On the complex nonlinear complementary problem

J. Parida and B. Sahoo

The complex nonlinear complementarity problem considered here is the following: find z such that

 $g(z) \in S^*, z \in S,$ Re(g(z), z) = 0,

where S is a polyhedral cone in C^n , S^* the polar cone, and g is a mapping from C^n into itself. We study the extent to which the existence of a $z \in S$ with $g(z) \in S^*$ (feasible point) implies the existence of a solution to the nonlinear complementarity problem, and extend, to nonlinear mappings, known results in the linear complementarity problem on positive semidefinite matrices.

1. Introduction

Given $g: \mathcal{C}^n \to \mathcal{C}^n$, the nonlinear complementarity problem consists of finding a z such that

(1.1)
$$g(z) \in S^*, z \in S,$$

Re $(g(z), z) = 0,$

where S is a polyhedral cone in $\operatorname{\mathcal{C}}^{\operatorname{\mathcal{N}}}$ and S^{\star} the polar cone of S .

Problems of the form (1.1), where g(z) is the affine transformation Mz + q, have already appeared in the literature. McCallum [4] showed that

Received 12 November 1975.

when $M \in C^{n \times n}$ is positive semi-definite, S and S^* are sectors in complex space, and the constraints are feasible; then a solution exists to the corresponding linear complementarity problem. Mond [5] extended this result to the more general complex linear complementarity problem, where the constraints are restricted to polyhedral cones.

In this paper, we have studied the existence of a solution to (1.1) under feasibility assumptions. Theorems analogous to those proved by McCallum [4] and Mond [5] in the complex linear case, and Moré [6] and Cottle [2] in the real case are obtained by considering monotone functions. These mappings are nonlinear versions of positive semi-definite matrices.

2. Notations and preliminaries

Denote by $C^n [R^n]$ *n*-dimensional complex [real] space; denote by $C^{m \times n} [R^{m \times n}]$ the vector space of all $m \times n$ complex [real] matrices; denote by $R^n_+ = \left\{ x \in R^n : x_i \ge 0, 1 \le i \le n \right\}$ the non-negative orthant of R^n ; and for any $x, y \in R^n$, $x \ge y$ denotes $x - y \in R^n_+$. If A is a complex matrix or vector, then A^T, \overline{A} , and A^H denote its transpose, complex conjugate, and conjugate transpose. For $x, y \in C^n$, $(x, y) \equiv y^H x$ denotes the inner product of x and y.

A nonempty set $S \subset C^n$ is a polyhedral cone if for some positive integer k and $A \in C^{n \times k}$,

 $S = \{Ax : x \in R_+^k\} .$

The polar of S is the cone S^* defined by

$$S^* = \{y \in C^n : x \in S \Rightarrow \operatorname{Re}(x, y) \ge 0\},\$$

or equivalently by

$$S^* = \{y \in C^n : \operatorname{Re}(A^H y) \ge 0\}$$
.

The interior of S^* , int S^* , is given by

int
$$S^* = \{y \in S^* : \operatorname{Re}(A^H y) > 0\}$$
.

A mapping $g: C^n \to C^n$ is said to be monotone on S if $\operatorname{Re}(g(z^1)-g(z^2), z^1-z^2) \ge 0$ for each $z^1, z^2 \in S$, and strictly monotone if the strict inequality holds whenever $z^1 \neq z^2$.

We shall make use of the following definition of convexity [1] of a complex-valued function with respect to a cone.

A mapping $g : C^n \to C^n$ is concave with respect to the polyhedral cone S if, for all $z^1, z^2 \in C^n$ and for all $\lambda \in [0, 1]$,

$$g(\lambda z^{1}+(1-\lambda)z^{2}) - \lambda g(z^{1}) - (1-\lambda)g(z^{2}) \in S$$
.

Given a mapping $g : C^n \to C^n$, Re $z^H g(z)$ is convex with respect to R_+ if, for all z^1 , $z^2 \in C^n$ and $\lambda \in [0, 1]$, $\lambda \operatorname{Re}(g(z^1), z^1) + (1-\lambda)\operatorname{Re}(g(z^2), z^2)$

- $\operatorname{Re}\left(g\left(\lambda z^{1}+(1-\lambda)z^{2}\right), \lambda z^{1}+(1-\lambda)z^{2}\right) \geq 0$.

3. Solutions of variational inequalities

Hartman and Stampacchia [3] have proved the following result on variational inequalities: if $F : \mathbb{R}^n \to \mathbb{R}^n$ is a continuous mapping on the nonempty, compact, convex set $K \subset \mathbb{R}^n$, then there is an x^0 in K such that

$$(3.1) \qquad \qquad \left(F(x^0), \ x-x^0\right) \ge 0$$

for all $x \in K$. Since C^n can be identified with R^{2n} , a natural extension of this result to complex space can be obtained as follows.

THEOREM 3.1. If $g : C^n \to C^n$ is a continuous mapping on the nonempty, compact, convex set $S \subset C^n$, then there is a z^0 in S with

(3.2)
$$\operatorname{Re}(g(z^{0}), z-z^{0}) \ge 0$$

for all $z \in S$.

A polyhedral cone is a closed, convex set, but not bounded. We shall show that Theorem 3.1 holds for polyhedral cones under a very weak restriction on the growth of the mapping g .

Let S be a polyhedral cone in C^n . Then there is a positive integer k and a matrix $A \in C^{n \times k}$ such that $S = \{Ax : x \in R_+^k\}$. For a constant p > 0, we denote $z(p) = \{Ax : x_i = p, 1 \le i \le k\}$ and for any $z = Ax \in S$, we write $z \le z(p)$ if $||x||_{\infty} \le p$, where $||x||_{\infty} = \max\{|x_i| : 1 \le i \le k\}$.

LEMMA 3.2. Let $y^0 \in C^n$ be given, and assume S is a polyhedral cone in C^n . Then an element $z^0 \in S$ satisfies

(3.3)
$$\operatorname{Re}(y^0, z-z^0) \ge 0$$

for all $z \in S$ provided there is a vector $z(p) > z^0$ in S such that (3.3) holds for all

$$z \in S_p = \{z \in S : z \leq z(p)\}.$$

Proof. Let $z \in S$, and write $u = \lambda z + (1-\lambda)z^0$ for $0 < \lambda < 1$. Since S is a polyhedral cone, $u \in S$, and also it follows that there exist $A \in C^{n \times k}$ and $x, x^0 \in R_+^k$ such that z = Ax and $z^0 = Ax^0$. Then $u \in S_p$ if $\|\lambda x + (1-\lambda)x^0\|_{\infty} \le p$. Since $\|x^0\|_{\infty} < p$, we can choose λ

sufficiently small so that u lies in S_p . Then

$$0 \leq \operatorname{Re}(y^{0}, u-z^{0}) = \lambda \operatorname{Re}(y^{0}, z-z^{0})$$
,

and consequently, z^0 satisfies (3.3) for all $z \in S$.

THEOREM 3.3. Let $g: C^n \to C^n$ be a continuous mapping on the polyhedral cone S. If there are vectors z(p), $u \in S$, with z(p) > u such that $\operatorname{Re}(g(z), z-u) \ge 0$ for all z = z(p) in S, then there is a $z^0 \le z(p)$ in S with

for all $z \in S$.

Proof. Consider the set $S_p = \{z \in S : z \le z(p)\}$. Since S is a

polyhedral cone, we can write $S_p = \{Ax : x \in R_+^k, \|x\|_{\infty} \le p\}$ which is obviously a compact, convex set in C^n . Therefore by Theorem 3.1, there is a $z^0 \in S_p$ satisfying (3.4) for all $z \in S_p$. If $z^0 < z(p)$, then taking $y^0 = g(z^0)$ in Lemma 3.2, we get the desired result. If $z^0 = z(p)$, then by the hypothesis, $\operatorname{Re}(g(z^0), z^0 - u) \ge 0$. Since $\operatorname{Re}(g(z^0), z - z^0) \ge 0$ for all $z \in S_p$, it follows that $\operatorname{Re}(g(z^0), z - u) \ge 0$ for all $z \in S_p$. But u < z(p), and thus by Lemma 3.2, $\operatorname{Re}(g(z^0), z - u) \ge 0$ for all $z \in S$. Also $u \in S_p$, and so $\operatorname{Re}(g(z^0), u - z^0) \ge 0$. Now adding the last two inequalities, we obtain $\operatorname{Re}(g(z^0), z - z^0) \ge 0$ for all $z \in S$.

4. Solvability of the complementarity problem

We now prove a lemma which gives the connection between variational inequalities discussed in Section 3 and the nonlinear complementarity problem (1.1).

LEMMA 4.1. Let S be a polyhedral cone in C^n , and let $g: C^n \rightarrow C^n$ be continuous on S. If there is a $z^0 \in S$ such that (4.1) $\operatorname{Re}(g(z^0), z-z^0) \geq 0$

for all $z \in S$, then

$$g(z^{0}) \in S^{*}$$
 and $\operatorname{Re}(g(z^{0}), z^{0}) = 0$.

Thus z^0 is a solution to (1.1).

Proof. If $\operatorname{Re}(g(z^0), z-z^0) \ge 0$ for all $z \in S$, then $\operatorname{Re}(g(z^0), z) \ge \operatorname{Re}(g(z^0), z^0)$ for all $z \in S$. Since S is a polyhedral cone, $z + z^0 \in S$ for all $z \in S$. Then $\operatorname{Re}(g(z^0), z+z^0) \ge \operatorname{Re}(g(z^0), z^0)$ for all $z \in S$ and consequently, $\operatorname{Re}(g(z^0), z) \ge 0$ for all $z \in S$ and, in particular, $\operatorname{Re}(g(z^0), z^0) \ge 0$. So $g(z^0) \in S^*$. Since $0 \in S$, from (4.1) we get $\operatorname{Re}(g(z^0), z^0) \leq 0$, and hence $\operatorname{Re}(g(z^0), z^0) = 0$.

THEOREM 4.2. Let $g : C^n \to C^n$ be a continuous monotone function on S, a polynedral cone in C^n . If there is a $u \in S$ with $g(u) \in int S^*$, then (1.1) has a solution $z^0 \in S$.

Proof. Since g(z) is monotone on S,

$$\operatorname{Re}(g(z), z-u) \geq \operatorname{Re}(g(u), z-u)$$

If z = Ax, u = Ay, $x, y \in R_+^k$, then $\operatorname{Re}(g(u), z-u) = (x-y)^T \operatorname{Re}(A^H g(u))$.

Since $g(u) \in \text{int } S^*$, $\operatorname{Re}\left(A^H g(u)\right) > 0$. It is then clear that there is a vector z(p) > u in S such that $(x-y)^T \operatorname{Re}\left(A^H g(u)\right) \ge 0$ for all z = z(p) in S. Theorem 3.3 with Lemma 4.1 now gives the result.

REMARKS 4.3. $M \in C^{n \times n}$ is said to be positive semi-definite if Re $z^H Mz \ge 0$ for all $z \in C^n$. If g(z) is defined by g(z) = Mz + q for some matrix M and q in C^n , then g is monotone on S if M is positive semi-definite. Thus Theorem 4.2 is a generalization to nonlinear mappings of the results of McCallum [4, Theorem 4.5.1] and Mond [5, Theorem 5] in the complex linear complementarity problem on positive semidefinite matrices.

Recently, Moré [6] has extended the result of Cottle [2] on linear complementarity problem in real space to nonlinear mappings. If $S = R_+^n$ and $g : R^n \to R^n$ is a continuous mapping on R_+^n , then Theorem 4.2 reduces to the result of Moré [6, Theorem 3.2].

If g is strictly monotone on S, then there is at most one $z^{0} \in S$ which satisfies (1.1). For if z^{0} and w^{0} are two solutions, then $\operatorname{Re}\left(g\left(z^{0}\right)-g\left(w^{0}\right), z^{0}-w^{0}\right) = -\operatorname{Re}\left(g\left(z^{0}\right), w^{0}\right) - \operatorname{Re}\left(g\left(w^{0}\right), z^{0}\right) \leq 0$, and consequently, $z^{0} = w^{0}$.

LEMMA 4.4. Let S be a polyhedral cone in C^n . If $g: C^n \rightarrow C^n$

is a continuous function concave with respect to S* and Re $z^H g(z)$ is convex with respect to R₁, then g(z) is monotone on S.

Proof. Concavity of g(z) with respect to S^* and z^1 , $z^2 \in S$ imply that for $\lambda \in (0, 1)$,

(4.2)
$$\operatorname{Re}\left(g\left(\lambda z^{1}+(1-\lambda)z^{2}\right), \lambda z^{1}+(1-\lambda)z^{2}\right)$$

- $\operatorname{Re}\left(\lambda g\left(z^{1}\right)+(1-\lambda)g\left(z^{2}\right), \lambda z^{1}+(1-\lambda)z^{2}\right) \geq 0$.

Convexity of Re
$$z^{H}g(z)$$
 gives
(4.3) $\lambda \operatorname{Re}(g(z^{1}), z^{1}) + (1-\lambda)\operatorname{Re}(g(z^{2}), z^{2})$
- $\operatorname{Re}(g(\lambda z^{1} + (1-\lambda)z^{2}), \lambda z^{1} + (1-\lambda)z^{2}) \ge 0$.

From (4.2) and (4.3),

$$\lambda(1-\lambda)\operatorname{Re}\left(g(z^{1})-g(z^{2}), z^{1}-z^{2}\right) \geq 0$$
,

and consequently, g(z) is monotone on S .

Now we are able to give a different version of Theorem 4.2.

THEOREM 4.5. Let $g: C^n \to C^n$ be continuous on S and concave with respect to S^* on C^n . Let $\operatorname{Re} z^H g(z)$ be convex with respect to R_+ on C^n . If there is a $u \in S$ with $g(u) \in \operatorname{int} S^*$, then (1.1) has a solution z^0 in S.

REMARKS 4.6. It is proved by the first author [7] that if g, in addition to satisfying the hypotheses of Theorem 4.5, is analytic, then the nonlinear program

(P): minimize Re $z^{H}g(z)$ subject to $g(z) \in S^{*}$, $z \in S$,

is a self-dual problem with zero optimal value. Thus an optimal point of (P) under the said restrictions on the growth of g is a solution to (1.1).

Moreover, any feasible solution to (P) which makes the objective function vanish is necessarily a solution to (1.1). So a critical study of (P) may shed more light on this problem of existence of a solution to (1.1) under feasibility assumptions.

References

- [1] Robert A. Abrams, "Nonlinear programming in complex space: sufficient conditions and duality", J. Math. Anal. Appl. 38 (1972), 619-632.
- [2] Richard W. Cottle, "Note on a fundamental theorem in quadratic programming", J. Soc. Indust. Appl. Math. 12 (1964), 663-665.
- [3] P. Hartman and G. Stampacchia, "On some nonlinear elliptic different differential functional equations", Acta Math. 115 (1966), 271-310.
- [4] Charles J. McCallum, Jr, "Existence theory for the complex linear complementarity problem", J. Math. Anal. Appl. 40 (1972), 738-762.
- [5] Bertram Mond, "On the complex complementarity problem", Bull. Austral. Math. Soc. 9 (1973), 249-257.
- [6] Jorge J. Moré, "Classes of functions and feasibility conditions in nonlinear complementarity problems", Math. Programming 6 (1974), 327-338.
- [7] J. Parida, "Self-duality in complex mathematical programming", Cahiers Centre Études Recherche Opér. (to appear).

Department of Mathematics, Regional Engineering College, Rourkela, Orissa, India.

https://doi.org/10.1017/S0004972700024898 Published online by Cambridge University Press