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A NOTE ON THE DIOPHANTINE EQUATION
(na)x + (nb)y = (nc)z
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Abstract

Let (a, b, c) be a primitive Pythagorean triple satisfying a2 + b2 = c2. In 1956, Jeśmanowicz conjectured
that for any given positive integer n the only solution of (an)x + (bn)y = (cn)z in positive integers is
x = y = z = 2. In this paper, for the primitive Pythagorean triple (a, b, c) = (4k2 − 1, 4k, 4k2 + 1) with
k = 2s for some positive integer s ≥ 0, we prove the conjecture when n > 1 and certain divisibility
conditions are satisfied.
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1. Introduction

Let (a, b, c) be a primitive Pythagorean triple satisfying a2 + b2 = c2. Apparently, for
any given positive integer n, the Diophantine equation

(na)x + (nb)y = (nc)z (1.1)

has the solution x = y = z = 2. In 1956, Sierpiński [9] showed that (1.1) has no
other solution when n = 1 and (a, b, c) = (3, 4, 5). Jeśmanowicz [4] proved the same
conclusion for n = 1 and (a, b, c) = (5, 12, 13), (7, 24, 25), (9, 40, 41), (11, 60, 61),
and he conjectured that (1.1) has no positive integer solutions for any n other than
(x, y, z) = (2, 2, 2). Since then many special cases of Jeśmanowicz’ conjecture have
been solved for n = 1. In 1959, Lu [6] proved that (1.1) has the only positive
integer solution (x, y, z) = (2, 2, 2) if n = 1 and (a, b, c) = (4k2 − 1, 4k, 4k2 + 1). In
1965, Deḿjanenko [1] extended the results of [9] and [4] by proving that if n = 1
and (a, b, c) = (2k + 1, 2k(k + 1), 2k(k + 1) + 1), then Jeśmanowicz’ conjecture is true.
In 2013, Miyazaki [8] extended the results of Lu and Deḿjanenko by proving that if
(a, b, c) is a primitive Pythagorean triple such that a ≡ ±1 (mod b) or c ≡ 1 (mod b),
then Jeśmanowicz’ conjecture is true when n = 1. For more results concerning
Jeśmanowicz’ conjecture for n = 1, see [7] and [8]. When n > 1, only a few results
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on this conjecture are known. Let t > 1 be a positive integer, and let P(t) denote the
product of distinct prime factors of t. In 1998, Cohen and the author [3] proved that
if (a, b, c) = (2k + 1, 2k(k + 1), 2k(k + 1) + 1), a is a prime power and either P(b) | n
or P(n) - b, then (1.1) has no positive integer solutions for any n other than (x, y, z) =
(2, 2, 2). Thereby the result of Jeśmanowicz is extended to any positive integer n > 1.
In the case where a is not a prime power, the author [2] verified the conjecture
for (a, b, c) = (2k + 1, 2k(k + 1), 2k(k + 1) + 1) = (15, 112, 113). In 1999, Le [5] gave
certain necessary conditions for (1.1) to have positive integer solutions (x, y, z) with
(x, y, z) , (2, 2, 2). Recently, some special cases of the Pythagorean triple (a, b, c) =
(4k2 − 1, 4k, 4k2 + 1) have been considered. For instance, Yang and Tang [11] proved
that if k = 2, then (1.1) has only the positive integer solution (x, y, z) = (2, 2, 2), and
in [10] they further showed that if c = Fm = 22m

+ 1 and 1 ≤ m ≤ 4, then Jeśmanowicz’
conjecture is true. In this paper we study more cases of the Pythagorean triple
(a, b, c) = (4k2 − 1, 4k, 4k2 + 1), and the following results will be proved.

T 1.1. Let a = 4k2 − 1, b = 4k, c = 4k2 + 1, and k = 2s for some positive integer
s ≥ 0. Suppose that the positive integer n is such that either P(a) | n or P(n) - a. Then
the only solution of (1.1) is x = y = z = 2.

C 1.2 [10, first case of Theorem 2]. Let n be any positive integer. Then the
Diophantine equation (3n)x + (4n)y = (5n)z has no positive integer solution other than
(x, y, z) = (2, 2, 2).

T 1.3. Let a = 4k2 − 1, b = 4k, c = 4k2 + 1, and k = 2s for some positive integer
s ≥ 0. Then for 1 ≤ s ≤ 4, the only solution of (1.1) is x = y = z = 2.

2. Lemmas

L 2.1 [6, Theorem]. Let (a, b, c) = (4k2 − 1, 4k, 4k2 + 1) and n = 1. Then (1.1)
has the only positive integer solution (x, y, z) = (2, 2, 2).

L 2.2 [5, Theorem]. If (x, y, z) is a solution of (1.1) with (x, y, z) , (2, 2, 2), then
one of the following conditions is satisfied:

(1) max{x, y} > min{x, y} > z, P(n) | c and P(n) < P(c);
(2) x > z > y and P(n) | b;
(3) y > z > x and P(n) | a.

L 2.3. Let (a, b, c) be any primitive Pythagorean triple such that the Diophantine
equation ax + by = cz has the only positive integer solution (x, y, z) = (2, 2, 2). Then
(1.1) has no positive integer solution satisfying x > y > z or y > x > z.

P. Let (x, y, z) , (2, 2, 2) be any solution of (1.1). Since the Diophantine equation
ax + by = cz has the only positive integer solution (x, y, z) = (2, 2, 2), we must have
n > 1. By Lemma 2.2, P(n) | c and P(n) < P(c). Suppose n =

∏s
i=1 qβi

i , c =
∏t

i=1 qαi
i ,

1 ≤ s < t. There are two cases to be considered.
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Case 1. x > y > z. In this case, from (1.1),

nx−yax + by =

s∏
i=1

qαiz−βi(y−z)
i ·

t∏
i=s+1

qαiz
i .

If there is an i satisfying αiz − βi(y − z) > 0, then we must have qi | b, which is
impossible since gcd(b, c) = 1. It follows that

nx−yax + by =

t∏
i=s+1

qαiz
i . (2.1)

Since a2 + b2 = c2, we obtain that c < 3a or c < 3b. Otherwise we would have c ≥ 3a,
c ≥ 3b, and then c2 ≥ ( 3

2 (a + b))2 > a2 + b2, which is a contradiction. Therefore,

t∏
i=s+1

qαiz
i ≤

( c
qs

)z

≤

( c
3

)z

< az + bz < nx−yax + by,

which contradicts (2.1).

Case 2. y > x > z. As in the argument for Case 1,

ax + ny−xby =

t∏
i=s+1

qαiz
i . (2.2)

As in Case 1, from c < 3a or c < 3b,

t∏
i=s+1

qαiz
i ≤

( c
qs

)z

≤

( c
3

)z

< az + bz < ax + ny−xyby,

which contradicts (2.2). �

By Lemmas 2.2 and 2.3, we have the following corollary.

C 2.4. Let (a, b, c) be any primitive Pythagorean triple such that the
Diophantine equation ax + by = cz has the only positive integer solution (x, y, z) =
(2, 2, 2). If (x, y, z) is a solution of (1.1) with (x, y, z) , (2, 2, 2), then one of the
following conditions is satisfied:

(1) x > z > y and P(n) | b;
(2) y > z > x and P(n) | a.

For the Pythagorean triple (a, b, c) = (4k2 − 1, 4k, 4k2 + 1), we have the following
result.

C 2.5 [10, Theorem 1]. If 4k2 + 1 is a Fermat prime, then (1.1) has no
positive integer solution satisfying x > y > z or y > x > z.
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3. Proof of the main results

P  T 1.1. We suppose that (1.1) has a solution (x, y, z) , (2, 2, 2), and
will prove that this leads to a contradiction. By Lemma 2.1, n > 1. There are two cases
to the proof.

Case 1. If P(n) - a, we must have x > z > y and P(n) | b by Lemma 2.2 and
Corollary 2.4. From (1.1), nx−yax + by = nz−ycz. Because b = 4k = 2s+2, we may
suppose n = 2β with β ≥ 1. Then 2β(x−y)ax + 2(s+2)y = 2β(z−y)cz. Since x − y > z − y,

2β(x−z)ax + 2(s+2)y−β(z−y) = cz. (3.1)

Clearly (s + 2)y − β(z − y) ≥ 0. Since x > z, from (3.1), (s + 2)y − β(z − y) = 0. We
rewrite (3.1) as

2β(x−z)ax = cz − 1. (3.2)

Since a = 4s+1 − 1 ≡ 0 (mod 3) and c = 4s+1 + 1 ≡ −1 (mod 3), taking (3.2) modulo
3 gives (−1)z − 1 ≡ 0 (mod 3). It follows that z ≡ 0 (mod 2). Writing z = 2z1, we
have 2β(x−z)ax = (cz1 − 1)(cz1 + 1). Let a = a1a2 with gcd(a1, a2) = 1, ax

1 | c
z1 + 1 and

ax
2 | c

z1 − 1. We observe that either a1 ≥ 2s+1 + 1 or a2 ≥ 2s+1 + 1. Suppose this is not
true. Then, from a1 ≤ 2s+1 − 1 and a2 ≤ 2s+1 − 1,

a = a1a2 ≤ (2s+1 − 1)2 < (2s+1 − 1)(2s+1 + 1) = a,

which is a contradiction. If a1 ≥ 2s+1 + 1, then, from a2
1 ≥ (2s+1 + 1)2 = 4s+1 +

1 + 2s+2 > c + 1, we get ax
1 > az

1 = (a2
1)z1 > (c + 1)z1 > cz1 + 1, which is again a

contradiction. If a2 ≥ 2s+1 + 1, we similarly get ax
2 > cz1 + 1 > cz1 − 1, which

contradicts ax
2 | c

z1 − 1.

Case 2. If P(a) | n, we must have x < z < y by Corollary 2.4. From (1.1), ax + ny−xby =

nz−xcz. Since y − x > z − x > 0, we have P(n) | a and nz−x | ax, which implies P(a) =
P(n) and nz−x = ax. It follows that

ny−zby = cz − 1. (3.3)

Since P(a) = P(n), n ≡ a ≡ 0 (mod 3). Taking (3.3) modulo 3 gives (−1)z − 1 ≡ 0
(mod 3), which implies that z is even. Write z = 2z1. Since c ≡ 1 (mod b), cz1 + 1 ≡ 2
(mod b), so that gcd(cz1 + 1, b) = 2. Then, from (3.3), (by/2) | cz1 − 1. But

by

2
>

b2z1

2
=

(c − a)z1 (c + a)z1

2
≥ cz1 + az1 > cz1 − 1,

which is a contradiction. �

P  C 1.2 By Lemma 2.1, n > 1. Since a = 3, we must have P(a) | n or
P(n) - a, which completes the proof of Corollary 1.2 by Theorem 1.1. �

P  T 1.3. Suppose that (1.1) has a solution (x, y, z) , (2, 2, 2). We prove
that this will lead to a contradiction. By Lemma 2.1, n > 1. By Theorem 1.1 and
Corollary 2.4, we may suppose y > z > x, P(n) | a and P(n) < P(a). Then, from (1.1),
ax + ny−xby = nz−xcz. Since y − x > z − x and gcd(a, c) = 1, we must get ax = nz−xax

1
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with gcd(n, a1) = 1, so that
ax

1 + ny−zby = cz. (3.4)

First, we observe that if x ≡ z ≡ 0 (mod 2), then (3.4) cannot hold. To see this,
let x = 2x1 and z = 2z1. From (3.4), ny−zby = (cz1 + ax1

1 )(cz1 − ax1
1 ). As gcd(cz1 + ax1

1 ,
cz1 − ax1

1 ) = 2 implies (by/2) | cz1 + ax1
1 or (by/2) | cz1 − ax1

1 , but on the other hand

by

2
>

b2z1

2
≥ (8k2)z1 = (c + a)z1 ≥ cz1 + az1

1 > cz1 − az1
1 ,

we get a contradiction.
Second, we show that if s = 1, 2, 3 or 4, then we must have x ≡ z ≡ 0 (mod 2).
We consider the cases s = 2 and s = 4 first.
If s = 2, then a = 7 · 9, b = 16, c = 65, so that n = 3α, a1 = 7 or n = 7β, a1 = 9.

From (3.4),
7x + 3α(y−z)16y = 65z (3.5)

or
9x + 7β(y−z)16y = 65z. (3.6)

Considering (3.5) and (3.6) modulo 8, 16, respectively, we have x ≡ 0 (mod 2). Taking
modulo 3, we get z ≡ 0 (mod 2).

If s = 4, then a = 3 · 11 · 31, b = 64, c = 1025, n = 3α, 11β, 31γ, 3α11β, 3α31γ, or
11β31γ, and, accordingly, a1 = 341, 93, 33, 31, 11, or 3. From (3.4),

341x + 3α(y−z)64y = 1025z, (3.7)

93x + 11β(y−z)64y = 1025z, (3.8)

33x + 31γ(y−z)64y = 1025z, (3.9)

31x + 3α(y−z)11β(y−z)64y = 1025z, (3.10)

11x + 3α(y−z)31γ(y−z)64y = 1025z, (3.11)

3x + 11β(y−z)31γ(y−z)64y = 1025z. (3.12)

From (3.7), (3.8), (3.10)–(3.12), taking modulo 8, we have x ≡ 0 (mod 2). Taking
modulo 64, (3.9) gives x ≡ 0 (mod 2). Taking modulo 3, we get z ≡ 0 (mod 2) from
(3.7), (3.9), (3.11) and (3.12). Taking modulo 11, (3.8) and (3.10) give 93x ≡ 31x ≡ 2z

(mod 11), thereby 1 = ( 2
11 )z = (−1)z, where ( ·

·
) is Legendre’s symbol. Hence z ≡ 0

(mod 2).
For the cases s = 1 and s = 3, the proofs are similar to the above proofs of cases

s = 2 and s = 4. Moreover, the cases s = 1 and s = 3 have been solved in [10], so we
omit the details of the proofs. �
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[5] M. H. Le, ‘A note on Jeśmanowicz’ conjecture concerning Pythagorean triples’, Bull. Aust. Math.
Soc. 59 (1999), 477–480.

[6] W. T. Lu, ‘On the Pythagorean numbers 4n2 − 1; 4n and 4n2 + 1’, Acta Sci. Natur. Univ. Szechuan
2 (1959), 39–42 (in Chinese).
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