FINITE-DIMENSIONAL SIMPLE MODULES OVER QUANTISED WEYL ALGEBRAS

Nobuyuki Fukuda

We classify finite-dimensional simple modules over quantised *n*-th Weyl algebras $A_n^{\overline{q},\Lambda}$ over an algebraically closed field under a certain condition on the parameters.

0. INTRODUCTION

Several authors have proposed various algebras as q-analogues to the Weyl algebras. See, for example, [3, 1, 5, 2]. Since the *n*-th Weyl algebra is the algebra of differential operators on the *n*-dimensional affine space, these q-analogues to the *n*-th Weyl algebras have been regarded as the algebras of quantised differential operators on *n*-dimensional quantum affine spaces. In this paper we deal with the quantised Weyl algebras $A_n^{\bar{q},\Lambda}$ studied in [1, 5] et cetera.

Although the Weyl algebras (over a field of characteristic 0) have no non-zero finitedimensional module, the quantised Weyl algebras have them. The purpose of this paper is to classify finite-dimensional simple modules over the quantised Weyl algebras $A_n^{\bar{q},\Lambda}$ under a certain condition on the parameters. For this end, the classification result for n = 1 due to Jordan [4] is crucial.

Throughout this paper, let k be an algebraically closed field of arbitrary characteristic.

1. QUANTISED WEYL ALGEBRAS $A_n^{\overline{q},\Lambda}$

DEFINITION 1.1: ([1].) Let $\Lambda = (\lambda_{ij})$ be an $n \times n$ matrix over the multiplicative group k^{\times} of k such that $\lambda_{ii} = 1$ for each i and such that $\lambda_{ij} = \lambda_{ji}^{-1}$ for each i, j, and let $\overline{q} = (q_1, \dots, q_n)$ be an n-tuple of elements of $k \setminus \{0, 1\}$. The n-th quantised Weyl algebra $A_n^{\overline{q},\Lambda}$ is by definition the k-algebra generated by 2n elements $y_1, \dots, y_n, x_1, \dots, x_n$ with relations

$$x_i x_j = q_i \lambda_{ij} x_j x_i,$$

Received 3rd September, 1997

I would like to thank Professors Y. Hirano, S. Ikehata and A. Nakajima for encouragement and valuable comments.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/98 \$A2.00+0.00.

(1.2)

$$y_{i}y_{j} = \lambda_{ij}y_{j}y_{i},$$

$$x_{i}y_{j} = \lambda_{ji}y_{j}x_{i},$$

$$y_{i}x_{j} = q_{i}^{-1}\lambda_{ji}x_{j}y_{i},$$

$$x_{j}y_{j} - q_{j}y_{j}x_{j} = 1 + \sum_{l=1}^{j-1} (q_{l} - 1)y_{l}x_{l},$$

$$(x_{1}y_{1} - q_{1}y_{1}x_{1} = 1),$$

where $1 \leq i < j \leq n$. When n = 1, $\Lambda = (1)$ and $\overline{q} = (q_1)$, $A_1^{\overline{q},\Lambda}$ is abbreviated to A_1^q , where $q = q_1$.

For $1 \leq i \leq n$, let $z_i = 1 + \sum_{j=1}^{i} (q_j - 1)y_j x_j$. These elements of $A_n^{\overline{q},\Lambda}$ are called the *Casimir elements*, and play an important role in investigating the quantised Weyl algebras. By a direct computation we get the following result (see [5, 2.8]).

LEMMA 1.3. The Casimir elements z_1, \dots, z_n of $A_n^{\overline{q},\Lambda}$ satisfy the following relations:

$$z_j y_i = \begin{cases} y_i z_j & \text{if } j < i, \\ q_i y_i z_j & \text{if } j \ge i, \end{cases} \qquad z_j x_i = \begin{cases} x_i z_j & \text{if } j < i, \\ q_i^{-1} x_i z_j & \text{if } j \ge i, \end{cases} \qquad z_i z_j = z_j z_i$$

for $1 \leq i, j \leq n$.

For $1 \leq i \leq n$, let $\mathcal{Y}_i = \{y_i^j\}_{j \geq 1}$, $\mathcal{X}_i = \{x_i^j\}_{j \geq 1}$ and $\mathcal{Z}_i = \{z_i^j\}_{j \geq 1}$ in $A_n^{\bar{q},\Lambda}$. Note that $\mathcal{Y}_1, \dots, \mathcal{Y}_n, \mathcal{X}_1, \dots, \mathcal{X}_n, \mathcal{Z}_1, \dots, \mathcal{Z}_n$ and the product $\mathcal{Z} = \mathcal{Z}_1 \cdots \mathcal{Z}_n$ are Ore sets in $A_n^{\bar{q},\Lambda}$. We denote by $B_n^{\bar{q},\Lambda}$ the localisation of $A_n^{\bar{q},\Lambda}$ at \mathcal{Z} . It is proved in [5, Theorem 3.2] that, if no q_i is a root of unity, then $B_n^{\bar{q},\Lambda}$ is simple, so that $B_n^{\bar{q},\Lambda}$ has no non-zero finite-dimensional module, since $B_n^{\bar{q},\Lambda}$ is infinite-dimensional over k.

2. FINITE-DIMENSIONAL SIMPLE MODULES OVER $A_n^{\overline{q},\Lambda}$

LEMMA 2.1. Fix $1 \leq i \leq n$. Suppose that q_i is not a root of unity. Let V be a finite-dimensional $A_n^{\overline{q},\Lambda}$ -module. If V is Z_j -torsion-free for some $j \geq i$, then the endomorphisms induced by x_i and y_i on V are nilpotent.

PROOF: If x_i does not act on V as a nilpotent endomorphism, there is a non-zero eigenvalue $\mu \in k$ for the action of x_i on V. Let $v \in V$ be a eigenvector with the eigenvalue μ . It follows from the assumption that $vz_j^m \neq 0$ for each $m \ge 0$. Hence by Lemma 1.3 one sees that x_i has infinitely many eigenvalues $\{q_i^{-m}\mu\}_{m\ge 0}$ on V, which contradicts the fact that V is of finite dimension. The same argument is valid for y_i .

In [4] Jordan classified finite-dimensional simple modules over certain iterated skew polynomial rings, which include the first quantised Weyl algebra A_1^q . We shall describe the classification result for A_1^q when q is not a root of unity.

[2]

DEFINITION 2.2: [4] Let $q \in k \setminus \{0, 1\}$, $R = A_1^q$. For $\mu \in k^{\times}$, denote by $C(\mu)$ the right *R*-module

$$R/(zR+(y-\mu)R)$$

If we denote by v the image of 1 via the canonical surjection $R \to C(\mu)$, one sees that

$$C(\mu) = kv,$$
 $vy = \mu v,$ $vx = \frac{1}{\mu(1-q)}v.$

(In [4] the *R*-module $C(\mu)$ is denoted by $C(0, \mu)$.)

PROPOSITION 2.3. ([4].) Suppose that q is not a root of unity. Then every finite-dimensional simple module over A_1^q is isomorphic to $C(\mu)$ for some $\mu \in k^{\times}$.

Next we consider finite-dimensional simple modules over *n*-th quantised Weyl algebras $A_n^{\overline{q},\Lambda}$ for $n \ge 2$.

LEMMA 2.4. Suppose that q_1 is not a root of unity. Let V be a finite-dimensional simple module over $A_n^{\bar{q},\Lambda}$.

- (i) Both x_1y_1 and y_1x_1 act on V as the scalar $(1-q_1)^{-1}$,
- (ii) $Vx_iy_i = Vy_ix_i = 0$ for $2 \le i \le n$.

PROOF: Since $A_1^{q_1}$ is a subalgebra of $A_n^{\overline{q},\Lambda}$, V contains $C(\mu)$ for some $\mu \in k^{\times}$ by Proposition 2.3. Thus there is a non-zero element $v \in V$ such that $vy_1 = \mu v$, $vx_1 = (\mu(1-q_1))^{-1}v$. In particular it follows that y_1 is not nilpotent on V, so that by Lemma 2.1, V is \mathcal{Z}_j -torsion, equivalently $Vz_j = 0$ for $j = 1, \dots, n$. By using the relations (1.2), the lemma follows.

COROLLARY 2.5. If q_1 is not a root of unity, then there exists no non-zero finite-dimensional module over $B_n^{\overline{q},\Lambda}$.

PROOF: Suppose that there is a finite-dimensional non-zero $B_n^{\overline{q},\Lambda}$ -module V. Since z_1 is a unit in $B_n^{\overline{q},\Lambda}$, V is \mathcal{Z}_1 -torsion-free, so that x_1 and y_1 act nilpotently on V by Lemma 2.1. On the other hand, it follows from Lemma 2.4(i) that V contains a non- \mathcal{X}_1 -torsion element, which is a contradiction.

From relation (1.2) and Lemma 2.4, we get the following lemma in the same way as the proof of [6, Lemma 4].

LEMMA 2.6. Suppose that q_1 is not a root of unity. Let V be a finite-dimensional simple module over $A_n^{\overline{q},\Lambda}$. Then the endomorphisms on V induced by $x_1, \dots, x_n, y_1, \dots, y_n$ are diagonalisable.

LEMMA 2.7. Suppose that q_1 is not a root of unity. Let V be a finite-dimensional simple module over $A_n^{\tilde{q},\Lambda}$. Fix $1 \leq i < j \leq n$.

(i) If $\lambda_{ij}^m \neq 1$ for any positive integer $m \leq \dim V$, then $Vy_i = Vx_i = 0$ or $Vy_j = 0$.

N. Fukuda

(ii) If $(q_i \lambda_{ij})^m \neq 1$ for any positive integers $m \leq \dim V$, then $Vy_i = Vx_i = 0$ or $Vx_i = 0$.

[4]

PROOF: Let W be a $A_n^{\overline{q},\Lambda}$ -module. For $r \in A_n^{\overline{q},\Lambda}$, $\mu \in k$, write

$$W(r;\mu) = \{w \in W \mid wr = \mu w\},\$$

the eigenspace of r corresponding to the eigenvalue μ . By a direct computation using relations (1.2) it follows that for $m \ge 0$

$$W(x_i;\mu)x_j^m \subset W\left(x_i;(q_i\lambda_{ij})^{-m}\mu\right), \quad W(y_i;\mu)x_j^m \subset W\left(y_i;(q_i\lambda_{ij})^m\mu\right), W(x_i;\mu)y_j^m \subset W\left(x_i;\lambda_{ij}^m\mu\right), \qquad W(y_i;\mu)y_j^m \subset W\left(y_i;\lambda_{ji}^m\mu\right),$$

where i < j. By taking W to be V in the above, the lemma follows immediately.

Put $R = A_n^{\bar{q},\Lambda}$. For an *n*-tuple $\boldsymbol{\mu} = (\mu_1, \dots, \mu_n)$ of elements of k with $\mu_1 \neq 0$, denote by $D(\boldsymbol{\mu})$ (respectively $D^{\dagger}(\boldsymbol{\mu})$) the right R-module

$$\frac{R}{\left(\sum_{i=1}^{n} (y_{i} - \mu_{i})R + (x_{1} - (\mu_{1}(1 - q_{1}))^{-1})R + \sum_{i=2}^{n} x_{i}R\right)}{\left(\text{respectively } R/\left((y_{1} - \mu_{1})R + \sum_{i=2}^{n} y_{i}R + \sum_{i=1}^{n} (x_{i} - \mu_{i})R\right)\right)}$$

These modules are of dimension ≤ 1 . Clearly $D(\mu_1, 0, \dots, 0) = D^{\dagger}(\mu_1, 0, \dots, 0)$ is 1-dimensional. From Lemma 2.4 and Lemma 2.7 we deduce easily the following.

COROLLARY 2.8. Suppose that q_1 is not a root of unity. If neither λ_{1j} nor $q_1\lambda_{1j}$ is a root of unity for each $j \ge 2$, then every finite-dimensional simple module over $A_n^{\overline{q},\Lambda}$ is isomorphic to $D(\mu, 0, \dots, 0)$ for some $\mu \in k^{\times}$.

COROLLARY 2.9. Suppose that q_1 is not a root of unity. If $\lambda_{ij} = 1$ for all i, j, then every finite-dimensional simple module over $A_n^{\overline{q},\Lambda}$ is isomorphic to $D(\mu)$ for some $\mu \in k^n$ with $\mu_1 \neq 0$.

PROOF: Since y_1, \dots, y_n, x_1 commute with each other, the endomorphism induced by y_1, \dots, y_n, x_1 on V are simultaneously diagonalisable by Lemma 2.6. Then the result follows easily.

Finally we shall consider the case when n = 2.

We say that $\mu \in k^{\times}$ is a root of unity of order m if m is the least positive integer such that $\mu^m = 1$.

Put $R = A_2^{\bar{q},\Lambda}$, $\lambda = \lambda_{12}$. For $\mu, \alpha \in k^{\times}$ and a positive integer *m*, we denote by $E(\mu, m, \alpha)$ (respectively $E^{\dagger}(\mu, m, \alpha)$) the right *R*-module

$$R/((y_1 - \mu)R + (x_1 - (\mu(1 - q_1))^{-1})R + (y_2^m - \alpha)R + x_2R))$$

(respectively $R/((y_1 - \mu)R + (x_1 - (\mu(1 - q_1))^{-1})R + y_2R + (x_2^m - \alpha)R)).$

406

Note that $E(\mu, 1, \alpha) = D(\mu, \alpha)$, $E^{\dagger}(\mu, 1, \alpha) = D^{\dagger}(\mu, \alpha)$. It is easy to see that $E(\mu, m, \alpha)$ (respectively $E^{\dagger}(\mu, m, \alpha)$) is simple if and only if $\lambda = 1$ (respectively $\lambda = q_1^{-1}$), $\alpha = 0$ or λ (respectively $q_1\lambda$) is a root of unity of order m. We remark that $E^{(\dagger)}(\mu, m, 0) \cong E^{(\dagger)}(\mu, 1, 0)$ for $m \ge 1$. For $\mu, \mu', \alpha, \alpha' \in k^{\times}$, if λ (respectively $q_1\lambda$) is a root of unity of order $m \ge 2$, then the simple R-module $E^{(\dagger)}(\mu, m, \alpha)$ is isomorphic to $E^{(\dagger)}(\mu', m, \alpha')$ if and only if $\alpha = \alpha'$ and $\mu' = \lambda^d \mu$ (respectively $\mu' = (q_1\lambda)^d \mu$) for some non-negative integer $d \le m - 1$.

THEOREM 2.10. Suppose that q_1 is not a root of unity. Put $\lambda = \lambda_{12}$.

- (i) If neither λ nor $q_1\lambda$ is a root of unity, then every finite-dimensional simple module over $A_2^{\overline{q},\Lambda}$ is isomorphic to $E(\mu, 1, 0) (= E^{\dagger}(\mu, 1, 0))$ for some $\mu \in k^{\times}$.
- (ii) If λ is a root of unity of order m, then every finite-dimensional simple module over A₂^{q̄,Λ} is isomorphic to either E(μ, 1, 0) for some μ ∈ k[×] or E(μ, m, α) for some μ, α ∈ k[×].
- (iii) If q₁λ is a root of unity of order m, then every finite-dimensional simple module over A^{q̄,Λ}/₂ is isomorphic to either E[†](μ, 1, 0) for some μ ∈ k[×] or E[†](μ, m, α) for some μ, α ∈ k[×].

Proof:

- (i) This is a special case of Corollary 2.8.
- (ii) Put R = A₂^{q,Λ}. Let V be a finite-dimensional simple R-module. Since q₁λ is not a root of unity, it follows from Lemma 2.7(ii) that Vx₂ = 0. Suppose that V is not of the form E(μ, 1, 0). In particular, Vy₁ ≠ 0 by Lemma 2.5. Thus it suffices to show that y₂^m acts on V as a non-zero scalar α. Note that V is a simple module over S = R/(x_iy_i y_ix_i | 1 ≤ i ≤ n) by Lemma 2.5. From relations (1.2), the image of y₂^m in S is contained in the centre of S, which shows the above claim.
- (iii) Similar to (ii).

REMARK 2.11. For arbitrary parameters \overline{q} and Λ , no finite-dimensional module over the quantised Weyl algebra $A_n^{\overline{q},\Lambda}$ is semisimple. For right $A_n^{\overline{q},\Lambda}$ -modules V and W, we denote by Ext (V, W) the group of all equivalence classes of extensions of W by V. This additive group Ext (V, W) is naturally a k-vector space. One can directly see that, for $\mu \in k^{\times}$

$$\dim_k \operatorname{Ext} (C(\mu), C(\mu)) = 1 \qquad (\text{when } n = 1),$$

$$\dim_k \operatorname{Ext} (D(\mu, 0, \dots, 0), D(\mu, 0, \dots, 0)) = r \qquad (\text{when } n \ge 2),$$

where r is the number of i such that $\lambda_{i1} = 1$ or q_1 . In the case when n = 1, moreover, it is easy to see that, for $\mu, \mu' \in k^{\times}$ such that $\mu' \neq \mu$ and $\mu' \neq q\mu$,

$$\dim_k \operatorname{Ext} \left(C(\mu), C(q\mu) \right) = 1, \qquad \dim_k \operatorname{Ext} \left(C(\mu), C(\mu') \right) = 0.$$

Π

N. Fukuda

References

- J. Alev and F. Dumas, 'Sur le corps des fractions de certaines algèbres quantique', J. Algebra 170 (1994), 229-265.
- [2] A. Giaquinto and J.J. Zhang, 'Quantum Weyl algebras', J. Algebra 176 (1995), 861-881.
- [3] K.R. Goodearl, 'Prime ideals in skew polynomial rings and quantized Weyl algebras', J. Algebra 150 (1992), 324-377.
- [4] D.A. Jordan, 'Finite-dimensional simple modules over certain iterated skew polynomial rings', J. Pure Appl. Algebra 98 (1995), 45-55.
- [5] D.A. Jordan, 'A simple localization of quantized Weyl algebra', J. Algebra 174 (1995), 267-281.
- [6] M. Rosso, 'Finite dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie algebra', Commun. Math. Phys. 117 (1988), 581-593.

Department of Mathematics Okayama University Okayama 700 Japan e-mail: fukuda@math.okayama-u.ac.jp