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Abstract

By applying the theory of exponential dichotomies and contraction mapping, we establish some existence
and uniqueness results for weighted pseudo almost periodic solutions of some differential equations with
piecewise constant arguments. For this purpose, we also describe some basic properties of weighted
pseudo almost periodic sequences.
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1. Introduction

The papers [1, 6, 10] discuss the pseudo almost periodicity, quasi-periodicity and
periodicity of differential equations with piecewise constant arguments,

x′(t) = A(t)x(t) +

r∑
j=0

A j(t)x(bt − jc) + f (t), (1.1)

where A, A j : R→ Rq×q( j = 0, . . . , r), f : R→ Rq and b·c denotes the greatest integer
function.

It is interesting and worthwhile to study (1.1) for the case of weighted pseudo
almost periodicity. The main purpose of this paper is to consider this problem. To
be precise, we establish some existence and uniqueness results for weighted pseudo
almost periodic solutions of (1.1). To facilitate this, we use the concept of weighted
pseudo almost periodic sequence which is introduced in [13]. Moreover, we give
a unique decomposition property for weighted pseudo almost periodic sequences
and present the relationship between weighted pseudo almost periodic functions and
weighted pseudo almost periodic sequences, which is quite different from the almost
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periodic case but similar to the pseudo almost periodic case. We believe these basic
properties will be useful in related studies. Dichotomy theory for difference equations
also plays a central role in this work.

The outline of the paper is as follows. Some notation and preliminary results,
including some basic properties of weighted pseudo almost periodic sequences, are
given in Section 2. Our main result is stated in Section 3.1. Some lemmas on the
corresponding difference equations are given in Section 3.2. Finally, the main result is
proved in Section 3.3.

2. Preliminaries

Throughout this paper, we always denote by | · | the Euclidean norm when the
argument is a vector and the corresponding operator norm when the argument is a
matrix. Let BC(R,Rq) be the space of bounded continuous functions u : R→ Rq;
BC(R,Rq) equipped with the sup norm defined by ‖u‖ = supt∈R |u(t)| is a Banach space.
Furthermore, C(R,Rq) denotes the space of continuous functions from R to Rq.

2.1. Weighted pseudo almost periodic functions. Let U be the collection of
functions (weights) ρ : R→ (0,+∞) which are locally integrable over R. If ρ ∈ U,
we set

µ(T, ρ) :=
∫ T

−T
ρ(t) dt for T > 0.

Define
U∞ :=

{
ρ ∈ U : lim

T→∞
µ(T, ρ) =∞

}
and

UB :=
{
ρ ∈ U∞ : ρ is bounded with inf

t∈R
ρ(t) > 0

}
.

For ρ1, ρ2 ∈ U∞, ρ1 is said to be equivalent to ρ2, denoted by ρ1 ≺ ρ2, if ρ1/ρ2 ∈ UB.
Then ‘≺’ is a binary equivalence relation on U∞ (see [3]). For ρ ∈ U∞, c ∈ R, define
ρc by ρc(t) = ρ(t + c) for t ∈ R. We define

UT := {ρ ∈ U∞ : ρ ≺ ρc for each c ∈ R}.

It is easy to see that UT contains many weights, for example, 1, et,1 + 1/(1 + t2),1 + |t|n

with n ∈ N, and so on.

Definition 2.1 [5]. A set S ⊂ R is said to be relatively dense if there exists L > 0 such
that [a, a + L] ∩ S , ∅ for all a ∈ R. A function f ∈ C(R,Rq) is said to be almost
periodic if the ε-translation set of f ,

T ( f , ε) = {τ ∈ R : | f (t + τ) − f (t)| < ε ∀t ∈ R}, (2.1)

is relatively dense for each ε > 0. Denote by AP(Rq) the set of all such functions.

For ρ ∈ U∞, the weighted ergodic spaces are defined by

PAP0(Rq, ρ) :=
{

f ∈ BC(R,Rq) : lim
T→∞

1
µ(T, ρ)

∫ T

−T
| f (t)|ρ(t) dt = 0

}
.

https://doi.org/10.1017/S000497271500057X Published online by Cambridge University Press

https://doi.org/10.1017/S000497271500057X


240 L.-L. Zhang and H.-X. Li [3]

Definition 2.2 [3]. Let ρ ∈ U∞. A function f ∈ BC(R,Rq) is called weighted pseudo
almost periodic (or ρ-pseudo almost periodic) if it can be expressed as f = f ap + f e,
where f ap ∈ AP(Rq) and f e ∈ PAP0(Rq, ρ). Denote by PAP(Rq, ρ) the set of all such
functions.

The functions f ap and f e in Definition 2.2 are called the almost periodic and
the weighted ergodic perturbation components of f , respectively. Moreover, if
PAP0(Rq, ρ) is translation invariant, then the decomposition f ap + f e of f is unique
(see [8]), and PAP0(Rq, ρ) and PAP(Rq, ρ) are Banach spaces with the norm inherited
from BC(R,Rq) (see [4]).

2.2. Discontinuous weighted pseudo almost periodic function. To deal with the
discontinuity of the function t→ btc, we use the concept of discontinuous weighted
pseudo almost periodic functions. We denote

Cm =

{
f : R→ Rq :

f is continuous on R \ Z and has finite limits
on the left and on the right at any point in Z

}
and

BCm = { f ∈ Cm : f is bounded}.

It is clear that BCm is a Banach space with the sup norm ‖x‖ = supt∈R |x(t)| (see [1]).

Definition 2.3. Let ρ ∈ U∞ and let T ( f , ε) be as in Definition (2.1). Set

F0 =

{
f ∈ BCm : lim

T→∞

1
µ(T, ρ)

∫ T

−T
| f (s)|ρ(s) ds = 0

}
,

F1 = { f ∈ BCm : ∀ε > 0,T ( f , ε) ∩ Z is relatively dense},
F = F 0 + F1.

It is easy to see that

PAP0(Rq, ρ) ⊂ F0, AP(Rq) ⊂ F1 and PAP(Rq, ρ) ⊂ F .

2.3. Weighted pseudo almost periodic sequences.

Definition 2.4 [5]. A sequence x : Z→ Rq is called an almost periodic sequence if the
ε-translation set of x,

T (x, ε) = {τ ∈ Z : |x(n + τ) − x(n)| ≤ ε ∀n ∈ Z},

is a relatively dense set for all ε > 0. τ is called the ε-period for x. Denote the set of
all these sequences x by APS (Rq).

Let Us denote the collection of sequences (weights) % : Z→ (0,+∞). For % ∈ Us

and T ∈ Z+, where Z+ = {n ∈ Z : n ≥ 0}, set

µs(T, %) =

T∑
n=−T

%(n).
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Define
Us∞ :=

{
% ∈ Us : lim

T→∞
µs(T, %) =∞

}
,

and
UsB :=

{
% ∈ Us∞ : % is bounded with inf

n∈Z
%(n) > 0

}
.

For %1, %2 ∈ Us∞, %1 is said to be equivalent to %2, denoted by %1 ≺ %2, if
{%1(n)/%2(n)}n∈Z ∈ UsB. Then it is easy to see that ‘≺’ is a binary equivalence relation
on Us∞. For % ∈ Us∞, k ∈ Z, define %k by %k(n) = %(n + k) for n ∈ Z. We set

UsT = {% ∈ Us∞ : % ≺ %k for each k ∈ Z}.

Definition 2.5 [13].

(i) Let % ∈ Us∞. A sequence x : Z→ Rq is said to be a %-PAP0 sequence if it is
bounded and satisfies

lim
T→∞

1
µs(T, %)

T∑
n=−T

|x(n)|%(n) = 0.

Denote the set of all such sequences x by PAP0S (Rq, %).
(ii) Let % ∈ Us∞. A sequence x : Z→ Rq is said to be a weighted pseudo almost

periodic sequence (or a %-pseudo almost periodic sequence) if x can be written
as a sum x = xap + xe with xap ∈ APS (Rq) and xe ∈ PAP0S (Rq, %). Here, xap and
xe are called the almost periodic component and weighted ergodic perturbation,
respectively, of the sequence x. Denote the set of all such sequences x by
PAPS (Rq, %).

The following two results are given in [13, 14].

Lemma 2.6. Let ρ ∈ UT and set

%(n) =

∫ n+1

n
ρ(t) dt for n ∈ Z. (2.2)

Then % ∈ UsT , and for c ∈ R there exist positive constants C1,C2 such that, for T large
enough,

C1µ(T + c, ρ) ≤ µs(bT c, %) ≤ C2µ(T + c, ρ).

Proposition 2.7. PAP0S (Rq, %) with % ∈ UsT is translation invariant. That is, for
x ∈ PAP0S (Rq, %) and k ∈ Z, we have x(· − k) ∈ PAP0S (Rq, %).

We now present some more propositions on weighted pseudo almost periodic
sequences.

Proposition 2.8. Let g ∈ C(R, Rq), ρ ∈ UT , %(n) be given by (2.2) and x ∈
PAP0S (Rq, %). Suppose that there exist L > 0 and a finite subset Z0 ⊂ Z such that

|g(t)| ≤ L max
k∈Z0

|x(n + k)|, t ∈ [n, n + 1), n ∈ Z.

Then g ∈ PAP0(Rq, ρ).
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Proof. It is easy to see that g is bounded on R. By Lemma 2.6 and Proposition 2.7,

lim
T→∞

1
µ(T, ρ)

∫ T

−T
|g(t)|ρ(t) dt

≤ lim
T→∞

1
µ(T, ρ)

bT c+1∑
n=−bT c−1

∫ n+1

n
|g(t)|ρ(t) dt

≤ lim
T→∞

1
µ(T, ρ)

bT c+1∑
n=−bT c−1

∫ n+1

n
L max

k∈Z0

|x(n + k)|ρ(t) dt

≤ L
∑
k∈Z0

lim
T→∞

1
µ(T, ρ)

bT c+1∑
n=−bT c−1

|x(n + k)|
∫ n+1

n
ρ(t) dt

= L
∑
k∈Z0

lim
T→∞

µs(bT c + 1, %)
µ(T, ρ)

·
1

µs(bT c + 1, %)

bT c+1∑
n=−bT c−1

|x(n + k)| %(n)

= 0,

which means that g ∈ PAP0(Rq, ρ). This completes the proof. �

Proposition 2.9. Let x = xap + xe ∈ PAPS (Rq, %) with xap ∈ APS (Rq), xe ∈ PAP0S
(Rq, %) and % ∈ UsT . Then xap(Z) ⊂ co x(Z).

Proof. Let ρ(t) = %(n) for t ∈ [n, n + 1), n ∈ Z. It is easy to see that ρ ∈ UT and
%(n) =

∫ n+1
n ρ(t) dt for n ∈ Z. Let

f (t) = (x(n + 1) − x(n))(t − n) + x(n),
f ap(t) = (xap(n + 1) − xap(n))(t − n) + xap(n),

f e(t) = (xe(n + 1) − xe(n))(t − n) + xe(n),

for t ∈ [n, n + 1), n ∈ Z. Then f = f ap + f e and f , f ap and f e are continuous with
f (n) = x(n), n ∈ Z, and

| f e(t)| ≤ 2 max{|xe(n)|, |xe(n + 1)|} for t ∈ [n, n + 1), n ∈ Z.

Thus by Proposition 2.8 we have f e ∈ PAP0(Rq, ρ). It is well known that f ap ∈ AP(Rq)
(see, for example, [5]). So f ∈ PAP(Rq, ρ). Following the same lines as in the proof
of [12, Lemma 1.3], we can easily see that f ap(R) ⊂ f (R) = co x(Z) (see also the proof
of [4, Theorem 3.1]). Thus xap(Z) ⊂ co x(Z) since xap(n) = f ap(n) for n ∈ Z. This
completes the proof. �

By the proof of Proposition 2.9, we can also see that x ∈ PAPS (Rq, %) implies
that there exists f ∈ PAP(Rq, ρ) with f (n) = x(n), n ∈ Z. Conversely, we consider the
following question: does f ∈ PAP(Rq, ρ) imply { f (n)}n∈Z ∈ PAPS (Rq, %)?

Here ρ and % are as in Proposition 2.8. It is well known that f ∈ AP(Rq) implies
{ f (n)}n∈Z ∈ APS (Rq). But this is not true for a weighted pseudo almost periodic
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function. For example, let ρ(t) = 1 + t2 and define the function f : R→ R by

f (t) =

e−n2 |t−n| − e−1, t ∈
[
n −

1
n2 , n +

1
n2

]
, n = 2, 3, . . . ,

0 otherwise.

It is easy to verify that ρ ∈ UT , f ∈ PAP0(R, ρ) and

f (n) =

{
1 − e−1, n = 2, 3, . . . ,
0 otherwise.

Clearly, { f (n)}n∈Z is not a %-PAP0 sequence.
However, by [7, Proposition 2.3], if x is a pseudo almost periodic function then

{x(n)}n∈Z is a pseudo almost periodic sequence provided that x is uniformly continuous.
The same conclusion also holds for weighted pseudo almost periodic functions. In fact,
we have the following result.

Proposition 2.10. Let ρ ∈ UT , % be given by (2.2) and x ∈ PAP(Rq, ρ). If x is uniformly
continuous, then {x(n)}n∈Z ∈ PAPS (Rq, %).

Proof. It is well known that {xap(n)}n∈Z ∈ APS (Rq). By the uniform continuity of x(t)
and xap(t), we see that xe(t) is uniformly continuous. Thus given ε > 0, there exists
δ ∈ (0, 1) such that |t1 − t2| < δ implies |xe(t1) − xe(t2)| < ε. Consequently,

1
µs(T, %)

T∑
n=−T

|xe(n)| %(n)

≤
1

µs(T, %)

T∑
n=−T

(1
δ

∫ n+δ

n
(|xe(n) − xe(t)| + |xe(t)|) dt

)
%(n)

≤
1

µs(T, %)

T∑
n=−T

(1
δ

∫ n+δ

n
(ε + |xe(t)|) dt

)
%(n)

≤
1
δ

1
µs(T, %)

T∑
n=−T

∫ n+1

n
|xe(t)| dt %(n) + ε.

As in the similar argument of [13, Lemma 3.2],{∫ n+1

n
|xe(t)| dt

}
n∈Z
∈ PAP0S (R, %),

and so

lim
T→∞

1
µs(T, %)

T∑
n=−T

|xe(n)|%(n) = 0.

That is, {xe(n)}n∈Z ∈ PAP0S (Rq, %) and hence {x(n)}n∈Z ∈ PAPS (Rq, %). The proof is
complete. �
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Proposition 2.11. Let % ∈ UsT . Then

PAPS (Rq, %) = APS (Rq) ⊕ PAP0S (Rq, %).

Proof. If x = yi + zi with yi ∈ APS (Rq), zi ∈ PAP0S (Rq, %), i = 1, 2, then

(y1 − y2) + (z1 − z2) = 0.

It is clear that APS (Rq) and PAP0S (Rq, %) are linear spaces, whence y1 − y2 ∈ APS (Rq)
and z1 − z2 ∈ PAP0S (Rq, %). Hence, by Proposition 2.9 we have y1(n) − y2(n) ∈ {0} for
n ∈ Z. Therefore, y1 = y2 and z1 = z2. This completes the proof. �

We note that, for x ∈ PAPS (Rq, %) with % ∈ UsT , Proposition 2.11 implies that the
decomposition x = xap + xe is unique, where xap ∈ APS (Rq) and xe ∈ PAP0S (Rq, %).

3. The main result

In the sequel, we always assume that f ∈ F , where ρ ∈ UT , and % is given by (2.2).

3.1. Statement of our main result.

Definition 3.1. We say that a function x : R→ Rq is a ρ-pseudo almost periodic
solution of (1.1) if x ∈ PAP(Rq, ρ) and the following conditions are satisfied:

(i) the derivative x′ of x exists on R except possibly at the points t = n, n ∈ Z, where
one-sided derivatives exist;

(ii) x satisfies (1.1) in the intervals (n, n + 1), n ∈ Z.

By the variation constant formula, the solution of (1.1) can be given by

x(t) = X(t)X−1(n)x(n) +

∫ t

n
X(t)X−1(s)

[ r∑
j=0

A j(s)x(n − j) + f (s)
]

ds, (3.1)

for t ∈ (n, n + 1], where X(t) denotes the fundamental matrix associated to the equation

x′(t) = A(t)x(t). (3.2)

Then by the continuity of x(t) we get

x(n + 1) = X(n + 1)X−1(n)x(n) +

∫ n+1

n
X(n + 1)X−1(s)

[ r∑
j=0

A j(s)x(n − j) + f (s)
]

ds,

which can be rewritten as

x(n + 1) =

r∑
j=0

D j(n)x(n − j) + h(n), (3.3)
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where 

D0(n) = X(n + 1)X−1(n) +

∫ n+1

n
X(n + 1)X−1(s)A0(s) ds,

D j(n) =

∫ n+1

n
X(n + 1)X−1(s)A j(s) ds, j = 1, . . . , r,

h(n) =

∫ n+1

n
X(n + 1)X−1(s) f (s) ds.

By putting

z(n) =


x(n)

x(n − 1)
...

x(n − r)

 , H(n) =


h(n)

0
...
0


and

D(n) =



D0(n) D1(n) . . . Dr−1(n) Dr(n)
Iq 0 . . . 0 0
0 Iq . . . 0 0
...

...
. . .

...
...

0 0 . . . Iq 0


,

(3.3) takes the form
z(n + 1) = D(n)z(n) + H(n), (3.4)

and its homogeneous form is

z(n + 1) = D(n)z(n). (3.5)

In the following, we assume that for each n ∈ Z, Dr(n) is invertible. Then for each
n ∈ Z, D(n) is invertible.

The homogeneous equation (3.5) is said to admit an exponential dichotomy on Z if
there exist positive constants K, α and a projection P (P2 = P) such that{

|Z(n)PZ−1(m)| ≤ Ke−α(n−m), n ≥ m,
|Z(n)(I − P)Z−1(m)| ≤ Ke−α(m−n), m ≥ n, (3.6)

where Z(n) is the fundamental matrix solution of (3.5) with Z(0) = I.
We now state the main result in this paper.

Theorem 3.2. Assume that system (3.5) admits an exponential dichotomy on Z with
parameters (P,K, α). Then there exists a unique ρ-pseudo almost periodic solution for
(1.1).
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Remark 3.3. We claim that (3.5) admits an exponential dichotomy on Z provided that

sup
n∈Z

r∑
j=0

|D j(n)| <
1

√
r + 1

. (3.7)

In fact, by (3.7) and a standard calculation (here we omit the details), we can obtain
that

θ =

∣∣∣∣∣ T∏
i=1

D(n − i)
∣∣∣∣∣ < 1 for some T > 1,

and by (3.5) we have

|Z(n)| ≤ θ sup{|Z(m)| : |m − n| ≤ T,m ∈ Z+}, n ≥ T.

Now by [2, Propositions 3.1 and 3.2], (3.5) has an exponential dichotomy on Z since
{D(n)}n∈Z is almost periodic.

3.2. Weighted pseudo almost periodic difference equation.

Lemma 3.4 [9]. Suppose that (3.5) admits an exponential dichotomy on Z with
parameters (P, K, α) and {H(n)}n∈Z is a bounded sequence. Then (3.4) has a unique
solution z(n) bounded on Z. Moreover,

|z(n)| ≤ K(1 + e−α)(1 − e−α)−1 sup
m∈Z
|H(m)|, n ∈ Z.

We now show the weighted pseudo almost periodicity of {H(n)}n∈Z.

Lemma 3.5 [11]. Assume that |A(t)| ≤ M for t ∈ R. Then there exists K0 > 0 such that
the following statements hold:

(i) |X(t)X−1(s)| ≤ K0 for 0 < t − s ≤ 1.
(ii) If τ ∈ T (A, ε), then |X(t + τ)X−1(s + τ) − X(t)X−1(s)| ≤ K0εeM for 0 < t − s ≤ 1,

where X(t) is the fundamental matrix solution of (3.2) with X(0) = I.

By a similar proof to [13, Lemma 3.2], we can easily get the following lemma.

Lemma 3.6. Let f ∈ F0. Then{∫ n+1

n
| f (t)| dt

}
n∈Z
∈ PAP0S (R, %).

Lemma 3.7. {h(n)}n∈Z ∈ PAP(Rq, %).

Proof. Let f = f1 + f0, where f1 ∈ F1, f0 ∈ F0. Let

hap(n) =

∫ n+1

n
X(n + 1)X−1(s) f1(s) ds.
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From [1, Lemma 22], {hap(n)}n∈Z ∈ APS (Rq). By Lemma 3.5(i),

|he(n)| = |h(n) − hap(n)|

=

∣∣∣∣∣∫ n+1

n
X(n + 1)X−1(s) f0(s) ds

∣∣∣∣∣ ≤ K0

∫ n+1

n
| f0(s)| ds.

It follows from Lemma 3.6 that{∫ n+1

n
| f0(s)| ds

}
n∈Z
∈ PAP0S (R, %).

Hence, {he(n)}n∈Z ∈ PAP0S (Rq, %). This completes the proof. �

We note that {H(n)}n∈Z is %-pseudo almost periodic by Lemma 3.7. Moreover, since
{D j(n)}n∈Z, j = 0, . . . , r, are almost periodic sequences by [11, Proposition 9], {D(n)}n∈Z
is almost periodic.

We now establish the weighted pseudo almost periodicity for the difference equation
(3.4).

Lemma 3.8. Suppose that (3.5) admits an exponential dichotomy on Z with parameters
(P,K, α). Then (3.4) has a unique %-pseudo almost periodic solution z(n).

Proof. Let H = Hap + He. By [11, Proposition 11],

z(n + 1) = C(n)z(n) + Hap(n)

has a unique almost periodic solution {zap(n)}n∈Z. Let

ze(n) =
∑

m≤n−1

Z(n)PZ−1(m + 1)He(m) −
∑
m≥n

Z(n)(I − P)Z−1(m + 1)He(m)

for n ∈ Z, where Z(n) is the fundamental matrix solution of (3.5) with Z(0) = I. Then
by (3.6),

|ze(n)| ≤
( ∑

m≤n−1

Ke−α(n−m−1) +
∑
m≥n

Ke−α(m+1−n)
)

sup
n∈Z
|He(n)|.

That is, {ze(n)}n∈Z is bounded. So by Lemma 3.4, ze(n) is the unique bounded solution
of the equation

z(n + 1) = C(n)z(n) + He(n).

Thus, again by Lemma 3.4, z = zap + ze is the unique bounded solution of (3.4)
satisfying

|z(n)| ≤ K(1 + e−α)(1 − e−α)−1 sup
m∈Z
|H(m)|, n ∈ Z.

Now it is sufficient to prove that ze ∈ PAP0S (Rq(r+1), %). From (3.6),

1
µs(T, %)

T∑
n=−T

|ze(n)| %(n)

≤
1

µs(T, %)

T∑
n=−T

( ∑
m≤n−1

Ke−α(n−m−1)|He(m)| +
∑
m≥n

Ke−α(m+1−n)|He(m)|
)
%(n)

, σ1(T ) + σ2(T ),
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where

σ1(T ) =
1

µs(T, %)

T∑
n=−T

∑
m≤n−1

Ke−α(n−m−1)|He(m)| %(n),

σ2(T ) =
1

µs(T, %)

T∑
n=−T

∑
m≥n

Ke−α(m+1−n)|He(m)| %(n).

For T, k ∈ Z+, let

ΦT (k) =
1

µs(T, %)

T∑
n=−T

|He(n − k − 1)| %(n).

From Proposition 2.7,

lim
T→∞

ΦT (k) = 0 and |ΦT (k)| ≤ ‖He‖ for k ∈ Z+. (3.8)

Given ε > 0, it is clear that there exists an integer N > 0 such that
∞∑

k=N+1

e−αk < ε. (3.9)

Then by (3.8), there exists T0 > 0 such that for T > T0,

ΦT (k) <
ε

N + 1
for k ∈ [0,N]. (3.10)

Now by (3.8)–(3.10), for T > T0,

σ1(T ) =
K

µs(T, %)

T∑
n=−T

n−1∑
m=−∞

e−α(n−m−1)|He(m)| %(n)

=
K

µs(T, %)

T∑
n=−T

+∞∑
k=0

e−αk|He(n − k − 1)| %(n)

= K
+∞∑
k=0

e−αk 1
µs(T, %)

T∑
n=−T

|He(n − k − 1)| %(n)

= K
+∞∑
k=0

e−αkΦT (k)

= K
N∑

k=0

e−αkΦT (k) + K
+∞∑

k=N+1

e−αkΦT (k)

≤ K(N + 1)
ε

N + 1
+ K‖He‖ε = K(1 + ‖He‖)ε.

This implies that limT→∞ σ1(T ) = 0. Similarly, we can prove that

lim
T→∞

σ2(T ) = 0.

Therefore ze ∈ PAP0S (Rq(r+1), %), and the proof is complete. �
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3.3. Proof of Theorem 3.2.
Proof. From Lemma 3.8, we know that the Equation (3.3) has a unique %-pseudo
almost periodic solution x(n) satisfying

|x(n)| ≤ c sup
n∈Z
|h(n)| ≤ cK0‖ f ‖, n ∈ Z. (3.11)

For t ∈ (n, n + 1], n ∈ Z, by (3.1), (3.11) and Lemma 3.5,

|x(t)| ≤ |X(t)X−1(n)||x(n)| +
∫ t

n
|X(t)X−1(s)|

( r∑
j=0

|A j(s)||x(n − j)| + | f (s)|
)

ds

≤ K0|x(n)| +
∫ t

n
K0

( r∑
j=0

|A j(s)||x(n − j)| + | f (s)|
)

ds

≤ cK2
0‖ f ‖ + K0

( r∑
j=0

‖A j‖cK0‖ f ‖ + ‖ f ‖
)

= c1‖ f ‖,

where c1 = cK2
0 (1 +

∑r
j=0 ‖A j‖) + K0. That is, x(t) is bounded on R. Let f = f1 + f0,

where f1 ∈ F1, f0 ∈ F0. Let

xap(t) = X(t)X−1(n)xap(n) +

∫ t

n
X(t)X−1(s)

[ r∑
j=0

A j(s)xap(n − j) + f1(s)
]

ds

for t ∈ (n, n + 1], n ∈ Z. Then by a standard method we can prove that xap ∈ AP(Rq)
(see the corresponding part of the proof of [1, Theorem 23]).

Let

xe(t) = x(t) − xap(t)

= X(t)X−1(n)xe(n) +

∫ t

n
X(t)X−1(s)

r∑
j=0

A j(s)xe(n− j) ds +

∫ t

n
X(t)X−1(s) f0(s) ds

, σ1(t) + σ2(t)

where

σ1(t) = X(t)X−1(n)xe(n) +

∫ t

n
X(t)X−1(s)

r∑
j=0

A j(s)xe(n − j) ds,

σ2(t) =

∫ t

n
X(t)X−1(s) f0(s) ds,

for t ∈ (n, n + 1], n ∈ Z. By Lemma 3.5, we have

|σ1(t)| ≤ K0|xe(n)| + K0

r∑
j=0

‖A j‖|xe(n − j)|

≤ K0

(
1 +

r∑
j=0

‖A j‖

)
max
0≤ j≤r

|xe(n − j)|
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and

|σ2(t)| ≤ K0

∫ n+1

n
| f0(s)| ds

for t ∈ (n, n + 1], n ∈ Z. It follows from Proposition 2.8 and Lemma 3.6 that σ1, σ2 ∈

PAP0(Rq, ρ), and consequently xe ∈ PAP0(Rq, ρ). This completes the proof. �
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