NOTE ON A SUBRING OF $C^*(X)^{(1)}$

BY CHOO ENG-UNG

Throughout, topological spaces are assumed to be completely regular. C(X) (resp. $C^*(X)$) will denote the ring of all (resp. all bounded) continuous real-valued functions. βX will denote the Stone-Cech compactification of X. In [2], Nel and Riorden defined $C^{\neq}(X)$ to be the set of all $f \in C(X)$ such that M(f) is real in the residue class ring C(X)/M for every maximal ideal M in C(X). $C^{\neq}(X)$ is a subalgebra as well as a sublattice of $C^*(X)$. Some equivalent topological and algebraic characterizations of $C^{\neq}(X)$ are given. The main aim of this paper is to prove that X is pseudocompact iff $C^{\neq}(X)=C(X)$ iff $C^{\neq}(X)$ determines the topology of X and is uniformly closed. All notations and background information are referred to [1].

LEMMA. If $\{x_n : n \in N\}$ is a subset of a zero set Z of X such that $\lim_{n\to\infty} f(x_n) = r$ and $r \notin f[Z]$, then $\{x_n : n \in N\}$ contains a C-embedded copy of N.

Proof. Let Z=Z(g) and $h=1/((f-r)^2+g^2)$. Then $h \in C(X)$. Since h is unbounded on $\{x_n: n \in N\}$, hence $\{x_n: n \in N\}$ contains a C-embeddable copy of N [1, 1.20].

The equivalence of (1) and (3) in the following theorem was given in [2].

THEOREM. For a function $f \in C(X)$ the following are equivalent. (1) $f \in C^{\neq}(X)$ (2) $f \in C^{*}(X)$ and $p \in \operatorname{Cl}_{\beta X}[Z(f-f^{\beta}(p))]$ for every $p \in \beta X$. (3) $f \in C^{*}(X)$ and f[D] is finite for every C-embedded copy D of N. (4) $f \in C^{*}(X)$ and f[Z] is closed for every zero set Z of X.

Proof. We show $(1) \rightarrow (2) \rightarrow (3) \rightarrow (4) \rightarrow (1)$.

(1)→(2). Let $f \in C^{\neq}(X)$. Then $f \in C^*(X)$ [1, 5.7]. For any $p \in \beta X$, since $M^P(f)$ is real, hence $f - r \in M^P$ for some $r \in R$. It follows that $p \in \operatorname{Cl}_{\beta X}[Z(f-r)]$ and $f^{\beta}(p) = r$.

(2) \rightarrow (3). Let $p \in \operatorname{Cl}_{\beta X} D$. Then $p \in \operatorname{Cl}_{\beta X} [Z(f-f^{\beta}(p))] \cap \operatorname{Cl}_{\beta X} D$. If $Z(f-f^{\beta}(p)) \cap D = \emptyset$, then $\operatorname{Cl}_{\beta X} Z(f-f^{\beta}(p)) \cap \operatorname{Cl}_{\beta X} D = \emptyset$ [1, 1.18]. Thus $Z(f-f^{\beta}(p)) \cap D \neq \emptyset$ and hence $f^{\beta}(p) \in f[D]$. Hence $f[D] = f^{\beta}[\operatorname{Cl}_{\beta X} D]$ is closed. It follows that f[D] is finite.

(3) \rightarrow (4). Assume that f[Z] is not closed for some zero set Z. Let $r \in Cl_R[f[Z]]-f[Z]$. Choose $x_n \in Z$ $(n \in N)$ such that $\lim_{n\to\infty} f(x_n)=r$. Then, by the

Received by the editors June 6, 1973 and, in revised form, September 17, 1973.

⁽¹⁾ This paper is a part of the author's Ph.D. thesis at the University of British Columbia written under the supervision of J. V. Whittaker.

lemma, $\{x_n : n \in N\}$ contains a C-embedded copy D of N. It is obvious that f[D] is not finite.

(4) \rightarrow (1). Let *M* be any maximal ideal of *C*(*X*). Then $M = M^P$ for some $p \in \beta X$ [1, 7.3]. Assume that $f - f^{\beta}(p) \notin M^P$. Then there exists a zero set *Z* such that $p \in \operatorname{Cl}_{\beta X} Z$ and $Z \cap Z(f - f^{\beta}(p)) = \emptyset$. Since f[Z] is closed, hence $f^{\beta}(p) \in f[Z]$. This is a contradiction. Therefore, $f - f^{\beta}(p) \in M^P$ and hence M(f) is real.

There is an interesting algebraic characterization of $C^{\neq}(X)$ which depends only on the maximal ideals in C(X) and $C^{*}(X)$.

THEOREM. $C^{\neq}(X)$ is the largest subring of $C^*(X)$ satisfying: (1) $C^{\neq}(X)$ contains all the constant functions, and

(2) $M^p \cap C^{\neq}(X) = M^{*p} \cap C^{\neq}(X)$ for every $p \in \beta X$.

Proof. Suppose G is a subring of $C^*(X)$ satisfying conditions (1) and (2). Let $g \in G$. For every $p \in \beta X$, the function $g-g^{\beta}(p) \in M^{*p} \cap G$. By condition (2), $g-g^{\beta}(p) \in M^p \cap G$. Thus, $p \in \operatorname{Cl}_{\beta X}[Z(g-g^{\beta}(p))]$. Therefore, $g \in C^{\neq}(X)$. Hence $G \subseteq C^{\neq}(X)$. It remains to show that $C^{\neq}(X)$ satisfies the condition (2). For every $p \in \beta X$, it is obvious that $M^p \cap C^{\neq}(X) \subseteq M^{*p} \cap C^{\neq}(X)$. Let $f \in M^{*p} \cap C^{\neq}(X)$. Then $f^{\beta}(p)=0$ and $p \in \operatorname{Cl}_{\beta X}[Z(f-f^{\beta}(p))]=\operatorname{Cl}_{\beta X}[Z(f)]$. Hence, $f \in M^p$. Consequently, $M^p \cap C^{\neq}(X)=M^{*p} \cap C^{\neq}(X)$ for every $p \in \beta X$.

We are now ready to prove the main theorem.

THEOREM The following are equivalent.

(1) X is a pseudocompact space.

(2) $C^{\neq}(X) = C(X)$.

(3) $C^{\neq}(X)$ determines the topology of X and $C^{\neq}(X)$ is uniformly closed.

Proof. We show $(1) \rightarrow (2) \rightarrow (3) \rightarrow (1)$.

(1) \rightarrow (2). Since $C(X) = C^*(X)$, hence, $M^p = M^{*p}$ for every $p \in \beta X$.

By previous theorem, it follows that $C^{\neq}(X) = C(X)$.

 $(2) \rightarrow (3)$. It is obvious.

(3) \rightarrow (1). Suppose X is not pseudocompact. Then X has a C-embedded copy $D = \{x_n : n \in N\}$. Let $\{O_n : n \in N\}$ be a countable collection of disjoint open sets where $x_n \in O_n$ for every $n \in N$. For every $n \in N$, there exists $f_n \in C^{\neq}(X)$ such that

(i)
$$f_n(x_n) = 1/2^n$$
.

(ii) $Z(f_n)$ contains $X - O_n$.

and

(iii) $0 \leq f_n \leq 1/2^n$.

Let $g = \sum_{n=1}^{\infty} f_n$. Since $C^{\neq}(X)$ is uniformly closed, hence $g \in C^{\neq}(X)$. But g[D] is not closed. This is a contradiction. Consequently, X is a pseudocompact space.

REMARK. It can be proved that if X is a locally compact space, then $C^{\neq}(X)$ determines the topology of X. It is difficult to find a space X where $C^{\neq}(X)$ does not determine the topology of X.

1975]

SUBRING OF C*(X)

References

 L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, N.Y., 1960.
L. D. Nel and D. Riordan, Note on a Subalgebra of C(X), Cand. Math. Bull. Vol. 15 (4), 1972.

UNIVERSITY OF SCIENCE OF MALAYSIA, PENANG, MALAYSIA