A NOTE ON THE DIOPHANTINE EQUATION
 $(n a)^{x}+(n b)^{y}=(n c)^{z}$

MOU JIE DENG

(Received 25 March 2013; accepted 11 June 2013; first published online 7 August 2013)

Abstract

Let (a, b, c) be a primitive Pythagorean triple satisfying $a^{2}+b^{2}=c^{2}$. In 1956, Jeśmanowicz conjectured that for any given positive integer n the only solution of $(a n)^{x}+(b n)^{y}=(c n)^{z}$ in positive integers is $x=y=z=2$. In this paper, for the primitive Pythagorean triple $(a, b, c)=\left(4 k^{2}-1,4 k, 4 k^{2}+1\right)$ with $k=2^{s}$ for some positive integer $s \geq 0$, we prove the conjecture when $n>1$ and certain divisibility conditions are satisfied.

2010 Mathematics subject classification: primary 11D61.
Keywords and phrases: Diophantine equations, Pythagorean triples, Jeśmanowicz' conjecture.

1. Introduction

Let (a, b, c) be a primitive Pythagorean triple satisfying $a^{2}+b^{2}=c^{2}$. Apparently, for any given positive integer n, the Diophantine equation

$$
\begin{equation*}
(n a)^{x}+(n b)^{y}=(n c)^{z} \tag{1.1}
\end{equation*}
$$

has the solution $x=y=z=2$. In 1956, Sierpiński [9] showed that (1.1) has no other solution when $n=1$ and $(a, b, c)=(3,4,5)$. Jeśmanowicz [4] proved the same conclusion for $n=1$ and $(a, b, c)=(5,12,13),(7,24,25),(9,40,41),(11,60,61)$, and he conjectured that (1.1) has no positive integer solutions for any n other than $(x, y, z)=(2,2,2)$. Since then many special cases of Jeśmanowicz' conjecture have been solved for $n=1$. In 1959, Lu [6] proved that (1.1) has the only positive integer solution $(x, y, z)=(2,2,2)$ if $n=1$ and $(a, b, c)=\left(4 k^{2}-1,4 k, 4 k^{2}+1\right)$. In 1965, Deḿjanenko [1] extended the results of [9] and [4] by proving that if $n=1$ and $(a, b, c)=(2 k+1,2 k(k+1), 2 k(k+1)+1)$, then Jeśmanowicz' conjecture is true. In 2013, Miyazaki [8] extended the results of Lu and Deḿjanenko by proving that if (a, b, c) is a primitive Pythagorean triple such that $a \equiv \pm 1(\bmod b)$ or $c \equiv 1(\bmod b)$, then Jeśmanowicz' conjecture is true when $n=1$. For more results concerning Jeśmanowicz' conjecture for $n=1$, see [7] and [8]. When $n>1$, only a few results

[^0]on this conjecture are known. Let $t>1$ be a positive integer, and let $P(t)$ denote the product of distinct prime factors of t. In 1998, Cohen and the author [3] proved that if $(a, b, c)=(2 k+1,2 k(k+1), 2 k(k+1)+1), a$ is a prime power and either $P(b) \mid n$ or $P(n) \nmid b$, then (1.1) has no positive integer solutions for any n other than $(x, y, z)=$ $(2,2,2)$. Thereby the result of Jeśmanowicz is extended to any positive integer $n>1$. In the case where a is not a prime power, the author [2] verified the conjecture for $(a, b, c)=(2 k+1,2 k(k+1), 2 k(k+1)+1)=(15,112,113)$. In 1999, Le [5] gave certain necessary conditions for (1.1) to have positive integer solutions (x, y, z) with $(x, y, z) \neq(2,2,2)$. Recently, some special cases of the Pythagorean triple $(a, b, c)=$ $\left(4 k^{2}-1,4 k, 4 k^{2}+1\right)$ have been considered. For instance, Yang and Tang [11] proved that if $k=2$, then (1.1) has only the positive integer solution $(x, y, z)=(2,2,2)$, and in [10] they further showed that if $c=F_{m}=2^{2^{m}}+1$ and $1 \leq m \leq 4$, then Jeśmanowicz' conjecture is true. In this paper we study more cases of the Pythagorean triple $(a, b, c)=\left(4 k^{2}-1,4 k, 4 k^{2}+1\right)$, and the following results will be proved.

Theorem 1.1. Let $a=4 k^{2}-1, b=4 k, c=4 k^{2}+1$, and $k=2^{s}$ for some positive integer $s \geq 0$. Suppose that the positive integer n is such that either $P(a) \mid n$ or $P(n) \nmid a$. Then the only solution of (1.1) is $x=y=z=2$.

Corollary 1.2 [10, first case of Theorem 2]. Let n be any positive integer. Then the Diophantine equation $(3 n)^{x}+(4 n)^{y}=(5 n)^{z}$ has no positive integer solution other than $(x, y, z)=(2,2,2)$.

Theorem 1.3. Let $a=4 k^{2}-1, b=4 k, c=4 k^{2}+1$, and $k=2^{s}$ for some positive integer $s \geq 0$. Then for $1 \leq s \leq 4$, the only solution of (1.1) is $x=y=z=2$.

2. Lemmas

Lemma 2.1 [6, Theorem]. Let $(a, b, c)=\left(4 k^{2}-1,4 k, 4 k^{2}+1\right)$ and $n=1$. Then (1.1) has the only positive integer solution $(x, y, z)=(2,2,2)$.

Lemma 2.2 [5, Theorem]. If (x, y, z) is a solution of (1.1) with $(x, y, z) \neq(2,2,2)$, then one of the following conditions is satisfied:
(1) $\max \{x, y\}>\min \{x, y\}>z, P(n) \mid c$ and $P(n)<P(c)$;
(2) $x>z>y$ and $P(n) \mid b$;
(3) $y>z>x$ and $P(n) \mid a$.

Lemma 2.3. Let (a, b, c) be any primitive Pythagorean triple such that the Diophantine equation $a^{x}+b^{y}=c^{z}$ has the only positive integer solution $(x, y, z)=(2,2,2)$. Then (1.1) has no positive integer solution satisfying $x>y>z$ or $y>x>z$.

Proof. Let $(x, y, z) \neq(2,2,2)$ be any solution of (1.1). Since the Diophantine equation $a^{x}+b^{y}=c^{z}$ has the only positive integer solution $(x, y, z)=(2,2,2)$, we must have $n>1$. By Lemma 2.2, $P(n) \mid c$ and $P(n)<P(c)$. Suppose $n=\prod_{i=1}^{s} q_{i}^{\beta_{i}}, c=\prod_{i=1}^{t} q_{i}^{\alpha_{i}}$, $1 \leq s<t$. There are two cases to be considered.

Case 1. $x>y>z$. In this case, from (1.1),

$$
n^{x-y} a^{x}+b^{y}=\prod_{i=1}^{s} q_{i}^{\alpha_{i} z-\beta_{i}(y-z)} \cdot \prod_{i=s+1}^{t} q_{i}^{\alpha_{i} z} .
$$

If there is an i satisfying $\alpha_{i} z-\beta_{i}(y-z)>0$, then we must have $q_{i} \mid b$, which is impossible since $\operatorname{gcd}(b, c)=1$. It follows that

$$
\begin{equation*}
n^{x-y} a^{x}+b^{y}=\prod_{i=s+1}^{t} q_{i}^{\alpha_{i} z} \tag{2.1}
\end{equation*}
$$

Since $a^{2}+b^{2}=c^{2}$, we obtain that $c<3 a$ or $c<3 b$. Otherwise we would have $c \geq 3 a$, $c \geq 3 b$, and then $c^{2} \geq\left(\frac{3}{2}(a+b)\right)^{2}>a^{2}+b^{2}$, which is a contradiction. Therefore,

$$
\prod_{i=s+1}^{t} q_{i}^{\alpha_{i} z} \leq\left(\frac{c}{q_{s}}\right)^{z} \leq\left(\frac{c}{3}\right)^{z}<a^{z}+b^{z}<n^{x-y} a^{x}+b^{y},
$$

which contradicts (2.1).
Case 2. $y>x>z$. As in the argument for Case 1,

$$
\begin{equation*}
a^{x}+n^{y-x} b^{y}=\prod_{i=s+1}^{t} q_{i}^{\alpha_{i} z} \tag{2.2}
\end{equation*}
$$

As in Case 1, from $c<3 a$ or $c<3 b$,

$$
\prod_{i=s+1}^{t} q_{i}^{\alpha_{i} z} \leq\left(\frac{c}{q_{s}}\right)^{z} \leq\left(\frac{c}{3}\right)^{z}<a^{z}+b^{z}<a^{x}+n^{y-x y} b^{y}
$$

which contradicts (2.2).
By Lemmas 2.2 and 2.3, we have the following corollary.
Corollary 2.4. Let (a, b, c) be any primitive Pythagorean triple such that the Diophantine equation $a^{x}+b^{y}=c^{z}$ has the only positive integer solution $(x, y, z)=$ $(2,2,2)$. If (x, y, z) is a solution of (1.1) with $(x, y, z) \neq(2,2,2)$, then one of the following conditions is satisfied:
(1) $x>z>y$ and $P(n) \mid b$;
(2) $y>z>x$ and $P(n) \mid a$.

For the Pythagorean triple $(a, b, c)=\left(4 k^{2}-1,4 k, 4 k^{2}+1\right)$, we have the following result.
Corollary 2.5 [10, Theorem 1]. If $4 k^{2}+1$ is a Fermat prime, then (1.1) has no positive integer solution satisfying $x>y>z$ or $y>x>z$.

3. Proof of the main results

Proof of Theorem 1.1. We suppose that (1.1) has a solution $(x, y, z) \neq(2,2,2)$, and will prove that this leads to a contradiction. By Lemma 2.1, $n>1$. There are two cases to the proof.
Case 1. If $P(n) \nmid a$, we must have $x>z>y$ and $P(n) \mid b$ by Lemma 2.2 and Corollary 2.4. From (1.1), $n^{x-y} a^{x}+b^{y}=n^{z-y} c^{z}$. Because $b=4 k=2^{s+2}$, we may suppose $n=2^{\beta}$ with $\beta \geq 1$. Then $2^{\beta(x-y)} a^{x}+2^{(s+2) y}=2^{\beta(z-y)} c^{z}$. Since $x-y>z-y$,

$$
\begin{equation*}
2^{\beta(x-z)} a^{x}+2^{(s+2) y-\beta(z-y)}=c^{z} . \tag{3.1}
\end{equation*}
$$

Clearly $(s+2) y-\beta(z-y) \geq 0$. Since $x>z$, from (3.1), $(s+2) y-\beta(z-y)=0$. We rewrite (3.1) as

$$
\begin{equation*}
2^{\beta(x-z)} a^{x}=c^{z}-1 . \tag{3.2}
\end{equation*}
$$

Since $a=4^{s+1}-1 \equiv 0(\bmod 3)$ and $c=4^{s+1}+1 \equiv-1(\bmod 3)$, taking (3.2) modulo 3 gives $(-1)^{z}-1 \equiv 0(\bmod 3)$. It follows that $z \equiv 0(\bmod 2)$. Writing $z=2 z_{1}$, we have $2^{\beta(x-z)} a^{x}=\left(c^{z_{1}}-1\right)\left(c^{z_{1}}+1\right)$. Let $a=a_{1} a_{2}$ with $\operatorname{gcd}\left(a_{1}, a_{2}\right)=1, a_{1}^{x} \mid c^{z_{1}}+1$ and $a_{2}^{x} \mid c^{z_{1}}-1$. We observe that either $a_{1} \geq 2^{s+1}+1$ or $a_{2} \geq 2^{s+1}+1$. Suppose this is not true. Then, from $a_{1} \leq 2^{s+1}-1$ and $a_{2} \leq 2^{s+1}-1$,

$$
a=a_{1} a_{2} \leq\left(2^{s+1}-1\right)^{2}<\left(2^{s+1}-1\right)\left(2^{s+1}+1\right)=a
$$

which is a contradiction. If $a_{1} \geq 2^{s+1}+1$, then, from $a_{1}^{2} \geq\left(2^{s+1}+1\right)^{2}=4^{s+1}+$ $1+2^{s+2}>c+1$, we get $a_{1}^{x}>a_{1}^{z}=\left(a_{1}^{2}\right)^{z_{1}}>(c+1)^{z_{1}}>c^{z_{1}}+1$, which is again a contradiction. If $a_{2} \geq 2^{s+1}+1$, we similarly get $a_{2}^{x}>c^{z_{1}}+1>c^{z_{1}}-1$, which contradicts $a_{2}^{x} \mid c^{z_{1}}-1$.
Case 2. If $P(a) \mid n$, we must have $x<z<y$ by Corollary 2.4. From (1.1), $a^{x}+n^{y-x} b^{y}=$ $n^{z-x} c^{z}$. Since $y-x>z-x>0$, we have $P(n) \mid a$ and $n^{z-x} \mid a^{x}$, which implies $P(a)=$ $P(n)$ and $n^{z-x}=a^{x}$. It follows that

$$
\begin{equation*}
n^{y-z} b^{y}=c^{z}-1 \tag{3.3}
\end{equation*}
$$

Since $P(a)=P(n), n \equiv a \equiv 0(\bmod 3)$. Taking (3.3) modulo 3 gives $(-1)^{z}-1 \equiv 0$ $(\bmod 3)$, which implies that z is even. Write $z=2 z_{1}$. Since $c \equiv 1(\bmod b), c^{z_{1}}+1 \equiv 2$ $(\bmod b)$, so that $\operatorname{gcd}\left(c^{z_{1}}+1, b\right)=2$. Then, from (3.3), $\left(b^{y} / 2\right) \mid c^{z_{1}}-1$. But

$$
\frac{b^{y}}{2}>\frac{b^{2 z_{1}}}{2}=\frac{(c-a)^{z_{1}}(c+a)^{z_{1}}}{2} \geq c^{z_{1}}+a^{z_{1}}>c^{z_{1}}-1
$$

which is a contradiction.
Proof of Corollary 1.2 By Lemma 2.1, $n>1$. Since $a=3$, we must have $P(a) \mid n$ or $P(n) \nmid a$, which completes the proof of Corollary 1.2 by Theorem 1.1.

Proof of Theorem 1.3. Suppose that (1.1) has a solution $(x, y, z) \neq(2,2,2)$. We prove that this will lead to a contradiction. By Lemma 2.1, $n>1$. By Theorem 1.1 and Corollary 2.4, we may suppose $y>z>x, P(n) \mid a$ and $P(n)<P(a)$. Then, from (1.1), $a^{x}+n^{y-x} b^{y}=n^{z-x} c^{z}$. Since $y-x>z-x$ and $\operatorname{gcd}(a, c)=1$, we must get $a^{x}=n^{z-x} a_{1}^{x}$
with $\operatorname{gcd}\left(n, a_{1}\right)=1$, so that

$$
\begin{equation*}
a_{1}^{x}+n^{y-z} b^{y}=c^{z} . \tag{3.4}
\end{equation*}
$$

First, we observe that if $x \equiv z \equiv 0(\bmod 2)$, then (3.4) cannot hold. To see this, let $x=2 x_{1}$ and $z=2 z_{1}$. From (3.4), $n^{y-z} b^{y}=\left(c^{z_{1}}+a_{1}^{x_{1}}\right)\left(c^{z_{1}}-a_{1}^{x_{1}}\right)$. As $\operatorname{gcd}\left(c^{z_{1}}+a_{1}^{x_{1}}\right.$, $\left.c^{z_{1}}-a_{1}^{x_{1}}\right)=2$ implies $\left(b^{y} / 2\right) \mid c^{z_{1}}+a_{1}^{x_{1}}$ or $\left(b^{y} / 2\right) \mid c^{z_{1}}-a_{1}^{x_{1}}$, but on the other hand

$$
\frac{b^{y}}{2}>\frac{b^{2 z_{1}}}{2} \geq\left(8 k^{2}\right)^{z_{1}}=(c+a)^{z_{1}} \geq c^{z_{1}}+a_{1}^{z_{1}}>c^{z_{1}}-a_{1}^{z_{1}}
$$

we get a contradiction.
Second, we show that if $s=1,2,3$ or 4 , then we must have $x \equiv z \equiv 0(\bmod 2)$.
We consider the cases $s=2$ and $s=4$ first.
If $s=2$, then $a=7 \cdot 9, b=16, c=65$, so that $n=3^{\alpha}, a_{1}=7$ or $n=7^{\beta}, a_{1}=9$. From (3.4),

$$
\begin{equation*}
7^{x}+3^{\alpha(y-z)} 16^{y}=65^{z} \tag{3.5}
\end{equation*}
$$

or

$$
\begin{equation*}
9^{x}+7^{\beta(y-z)} 16^{y}=65^{z} \tag{3.6}
\end{equation*}
$$

Considering (3.5) and (3.6) modulo 8,16 , respectively, we have $x \equiv 0(\bmod 2)$. Taking modulo 3 , we get $z \equiv 0(\bmod 2)$.

If $s=4$, then $a=3 \cdot 11 \cdot 31, b=64, c=1025, n=3^{\alpha}, 11^{\beta}, 31^{\gamma}, 3^{\alpha} 11^{\beta}, 3^{\alpha} 31^{\gamma}$, or $11^{\beta} 31^{\gamma}$, and, accordingly, $a_{1}=341,93,33,31,11$, or 3 . From (3.4),

$$
\begin{gather*}
341^{x}+3^{\alpha(y-z)} 64^{y}=1025^{z}, \tag{3.7}\\
93^{x}+11^{\beta(y-z)} 64^{y}=1025^{z}, \tag{3.8}\\
33^{x}+31^{\gamma(y-z)} 64^{y}=1025^{z}, \tag{3.9}\\
31^{x}+3^{\alpha(y-z)} 11^{\beta(y-z)} 64^{y}=1025^{z}, \tag{3.10}\\
11^{x}+3^{\alpha(y-z)} 31^{\gamma(y-z)} 64^{y}=1025^{z}, \tag{3.11}\\
3^{x}+11^{\beta(y-z)} 31^{\gamma(y-z)} 64^{y}=1025^{z} . \tag{3.12}
\end{gather*}
$$

From (3.7), (3.8), (3.10)-(3.12), taking modulo 8 , we have $x \equiv 0(\bmod 2)$. Taking modulo 64 , (3.9) gives $x \equiv 0(\bmod 2)$. Taking modulo 3 , we get $z \equiv 0(\bmod 2)$ from (3.7), (3.9), (3.11) and (3.12). Taking modulo 11 , (3.8) and (3.10) give $93^{x} \equiv 31^{x} \equiv 2^{z}$ $(\bmod 11)$, thereby $1=\left(\frac{2}{11}\right)^{z}=(-1)^{z}$, where (\vdots) is Legendre's symbol. Hence $z \equiv 0$ $(\bmod 2)$.

For the cases $s=1$ and $s=3$, the proofs are similar to the above proofs of cases $s=2$ and $s=4$. Moreover, the cases $s=1$ and $s=3$ have been solved in [10], so we omit the details of the proofs.

Acknowledgements

The author would like to thank Professor Huishi Li and the referee for their valuable suggestions which improved the presentation of this paper.

References

[1] V. A. Deḿjanenko, 'On Jeśmanowicz' problem for Pythagorean numbers', Izv. Vyss. Ucebn. Zaved. Mat. 48 (1965), 52-56 (in Russian).
[2] M. J. Deng, 'On the Diophantine equation $(15 n)^{x}+(112 n)^{y}=(113 n)^{z}$, J. Natur. Sci. Heilongjiang University 24 (2007), 617-620 (in Chinese).
[3] M. Deng and G. L. Cohen, 'On the conjecture of Jeśmanowicz concerning Pythagorean triples', Bull. Aust. Math. Soc. 57 (1998), 515-524.
[4] L. Jeśmanowicz, 'Several remarks on Pythagorean numbers', Wiad. Mat. 1 (1955-1956), 196-202 (in Polish).
[5] M. H. Le, 'A note on Jeśmanowicz' conjecture concerning Pythagorean triples', Bull. Aust. Math. Soc. 59 (1999), 477-480.
[6] W. T. Lu, 'On the Pythagorean numbers $4 n^{2}-1 ; 4 n$ and $4 n^{2}+1$ ', Acta Sci. Natur. Univ. Szechuan 2 (1959), 39-42 (in Chinese).
[7] T. Miyazaki, 'On the conjecture of Jeśmanowicz concerning Pythagorean triples', Bull. Aust. Math. Soc. 80 (2009), 413-422.
[8] T. Miyazaki, 'Generalizations of classical results on Jeśmanowicz' conjecture concerning Pythagorean triples', J. Number Theory 133 (2013), 583-595.
[9] W. Sierpiński, 'On the equation $3^{x}+4^{y}=5^{z}$, Wiad. Mat. 1 (1955-1956), 194-195 (in Polish).
[10] M. Tang and Z. J. Yang, 'Jeśmanowicz' conjecture revisited', Bull. Aust. Math. Soc. 88 (2013), 486-491.
[11] Z. J. Yang and M. Tang, 'On the Diophantine equation $(8 n)^{x}+(15 n)^{y}=(17 n)^{z}$, , Bull. Aust. Math. Soc. 86 (2012), 348-352.

MOU JIE DENG, Department of Applied Mathematics, Hainan University, Haikon, Hainan 570228, PR China
e-mail: Moujie_Deng@163.com

[^0]: This work was supported by the Natural Science Foundation of Hainan Province (No. 113002).
 (C) 2013 Australian Mathematical Publishing Association Inc. 0004-9727/2013 \$16.00

