1}^{n}\left(x_{i}-\mu_{i}\right) R\right)\right)
\end{aligned}
$$

These modules are of dimension $\leqslant 1$. Clearly $D\left(\mu_{1}, 0, \cdots, 0\right)=D^{\dagger}\left(\mu_{1}, 0, \cdots, 0\right)$ is 1-dimensional. From Lemma 2.4 and Lemma 2.7 we deduce easily the following.

Corollary 2.8. Suppose that q_{1} is not a root of unity. If neither $\lambda_{1 j}$ nor $q_{1} \lambda_{1 j}$ is a root of unity for each $j \geqslant 2$, then every finite-dimensional simple module over $A_{n}^{\bar{q}, \Lambda}$ is isomorphic to $D(\mu, 0, \cdots, 0)$ for some $\mu \in k^{\times}$.

Corollary 2.9. Suppose that q_{1} is not a root of unity. If $\lambda_{i j}=1$ for all i, j, then every finite-dimensional simple module over $A_{n}^{\bar{q}, \Lambda}$ is isomorphic to $D(\mu)$ for some $\mu \in k^{n}$ with $\mu_{1} \neq 0$.

Proof: Since $y_{1}, \cdots, y_{n}, x_{1}$ commute with each other, the endomorphism induced by $y_{1}, \cdots, y_{n}, x_{1}$ on V are simultaneously diagonalisable by Lemma 2.6. Then the result follows easily.

Finally we shall consider the case when $n=2$.
We say that $\mu \in k^{\times}$is a root of unity of order m if m is the least positive integer such that $\mu^{m}=1$.

Put $R=A_{2}^{\bar{q}, \Lambda}, \lambda=\lambda_{12}$. For $\mu, \alpha \in k^{\times}$and a positive integer m, we denote by $E(\mu, m, \alpha)$ (respectively $E^{\dagger}(\mu, m, \alpha)$) the right R-module

$$
\begin{aligned}
& R /\left(\left(y_{1}-\mu\right) R+\left(x_{1}-\left(\mu\left(1-q_{1}\right)\right)^{-1}\right) R+\left(y_{2}^{m}-\alpha\right) R+x_{2} R\right) \\
& \left(\text { respectively } R /\left(\left(y_{1}-\mu\right) R+\left(x_{1}-\left(\mu\left(1-q_{1}\right)\right)^{-1}\right) R+y_{2} R+\left(x_{2}^{m}-\alpha\right) R\right)\right)
\end{aligned}
$$

Note that $E(\mu, 1, \alpha)=D(\mu, \alpha), E^{\dagger}(\mu, 1, \alpha)=D^{\dagger}(\mu, \alpha)$. It is easy to see that $E(\mu, m, \alpha)$ (respectively $E^{\dagger}(\mu, m, \alpha)$) is simple if and only if $\lambda=1$ (respectively $\lambda=q_{1}^{-1}$), $\alpha=0$ or λ (respectively $q_{1} \lambda$) is a root of unity of order m. We remark that $E^{(\dagger)}(\mu, m, 0) \cong$ $E^{(\dagger)}(\mu, 1,0)$ for $m \geqslant 1$. For $\mu, \mu^{\prime}, \alpha, \alpha^{\prime} \in k^{\times}$, if λ (respectively $q_{1} \lambda$) is a root of unity of order $m \geqslant 2$, then the simple R-module $E^{(\dagger)}(\mu, m, \alpha)$ is isomorphic to $E^{(\dagger)}\left(\mu^{\prime}, m, \alpha^{\prime}\right)$ if and only if $\alpha=\alpha^{\prime}$ and $\mu^{\prime}=\lambda^{d} \mu$ (respectively $\mu^{\prime}=\left(q_{1} \lambda\right)^{d} \mu$) for some non-negative integer $d \leqslant m-1$.

Theorem 2.10. Suppose that q_{1} is not a root of unity. Put $\lambda=\lambda_{12}$.
(i) If neither λ nor $q_{1} \lambda$ is a root of unity, then every finite-dimensional simple module over $A_{2}^{\bar{q}, \Lambda}$ is isomorphic to $E(\mu, 1,0)\left(=E^{\dagger}(\mu, 1,0)\right)$ for some $\mu \in$ k^{x}.
(ii) If λ is a root of unity of order m, then every finite-dimensional simple module over $A_{2}^{\bar{q}, \Lambda}$ is isomorphic to either $E(\mu, 1,0)$ for some $\mu \in k^{\times}$or $E(\mu, m, \alpha)$ for some $\mu, \alpha \in k^{\times}$.
(iii) If $q_{1} \lambda$ is a root of unity of order m, then every finite-dimensional simple module over $A_{2}^{\bar{q}, \Lambda}$ is isomorphic to either $E^{\dagger}(\mu, 1,0)$ for some $\mu \in k^{\times}$or $E^{\dagger}(\mu, m, \alpha)$ for some $\mu, \alpha \in k^{\times}$.
Proof:
(i) This is a special case of Corollary 2.8.
(ii) Put $R=A_{2}^{\bar{q}, \Lambda}$. Let V be a finite-dimensional simple R-module. Since $q_{1} \lambda$ is not a root of unity, it follows from Lemma 2.7(ii) that $V x_{2}=0$. Suppose that V is not of the form $E(\mu, 1,0)$. In particular, $V y_{1} \neq 0$ by Lemma 2.5. Thus it suffices to show that y_{2}^{m} acts on V as a non-zero scalar α. Note that V is a simple module over $S=R /\left(x_{i} y_{i}-y_{i} x_{i} \mid 1 \leqslant i \leqslant n\right)$ by Lemma 2.5. From relations (1.2), the image of y_{2}^{m} in S is contained in the centre of S, which shows the above claim.
(iii) Similar to (ii).

Remark 2.11. For arbitrary parameters \bar{q} and Λ, no finite-dimensional module over the quantised Weyl algebra $A_{n}^{\bar{q}, \Lambda}$ is semisimple. For right $A_{n}^{\bar{q}, \Lambda}$-modules V and W, we denote by $\operatorname{Ext}(V, W)$ the group of all equivalence classes of extensions of W by V. This additive group $\operatorname{Ext}(V, W)$ is naturally a k-vector space. One can directly see that, for $\mu \in k^{\times}$

$$
\begin{array}{lc}
\operatorname{dim}_{k} \operatorname{Ext}(C(\mu), C(\mu))=1 & \text { (when } n=1) \\
\operatorname{dim}_{k} \operatorname{Ext}(D(\mu, 0, \cdots, 0), D(\mu, 0, \cdots, 0))=r & (\text { when } n \geqslant 2)
\end{array}
$$

where r is the number of i such that $\lambda_{i 1}=1$ or q_{1}. In the case when $n=1$, moreover, it is easy to see that, for $\mu, \mu^{\prime} \in k^{\times}$such that $\mu^{\prime} \neq \mu$ and $\mu^{\prime} \neq q \mu$,

$$
\operatorname{dim}_{k} \operatorname{Ext}(C(\mu), C(q \mu))=1, \quad \operatorname{dim}_{k} \operatorname{Ext}\left(C(\mu), C\left(\mu^{\prime}\right)\right)=0
$$

References

[1] J. Alev and F. Dumas, 'Sur le corps des fractions de certaines algèbres quantique', J. Algebra 170 (1994), 229-265.
[2] A. Giaquinto and J.J. Zhang, 'Quantum Weyl algebras', J. Algebra 176 (1995), 861-881.
[3] K.R. Goodearl, 'Prime ideals in skew polynomial rings and quantized Weyl algebras', J. Algebra 150 (1992), 324-377.
[4] D.A. Jordan, 'Finite-dimensional simple modules over certain iterated skew polynomial rings', J. Pure Appl. Algebra 98 (1995), 45-55.
[5] D.A. Jordan, 'A simple localization of quantized Weyl algebra', J. Algebra 174 (1995), 267-281.
[6] M. Rosso, 'Finite dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie algebra', Commun. Math. Phys. 117 (1988), 581-593.

Department of Mathematics
Okayama University
Okayama 700
Japan
e-mail: fukuda@math.okayama-u.ac.jp

[^0]: Received 3rd September, 1997
 I would like to thank Professors Y. Hirano, S. Ikehata and A. Nakajima for encouragement and valuable comments.

