SEMIDIRECT PRODUCT COMPACTIFICATIONS

F. DANGELLO AND R. LINDAHL

1. Introduction. K. Deleeuw and I. Glicksberg [4] proved that if S and T are commutative topological semigroups with identity, then the Bochner almost periodic compactification of $S \times T$ is the direct product of the Bochner almost periodic compactifications of S and T. In Section 3 we consider the semidirect product $S \odot T$ of two semitopological semigroups with identity and two unital C^{*}-subalgebras \mathscr{A} and \mathscr{B} of $W(S)$ and $W(T)$ respectively, where $W(S)$ is the weakly almost periodic functions on S. We obtain necessary and sufficient conditions on \mathscr{A} and \mathscr{B} for a semidirect product compactification of $S \odot T$ to exist such that this compactification is a semitopological semigroup and such that this compactification is a topological semigroup. Moreover, we obtain the largest such compactifications. The largest such semitopological semigroup compactification is induced by $W^{\sigma}(S)$ and $W(T)$, where $W^{\sigma}(S)$ is a translation-invariant unital C^{*}-subalgebra of $W(S)$. The largest such topological semigroup compactification is induced by $A^{\sigma}(S)$ and $A(T)$, where $A^{\sigma}(S)$ is a translation-invariant unital C^{*}-subalgebra of $A(S)$, and $A(T)$ is the Bochner almost periodic functions on T. These results are achieved via an internal characterization of the tensor product of two algebras of bounded complex-valued functions on two sets, which we obtain in Section 2.

In Section 4 we obtain sufficient conditions for $A(S \odot T)$ to be the tensor product of $A^{\sigma}(S)$ and $A(T)$ and for $W(S \odot T)$ to be the tensor product of $W^{\sigma}(S)$ and $W(T)$. In these cases it follows that the Bochner and weakly almost periodic compactifications of $S \odot T$ are semidirect product compactifications. We give an example showing that this is not generally valid and in the previous section we give examples where $A^{\sigma}(S)=A(S)$ and $W^{\sigma}(S)=W(S)$.
2. Tensor products of function algebras. For a set Z, let $B(\boldsymbol{Z})$ denote the bounded complex-valued functions on Z, and let \mathscr{D} be a unital C^{*}-subalgebra of $B(Z)$. (We impose the uniform norm on $B(Z)$; that is, $\|f\|_{u}=\sup _{z \in Z}|f(z)|$.) We assume that any such \mathscr{D} contains the constant functions. Let $\Delta(\mathscr{D})$ denote the structure space of \mathscr{D}; that is, $\Delta(\mathscr{D})$ consists of all non-zero multiplicative linear functionals on \mathscr{D},

[^0]the topology being the Gelfand (or weak-*) topology. Then $\Delta(\mathscr{D})$ is a compact Hausdorff space and by the Gelfand-Naimark theorem [18], the Gelfand transform $f \rightarrow \hat{f}$ given by
$$
\hat{f}(\tau)=\tau(f), \quad \tau \in \Delta(\mathscr{D}), \quad f \in \mathscr{D}
$$
is an isometric, conjugate-preserving algebra isomorphism from \mathscr{D} onto $C(\Delta(\mathscr{D}))$. Moreover, $I(Z)$ is dense in $\Delta(\mathscr{D})$, where $I: Z \rightarrow \Delta(\mathscr{D})$ is given by
$$
I(z)(f)=f(z), \quad z \in Z, \quad f \in \mathscr{D} .
$$

We call $\Delta(\mathscr{D})$ the (\mathscr{D}, I)-compactification of Z. The inverse Gelfand transform will be denoted by I^{*}, and following the terminology in [1] and [2], we will refer to I^{*} as the adjoint map of I.

Until further notice our setting will be as follows. Let X and Y be sets. Let \mathscr{A} [resp. \mathscr{B}] be a unital C^{*}-subalgebra of $B(X)$ [resp. $B(Y)$]. Let \bar{X} be the $\left(\mathscr{A}, I_{1}\right)$-compactification of X and \bar{Y} be the ($\left.\mathscr{B}, I_{2}\right)$-compactification of Y. Given h in $B(X \times Y), x$ in X, y in Y, set

$$
{ }^{x} h\left(y^{\prime}\right)=h\left(x, y^{\prime}\right), \quad y^{\prime} \in Y
$$

and

$$
h^{y}\left(x^{\prime}\right)=h\left(x^{\prime}, y\right), \quad x^{\prime} \in X
$$

Let

$$
\begin{aligned}
\mathscr{C}=\{h \in B(X \times Y): & { }^{x} h \in \mathscr{B}, x \in X ; h^{y} \in \mathscr{A}, y \in Y ; \\
& \text { and } \left.\left\{h^{y}: y \in Y\right\} \text { is totally bounded in } \mathscr{A}\right\} .
\end{aligned}
$$

For f in \mathscr{A}, g in \mathscr{B}, set

$$
f \otimes g(x, y)=f(x) g(y),(x, y) \in X \times Y
$$

Let $\mathscr{A} \otimes \mathscr{B}$ denote the unital C^{*}-subalgebra of $B(X \times Y)$ generated by

$$
\{f \otimes g: f \in \mathscr{A}, g \in \mathscr{B}\}
$$

We will prove that $\mathscr{C}=\mathscr{A} \otimes \mathscr{B}$.
Proposition 2.1. \mathscr{C} is a C^{*}-subalgebra of $B(X \times Y)$ containing $\mathscr{A} \otimes \mathscr{B}$.

Proof. It follows directly that \mathscr{C} is a Banach space and is self-adjoint. Moreover, given h_{1} and h_{2} in $\mathscr{C},{ }^{x}\left(h_{1} h_{2}\right)={ }^{x} h_{1}{ }^{x} h_{2}$ is in \mathscr{B} for all x in X and $\left(h_{1} h_{2}\right)^{\nu}=h_{1}{ }^{\nu} h_{2}{ }^{\nu}$ is in \mathscr{A} for all y in Y. Since $\left\{h_{1}{ }^{\nu}: y \in Y\right\}$ and $\left\{\boldsymbol{h}_{\mathbf{2}}{ }^{\boldsymbol{y}}: \boldsymbol{y} \in Y\right\}$ are totally bounded, so is $\left\{\left(h_{1} h_{2}\right)^{y}: y \in Y\right\}$. Hence $h_{1} h_{2}$ is in \mathscr{C}, which proves that \mathscr{C} is a subalgebra of $B(X \times Y)$. Finally, \mathscr{C} contains $\mathscr{A} \otimes \mathscr{B}$ since $f \otimes g$ is in \mathscr{C} for each f in \mathscr{A}, g in \mathscr{B}.

Let $\overline{X \times Y}$ denote the (\mathscr{C}, I)-compactification of $X \times Y$. We will show how to identify $\bar{X} \times \bar{Y}$ with $\overline{X \times Y}$.

The following lemma will be used several times throughout the paper.
Lemma 2.2. Let E be a compact Hausdorff topological space and let \mathscr{T} and \mathscr{T}^{\prime} be two Hausdorff topologies on a set Z such that \mathscr{T}^{\prime} is weaker than \mathscr{T}. Also suppose that D is a dense subset of E and that ψ is a continuous map from E into $\left(Z, \mathscr{T}^{\prime}\right)$. Then ψ is continuous from E into (Z, \mathscr{T}) if and only if $\{\psi(x): x \in D\}$ is conditionally compact in (Z, \mathscr{T}).

Proof. If ψ is continuous from E into (Z, \mathscr{T}), then $\psi(E)$ is compact and hence closed in (Z, \mathscr{T}) since E is compact and \mathscr{T} is Hausdorff. Therefore, $\psi(D)$ has compact closure in (Z, \mathscr{T}).

Now assume that $\psi(D)$ is conditionally compact in (Z, \mathscr{T}). Let x be in E and let $\left(x_{\alpha}\right)_{\alpha}$ be a net in D with $x_{\alpha} \rightarrow x$. We show that $\psi\left(x_{\alpha}\right) \underset{\mathscr{T}}{\rightarrow} \psi(x)$. Suppose $\left(\psi\left(x_{\alpha}\right)\right)_{\alpha}$ does not converge to $\psi(x)$ in (Z, \mathscr{T}). Then there exists a \mathscr{T}-open neighborhood V of $\psi(x)$ and a subnet $\left(x_{\beta}\right)_{\beta}$ of $\left(x_{\alpha}\right)_{\alpha}$ such that $\psi\left(x_{\beta}\right)$ is in $Z \sim V$ for all β (\sim denotes complement). Since $\{\psi(x): x \in D\}$ is conditionally compact in (Z, \mathscr{T}) and $Z \sim V$ is \mathscr{T}-closed, there exists a subnet $\left(x_{\gamma}\right)_{\gamma}$ of $\left(x_{\beta}\right)_{\beta}$ and a z in $Z \sim V$ such that $\psi\left(x_{\gamma}\right) \rightarrow z$. Since ψ is continuous from E into (Z, \mathscr{T}^{\prime}),

$$
\psi\left(x_{\alpha}\right) \underset{\mathscr{T}^{\prime}}{\longrightarrow} \psi(x)
$$

and since \mathscr{T}^{\prime} is weaker than \mathscr{T},

$$
\psi\left(x_{\gamma}\right) \xrightarrow[\mathscr{T}^{\prime}]{ } z
$$

Since \mathscr{T}^{\prime} is Hausdorff and $\left(x_{\gamma}\right)_{\gamma}$ is a subnet of $\left(x_{\alpha}\right)_{\alpha}, z=\psi(x)$. Therefore, $\psi(x)$ is in $Z \sim V$, for a contradiction.

The above argument proves that $\psi(E)$ is contained in the \mathscr{T}-closure of $\psi(D)$, and hence, $\psi(E)$ is conditionally compact in (Z, \mathscr{T}). We can now repeat the above argument with D replaced by E to show that if x is in E and $\left(x_{\alpha}\right)$ is a net in E with $x_{\alpha} \rightarrow x$, then

$$
\psi\left(x_{\alpha}\right) \underset{\mathscr{T}}{\vec{T}} \psi(x)
$$

Hence, ψ is continuous from E into (Z, \mathscr{T}).
Definition 2.3. For h in \mathscr{C}, μ in \bar{Y}, set $h^{\mu}(x)=\mu\left({ }^{x} h\right)$ for all x in X.
Note that $h^{I_{2}(y)}=h^{y}$ for all y in Y and h in \mathscr{C}.
Proposition 2.4. Given h in \mathscr{C}, μ in \bar{Y}, one has that h^{μ} is in \mathscr{A}. Moreover, $\mu \rightarrow h^{\mu}$ is continuous from \bar{Y} into $\left(\mathscr{A},\| \|_{u}\right)$.

Proof. Choose a net $\left\{y_{\alpha}\right\}$ in Y such that $I_{2}\left(y_{\alpha}\right) \underset{w^{*}}{\rightarrow}$. For each x in X,

$$
\begin{aligned}
& h^{y_{\alpha}}(x)=h\left(x, y_{\alpha}\right)={ }^{x} h\left(y_{\alpha}\right)=I_{2}\left(y_{\alpha}\right)\left({ }^{x} h\right) \\
& \vec{\alpha}^{\mu\left({ }^{x} h\right)=h^{\mu}(x) .}
\end{aligned}
$$

Hence $h^{\nu_{\alpha}}$ converges pointwise to h^{μ}. Since $\left\{h^{\nu}: y \in Y\right\}$ is totally bounded, $h^{\nu_{\alpha}} \underset{\| \|_{u}}{\longrightarrow} h^{\mu}$. Thus, h^{μ} is in \mathscr{A}.

Define ψ from \bar{Y} into \mathscr{A} by $\psi(\mu)=h^{\mu}$ for all μ in \bar{Y}. Then ψ is continuous in the topology of pointwise convergence on \mathscr{A} and

$$
\left\{\psi\left(I_{2}(y)\right): y \in Y\right\}=\left\{h^{y}: y \in Y\right\}
$$

is totally bounded. By Lemma $2.2, \psi$ is continuous from \bar{Y} into $\left(\mathscr{A},\|\quad\|_{u}\right)$.
Definition 2.5. For τ in \bar{X}, μ in \bar{Y}, set $\tau \otimes \mu(h)=\tau\left(h^{\mu}\right), h \in \mathscr{C}$.
Let $\phi(x, y)=\left(I_{1}(x), I_{2}(y)\right)$ for all x in X and y in Y, and let $\pi(\tau, \mu)=$ $\tau \otimes \mu$ for all τ in \bar{X} and μ in \bar{Y}.
Theorem 2.6. The map π describes a homeomorphism from $\bar{X} \times \bar{Y}$ onto $\overline{X \times Y}$. Moreover,

$$
I_{1}(x) \otimes I_{2}(y)=I(x, y), \quad(x, y) \in X \times Y
$$

from which the following diagram commutes:

Proof. First note that given $(x, y) \in X \times Y$ and h in \mathscr{C}, one has that

$$
\begin{aligned}
I_{1}(x) \otimes I_{2}(y)(h)=I_{1}(x)\left(h^{I_{2}(y)}\right)= & I_{1}(x)\left(h^{y}\right) \\
& =h(x, y)=I(x, y)(h) .
\end{aligned}
$$

Hence,

$$
I_{1}(x) \otimes I_{2}(y)=I(x, y) .
$$

Let τ be in \bar{X}, μ in \bar{Y}. Then $\tau \otimes \mu$ is a linear functional on \mathscr{C}. For h_{1}, h_{2} in \mathscr{C},

$$
\begin{aligned}
& \tau \otimes \mu\left(h_{1} h_{2}\right)=\tau\left(\left(h_{1} h_{2}\right)^{\mu}\right)=\tau\left(h_{1}{ }^{\mu} h_{2}{ }^{\mu}\right)=\tau\left(h_{1}{ }^{\mu}\right) \tau\left(h_{2}{ }^{\mu}\right) \\
&=\tau \otimes \mu\left(h_{1}\right) \cdot \tau \otimes \mu\left(h_{2}\right) .
\end{aligned}
$$

Hence, $\tau \otimes \mu$ is multiplicative. Also,
$\tau \otimes \mu(1)=\tau(1)=1$.
Thus, $\tau \otimes \mu$ is in $\overline{X \times Y}$.

For τ in \bar{X}, μ in \bar{Y}, f in \mathscr{A}, g in \mathscr{B}, we have that

$$
\tau \otimes \mu(f \otimes g)=\tau\left((f \otimes g)^{\mu}\right)=\tau(\mu(g) f)=\tau(f) \mu(g) .
$$

It follows that π is one to one. From the first part of the proof, π maps densely into $\bar{X} \times \bar{Y}$. Since $\bar{X} \times \bar{Y}$ is compact Hausdorff, it suffices to show that π is continuous. Let

$$
\tau_{\alpha} \underset{w^{*}}{\longrightarrow} \tau, \quad \mu_{\alpha} \underset{w^{*}}{\longrightarrow} \mu,
$$

and let h be in \mathscr{C}. From Proposition 2.4,

$$
h_{\| \|_{u}^{\mu_{\alpha}}}^{\longrightarrow} h^{\mu} .
$$

It follows that

$$
\tau_{\alpha}\left(h^{\mu} \alpha\right) \rightarrow \tau\left(h^{\mu}\right) .
$$

Therefore, π is continuous and hence is a homeomorphism onto $\overline{X \times Y}$.
Recall that $\mathscr{C}=\left\{h \in B(X \times Y):{ }^{x} h \in \mathscr{B}, x \in X ; h^{v} \in \mathscr{A}, y \in Y\right.$; and $\left\{h^{\nu}: y \in Y\right\}$ is totally bounded in $\left.\mathscr{A}\right\}$.

Theorem 2.7. $\mathscr{A} \otimes \mathscr{B}=\mathscr{C}$.
Proof. Let \wedge denote the Gelfand transform on \mathscr{C}. In showing that $\frac{\mathscr{A} \otimes \mathscr{B}}{X \times Y}=\mathscr{C}$, it suffices to prove that $(\mathscr{A} \otimes \mathscr{B})^{\wedge}$ separates the points of $\overline{X \times Y}$. Suppose

$$
\tau \otimes \mu(h)=\tau^{\prime} \otimes \mu^{\prime}(h)
$$

for all h in $\mathscr{A} \otimes \mathscr{B}$, where τ, τ^{\prime} are in \bar{X} and μ, μ^{\prime} are in \bar{Y}. Then for f in \mathscr{A},

$$
\tau(f)=\tau \otimes \mu(f \otimes 1)=\tau^{\prime} \otimes \mu^{\prime}(f \otimes 1)=\tau^{\prime}(f)
$$

and so $\tau=\tau^{\prime}$. Similarly, $\mu=\mu^{\prime}$. Hence, $\tau \otimes \mu=\tau^{\prime} \otimes \mu^{\prime}$.
Theorem 2.8.

$$
\begin{aligned}
\mathscr{A} \otimes \mathscr{B}=\left\{h \in B(X \times Y):{ }^{x} h \in \mathscr{B}, x \in X ; h^{y} \in \mathscr{A}, y \in Y ;\right. \\
\text { and } \left.\left\{{ }^{x} h: x \in X\right\} \text { is totally bounded in } \mathscr{B}\right\} .
\end{aligned}
$$

Proof. The proof is identical to the proof of Theorem 2.7.
A semitopological semigroup is a semigroup together with a Hausdorff topology such that the multiplication map is continuous in each variable separately. Let Z be a semitopological semigroup and let $C(Z)$ be the C^{*}-algebra of all bounded continuous complex-valued functions on Z. For f in $C(Z)$ and z in Z, the left translate of f by z is defined by

$$
{ }_{z} f(x)=f(z x), x \in Z .
$$

The right translate of f by z is defined similarly and is denoted by f_{z}. A function f in $C(Z)$ is called Bochner almost periodic on Z if $\left\{{ }_{z} f: z \in Z\right\}$
has compact closure in $\left(C(Z),\| \|_{u}\right)$. Let $A(Z)$ denote all Bochner almost periodic functions on Z. Equivalently, an f in $C(Z)$ is in $A(Z)$ if and only if $\left.{ }_{{ }_{z}} f: z \in Z\right\}$ is totally bounded. Since $A(Z)$ is a translationinvariant unital C^{*}-subalgebra of $C(Z)$ (see [5]), we have the following corollary to Theorems 2.7 and 2.8.

Corollary 2.9. Let S and T be semitopological semigroups and let \mathscr{A} be a unital C^{*}-subalgebra of $A(S)$. Then

$$
\begin{aligned}
& \mathscr{A} \otimes A(T)=\left\{h \in B(S \times T):{ }^{s} h \in A(T), s \in S ;\right. \\
& \left.h^{t} \in \mathscr{A}, t \in T ; \text { and }\left\{h^{t}: t \in T\right\} \text { is totally bounded in } \mathscr{A}\right\} \\
& =\left\{h \in B(S \times T):{ }^{s} h \in A(T), s \in S ; h^{t} \in \mathscr{A}, t \in T ;\right. \text { and } \\
& \{s h: s \in S\} \text { is totally bounded in } A(T)\} \text {. }
\end{aligned}
$$

Remark. Berglund and Milnes [2] have shown that $A(S \times T)=A(S)$ $\otimes A(T)$ whenever S and T are semitopological semigroups, where S has a right identity and T has a left identity. This result assuming S and T are commutative topological semigroups each with identity was obtained earlier by Deleeuw and Glicksberg [4]. We obtain Berglund and Milnes' result quite simply from the above theorems.
First let S and T be semitopological semigroups. For f in $A(S), g$ in $A(T)$, one has that

$$
{ }_{(s, t)}(f \otimes 1)={ }_{s} f \otimes 1 \quad \text { and } \quad{ }_{(s, t)}(1 \otimes g)=1 \otimes t^{g}
$$

for all s in S and t in T. Thus, $f \otimes 1$ and $1 \otimes g$ are in $A(S \times T)$ and so $f \otimes g=(f \otimes 1)(1 \otimes g)$ is in $A(S \times T)$.

Consequently, one has that

$$
A(S) \otimes A(T) \subset A(S \times T)
$$

Now assume that S has a right identity e and T has a left identity e^{\prime} and consider the continuous map $I: C(S \times T) \rightarrow C(S)$ given by

$$
I(h)(s)=h\left(s, e^{\prime}\right), \quad h \in C(S \times T), \quad s \in S .
$$

For s in S, t in T, and h in $C(S \times T)$, we have

$$
h^{t}(s)=h(s, t)=h_{(e, t)}\left(s, e^{\prime}\right)=I\left(h_{(e, t)}\right)(s) .
$$

Thus, the I image of the set of right translates of any h in $C(S \times T)$ contains $\left\{h^{t}: t \in T\right\}$. Therefore, if h is in $A(S \times T)$, then $\left\{h^{t}: t \in T\right\}$ is totally bounded. By Corollary 2.9 and the above,

$$
A(S \times T)=A(S) \otimes A(T)
$$

Note that one also obtains this result if he assumes that S has a left identity and T has a right identity.

Let Z be a semitopological semigroup and let \mathscr{A} be a unital C^{*}-subalgebra of $C(Z)$. Call \mathscr{A} left M-introverted $[17]$ if \mathscr{A} is translation-invariant
and given f in \mathscr{A}, τ in $\Delta(\mathscr{A})$, one has that $\tau \circ f$ is in \mathscr{A}, where

$$
\tau \circ f(z)=\tau(z f), \quad z \in Z
$$

A left M-introverted subalgebra \mathscr{A} of $C(Z)$ is contained in $A(Z)$ if and only if $\Delta(\mathscr{A})$ is a compact Hausdorff topological semigroup (a topological semigroup is a semitopological semigroup with the additional property that the multiplication map is jointly continuous) and the embedding map of Z into $\Delta(\mathscr{A})$ is a continuous homomorphism mapping Z densely into $\Delta(\mathscr{A})$ [1, Corollary 9.5]. Recall that $C(\Delta(\mathscr{A}))$ is isometrically isomorphic to \mathscr{A} via the adjoint of the embedding map. In fact, $\Delta(\mathscr{A})$ is the unique compact Hausdorff topological semigroup with these properties.

Let Z be a semitopological semigroup. An f in $C(Z)$ is called weakly almost periodic if $\left\{{ }_{z} f: z \in Z\right\}$ has compact closure in the weak topology of $C(Z)$. Let $W(Z)$ denote all weakly almost periodic functions on Z. Since $W(Z)$ is a translation-invariant unital C^{*}-subalgebra of $C(Z)$ (see [5]), we have the following corollary to Theorems 2.7 and 2.8.

Corollary 2.10. Let S and T be semitopological semigroups and let \mathscr{A} be a unital C^{*}-subalgebra of $W(S)$. Then

$$
\begin{aligned}
& \mathscr{A} \otimes W(T)=\left\{h \in B(S \times T):{ }^{s} h \in W(T), s \in S\right. \\
&\left.h^{t} \in \mathscr{A}, t \in T ; \text { and }\left\{h^{t}: t \in T\right\} \text { is totally bounded in } \mathscr{A}\right\} \\
&=\left\{h \in B(S \times T):{ }^{s} h \in W(T), s \in S ; h^{t} \in \mathscr{A}, t \in T ;\right. \text { and } \\
&\left.\left\{{ }^{s} h: s \in S\right\} \text { is totally bounded in } W(T)\right\} .
\end{aligned}
$$

In general, $W(S) \otimes W(T)$ is not $W(S \times T)$. See [2] p. 171, [12] p. 590, and [13] p. 663, in this regard. However, one always has that $W(S)$ $\otimes \cdot W(T) \subset W(S \times T)$; the proof is virtually the same as in showing that $A(S) \otimes A(T) \subset A(S \times T)$. The following is an indication of just how seldom these two algebras are equal.

Theorem 2.11. Let S be an abelian topological semigroup with 1. Then $W(S) \otimes W(S)=W(S \times S)$ if and only if $W(S \times S)=A(S \times S)$.

Proof. (i) Sufficiency. Let f be in $W(S)$. We identify S with $S \times\{1\}$ and we let π_{S} denote the projection of $S \times S$ onto S. Then $f \circ \pi_{S}$ is in $W(S \times S)=A(S \times S)$. Since $\left.f \circ \pi_{s}\right|_{s}=f, f$ is in $A(S)$. Hence $W(S)=$ $A(S)$. Thus,

$$
W(S \times S)=A(S \times S)=A(S) \otimes A(S)=W(S) \otimes W(S)
$$

(ii) Necessity. Let f be in $W(S)$. Define $\phi: S \times S \rightarrow S$ by

$$
\phi(s, t)=s t, \quad(s, t) \in S \times S
$$

Then ϕ is a continuous topological semigroup homomorphism since S is abelian. Therefore, $h=f \circ \phi$ is in $W(S \times S)$. By Corollary 2.10, $\left\{{ }^{s} h: s \in S\right\}$ is totally bounded. Since ${ }^{s} h={ }_{s} f$ for all s in S, f is in $A(S)$.

Therefore, $W(S)=A(S)$, and so

$$
W(S \times S)=W(S) \otimes W(S)=A(S) \otimes A(S)=A(S \times S) .
$$

Remark. It is not true in general that if $A(S)=W(S)$, then $A(S \times S)$ $=W(S \times S)$ where S is an abelian topological semigroup with 1 . Hence the condition $W(S \times S)=A(S \times S)$ cannot be replaced by $W(S)=A(S)$.

As an example, let S be an infinite null semigroup with identity adjoined; that is, $s t=0$ for $s \neq 1, t \neq 1$ and $s \cdot 1=1 \cdot s=s$ for all s in S. Equip S with the discrete topology. Given f in $B(S)$ and $s \neq 1$ in S,

$$
s=f(0) \zeta_{s_{\sim 11}}+f(s) \zeta_{\{1]}
$$

where ζ_{X} denotes the characteristic function of the set X. Thus, $\{s f: s \in S\}$ is totally bounded since $\{f(s): s \in S\}$ is bounded. Hence $B(S)=A(S)$ $=W(S)$. By applying Grothendieck's criterion [8] for weak almost periodicity, one has that

```
W(S × S)
    ={h\inB(S\timesS):{}\mp@subsup{}{}{s}h:s\inS}\mathrm{ is weakly conditionally compact }.
```

Let $D=\{(s, s): s \in S\}$ and let $h=\zeta_{D}$. Then

$$
\{s h: s \in S\}=\left\{\zeta_{|s|}: s \in S\right\}
$$

is not totally bounded, since S is infinite, but is weakly conditionally compact, since its weak closure is $\left\{\zeta_{(s)}: s \in S\right\} \cup\{0\}$. Therefore, h is in $W(S \times S)$ and h is not in $A(S \times S)$.
Let Z be a semitopological semigroup. A left M-introverted subalgebra \mathscr{A} of $C(Z)$ is contained in $W(Z)$ if and only if $\Delta(\mathscr{A})$ is a compact Hausdorff semitopological semigroup and the embedding map of Z into $\Delta(\mathscr{A})$ is a continuous homomorphism mapping Z densely into $\Delta(\mathscr{A})$ [$\mathbf{1}$, Corollary 8.5]. Also, $\Delta(\mathscr{A})$ is unique with respect to these properties and the fact that $C(\Delta(\mathscr{A}))$ is isometrically isomorphic to \mathscr{A} via the adjoint of the embedding map.

Lemma 2.12. Let \mathscr{A} be a translation-invariant unital C*-subalgebra of $C(Z)$. If $\mathscr{A} \subset W(Z)$, then \mathscr{A} is left M-introverted.
Proof. See Lemma 8.8 of [1].
Lemma 2.13. Let Z be a semitopological semigroup and let \bar{Z} be a compact semitopological [resp. topological] semigroup. Let I be a continuous homomorphism from Z onto a dense subset of \bar{Z}. Let $\mathscr{A}=I^{*}(C(\bar{Z}))$, where $I^{*}(F)=F \circ I$ for each F in $C(\bar{Z})$. Then \mathscr{A} is a translation-invariant unital C^{*}-subalgebra of $W(Z)[r e s p . A(Z)]$.

Proof. We prove the semitopological case, the topological case being similar. For F in $C(\bar{Z})$ and z in $Z, I^{*}\left({ }_{I(z)} F\right)={ }_{z}\left(I^{*}(F)\right)$ and $I^{*}\left(F_{I(z)}\right)$ $=\left(I^{*}(F)\right)_{2}$. Since I^{*} is an isometric algebra isomorphism from $C(\bar{Z})$ onto
\mathscr{A}, it follows that \mathscr{A} is a translation-invariant unital C^{*}-subalgebra of $C(Z)$. For F in $C(\bar{Z}),\left\{{ }_{\tau} F: \tau \in \bar{Z}\right\}$ is compact in the topology of pointwise convergence on $C(\bar{Z})$ since \bar{Z} is a compact semitopological semigroup. From Grothendieck's theorem ([8], which states that weak compactness and compactness in the topology of pointwise convergence are equivalent for norm bounded subsets of $C(X)$, where X is compact Hausdorff), $\left\{_{I(z)} F: z \in Z\right\}$ is weakly conditionally compact in $C(\bar{Z})$. Since I^{*} is continuous from $(C(\bar{Z}), w k)$ onto $(\mathscr{A}, w k),\left\{s\left(I^{*}(F)\right): z \in Z\right\}$ is weakly conditionally compact in \mathscr{A}. Hence, $A \subset W(Z)$.
3. Semidirect product compactifications. Our setting for the first part of this section is as follows. Let T be a semitopological semigroup, X a Hausdorff topological space, σ a semigroup homomorphism from T into the semigroup of (continuous) operators on X; that is, letting $\sigma_{t}=$ $\sigma(t)$,

$$
\sigma_{t t^{\prime}}(x)=\sigma_{t}\left(\sigma_{t^{\prime}}(x)\right), \quad x \in X, t, t^{\prime} \in T .
$$

It will be further required of σ that it be separately continuous; that is, the map $x \rightarrow \sigma_{t}(x)$ from X into X is continuous for each t in T and the $\operatorname{map} t \rightarrow \sigma_{t}(x)$ from T into X is continuous for each x in X.

Also throughout the first part of this section, \mathscr{A} will denote a unital C^{*}-subalgebra of $C(X) ; \mathscr{B}$ will denote a translation-invariant unital C^{*}-subalgebra of $W(T) ; \bar{X}$ will denote the $\left(\mathscr{A}, I_{1}\right)$-compactification of X; and \bar{T} will denote the (\mathscr{B}, I_{2})-compactification of T. By Lemma 2.12 and remarks preceding it, \bar{T} is a compact semitopological semigroup.

Definition 3.1. Let $\bar{\sigma}$ be a semigroup homomorphism from \bar{T} into the semigroup of continuous operators on \bar{X} such that $\bar{\sigma}$ is separately continuous. Call $\bar{\sigma}$ an extension of σ if

$$
\bar{\sigma}_{I_{2}(t)}\left(I_{1}(x)\right)=I_{1}\left(\sigma_{t}(x)\right), \quad x \in X, t \in T .
$$

Note that if such a $\bar{\sigma}$ exists, then it is unique by the separate continuity of $\bar{\sigma}$.

For x in X, t in T, set $\hat{\sigma}_{x}(t)=\sigma_{t}(x)$.
Theorem 3.2. There exists an extension $\bar{\sigma}$ of σ if and only if the following are satisfied:
(i) $\left\{f \circ \sigma_{t}: t \in T\right\}$ is weakly conditionally compact (w.c.c.) in \mathscr{A} for eachfin \mathscr{A},
(ii) $f \circ \hat{\sigma}_{x}$ is in \mathscr{B} for each f in \mathscr{A}, x in X.

Proof. Let $\bar{\sigma}$ be an extension of σ. Let f be in \mathscr{A}. For each μ in \bar{T}, define F_{μ} in $C(\bar{X})$ by

$$
F_{\mu}(\tau)=\bar{\sigma}_{\mu}(\tau)(f), \quad \tau \in \bar{X}
$$

For x in X and t in T,

$$
\begin{aligned}
& I_{1}{ }^{*}\left(F_{I_{2}(t)}\right)(x)=F_{I_{2}(t)}\left(I_{1}(x)\right)=\bar{\sigma}_{I_{2}(t)}\left(I_{1}(x)\right)(f) \\
&=I_{1}\left(\sigma_{t}(x)\right)(f)=f \circ \sigma_{t}(x),
\end{aligned}
$$

where $I_{1}{ }^{*}$ is the adjoint map of I_{1}. Hence,

$$
\left|F_{I_{2}(t)}\left(I_{1}(x)\right)\right|=\left|f\left(\sigma_{t}(x)\right)\right| \leqq\|f\|_{u}, \quad x \in X, t \in T .
$$

By the separate continuity of $\bar{\sigma}$, it follows that

$$
\left|F_{I_{2}(t)}(\tau)\right| \leqq\|f\|_{u}, \quad \tau \in \bar{X}, t \in T,
$$

and, therefore,

$$
\left|F_{\mu}(\tau)\right| \leqq\|f\|_{u}, \quad \tau \in \bar{X}, \mu \in \bar{T} .
$$

Thus, $\left\{F_{\mu}: \mu \in \bar{T}\right\}$ is norm bounded and compact in the topology of pointwise convergence on $C(\bar{X})$, and therefore, $\left\{F_{\mu}: \mu \in \bar{T}\right\}$ is weakly compact in $C(\bar{X})$ by Grothendieck's theorem [8]. See the proof of Lemma 2.13 for a statement of this theorem. In particular, $\left\{F_{I_{2}(t)}: t \in T\right\}$ is w.c.c. in $C(\mathbb{X})$. Since $I_{1}{ }^{*}\left(F_{I_{2}(t)}\right)=f \circ \sigma_{t}$ for each t in T and $I_{1}{ }^{*}$ is weakly continuous, $\left\{f \circ \sigma_{t}: t \in T\right\}$ is w.c.c. in \mathscr{A}.

For each τ in \bar{X} define G_{τ} in $C(\bar{T})$ by

$$
G_{\tau}(\mu)=\bar{\sigma}_{\mu}(\tau)(f)=F_{\mu}(\tau), \quad \mu \in \bar{T}
$$

That $f \circ \hat{\sigma}_{x}$ is in \mathscr{B} for each x in X now follows by noting that

$$
I_{2}{ }^{*}\left(G_{I_{1}(x)}\right)=f \circ \hat{\sigma}_{x},
$$

where $I_{2}{ }^{*}$ is the adjoint map of I_{2}.
Now assume that \mathscr{A} and \mathscr{B} satisfy (i) and (ii). For f in \mathscr{A} and μ in \bar{T}, set

$$
f \sigma \mu(x)=\mu\left(f \circ \hat{\sigma}_{x}\right), \quad x \in X
$$

and observe that $f \sigma I_{2}(t)=f \circ \sigma_{t}$ for each t in T. Let $\left(t_{\alpha}\right)$ be a net in T with $I_{2}\left(t_{\alpha}\right) \rightarrow \mu$. For x in X,

$$
f \sigma \mu(x)=\mu\left(f \circ \hat{\sigma}_{x}\right)=\lim _{\alpha} I_{2}\left(t_{\alpha}\right)\left(f \circ \hat{\boldsymbol{\sigma}}_{x}\right)=\lim _{\alpha}\left(f \circ \sigma_{t_{\alpha}}\right)(x)
$$

and, therefore, $f \sigma \mu$ is in the pointwise closure of $\left\{f \circ \sigma_{t}: t \in T\right\}$. Since the topology of pointwise convergence coincides with the weak topology on the w.c.c. set $\left\{f \circ \sigma_{t}: t \in T\right\}, f \sigma \mu$ is in the weak closure of $\left\{f \circ \sigma_{t}: t \in T\right\}$. Hence, $f \sigma \mu$ is in \mathscr{A} since \mathscr{A} is weakly closed ([6], p. 119). The above shows that $\mu \rightarrow f \sigma \mu$ is continuous from \bar{T} into \mathscr{A} with the topology of pointwise convergence. From the coincidence of the pointwise and weak topologies on the range of the map $\mu \rightarrow f \sigma \mu$, it follows that $\mu \rightarrow f \sigma \mu$ is continuous from \bar{T} into $(\mathscr{A}, w k)$.

Define $\bar{\sigma}$ by

$$
\bar{\sigma}_{\mu}(\tau)(f)=\tau(f \sigma \mu), \quad \tau \in \bar{X}, \mu \in \bar{T}, f \in \mathscr{A}
$$

It follows directly that $\bar{\sigma}_{\mu}(\tau)$ is in \bar{X} for each μ in \bar{T} and τ in \bar{X} and that $\bar{\sigma}$ is separately continuous. For x in X and t in T,

$$
\bar{\sigma}_{I_{2}(t)}\left(I_{1}(x)\right)(f)=I_{1}(x)\left(f_{\sigma} I_{2}(t)\right)=f\left(\sigma_{t}(x)\right)=I_{1}\left(\sigma_{t}(x)\right)(f), f \in \mathscr{A}
$$

Hence,

$$
\bar{\sigma}_{I_{2}(t)}\left(I_{1}(x)\right)=I_{1}\left(\sigma_{t}(x)\right), \quad x \in X, t \in T
$$

That $\bar{\sigma}_{\mu \mu^{\prime}}(\tau)=\bar{\sigma}_{\mu}\left(\bar{\sigma}_{\mu^{\prime}}(\tau)\right)$ for μ, μ^{\prime} in \bar{T} and τ in \bar{X} now follows from the separate continuity of $\bar{\sigma}$ and the denseness of $I_{1}(X)$ and $I_{2}(T)$ in \bar{X} and \bar{T} respectively.

Remark. Assuming that \mathscr{A} and \mathscr{B} satisfy (i) and (ii) above, one has that $\left\{f \circ \hat{\sigma}_{x}: x \in X\right\}$ is w.c.c. in \mathscr{B}. This follows by interchanging the roles of F and G in the first paragraph of the above proof and noting thereby that $\left\{G_{I_{1}(x)}: x \in X\right\}$ is w.c.c. in $C(\bar{T})$. Thus, for f in \mathscr{A}, τ in \bar{X}, we can define

$$
f \tilde{\sigma} \tau(t)=\tau\left(f \circ \sigma_{t}\right), \quad t \in T
$$

Then $f \tilde{\sigma} I_{1}(x)=f \circ \hat{\sigma}_{x}$. It follows that $f \tilde{\sigma} \tau$ is in \mathscr{B} and the map $\tau \rightarrow f \tilde{\sigma} \tau$ is continuous from \bar{X} into ($\mathscr{B}, w k$). Hence, $\bar{\sigma}$ also satisfies

$$
\bar{\sigma}_{\mu}(\tau)(f)=\mu(f \tilde{\sigma} \tau), \quad \mu \in \bar{T}, \tau \in \bar{X}, f \in \mathscr{A}
$$

Definition 3.3. Call σ jointly continuous if the map $(x, t) \rightarrow \sigma_{t}(x)$ is continuous from $X \times T$ into X.

Corollary 3.4. There exists a jointly continuous extension $\bar{\sigma}$ of σ if and only if the following are satisfied:
(i') $\left\{f \circ \sigma_{t}: t \in T\right\}$ is totally bounded in \mathscr{A} for each fin \mathscr{A},
(ii') $f \circ \hat{\sigma}_{x}$ is in \mathscr{B} for each in \mathscr{A}, x in X.
Proof. Assume that $\bar{\sigma}$ is a jointly continuous extension of σ. By Theorem 3.2 , (ii') is satisfied. Fix f in \mathscr{A}. For μ in \bar{T}, define F_{μ} as in the proof of Theorem 3.2. Since $\bar{\sigma}$ is jointly continuous, it follows directly that $\left\{F_{I_{2}(t)}: t \in T\right\}$ is totally bounded in $C(\bar{X})$. Since $I_{1}{ }^{*}\left(F_{I_{2}(t)}\right)=f \circ \sigma_{t},\left(\mathrm{i}^{\prime}\right)$ is satisfied.

Next assume that \mathscr{A} and \mathscr{B} satisfy (i^{\prime}) and (ii'). Then Theorem 3.2 applies and there exists an extension $\bar{\sigma}$ of σ. For f in \mathscr{A}, since $\left\{f \circ \sigma_{t}: t \in T\right\}$ is totally bounded, it follows that $\mu \rightarrow f \sigma \mu$ (see the proof of Theorem 3.2 for the definition of this map and its weak continuity) is continuous from \bar{T} into ($\mathscr{A},\| \|_{u}$) by Lemma 2.2. Hence,

$$
(\tau, \mu) \rightarrow \tau(f \sigma \mu)=\bar{\sigma}_{\mu}(\tau)(f) \text { is in } C(\bar{X} \times \bar{T}) \text { for each } f \text { in } \mathscr{A}
$$

Thus, $\bar{\sigma}$ is jointly continuous.

Remark. If \mathscr{A} and \mathscr{B} satisfy the hypothesis of Corollary 3.4 , then $\left\{f \circ \hat{\gamma}_{x}: x \in X\right\}$ is totally bounded in \mathscr{B} for each f in \mathscr{A}. This follows by defining G_{r} as in the proof of Theorem 3.2 and noting, as in the first paragraph of the last proof, that $\left\{G_{I_{1}(x)}: x \in X\right\}$ is totally bounded in $C(\bar{T})$.
Corollary 3.5. Assume that T is a semitopological group and that \mathscr{A} is a unital C^{*}-subalgebra of $C(X)$ such that given f in $\mathscr{A},\left\{f \circ \sigma_{t}: t \in T\right\}$ is w.c.c. in $\mathscr{A}, f \circ \hat{\sigma}_{x}$ is in $A(T)$ for each x in X, and σ_{1} is the identity map on X, where 1 is the identity of T. Then $\left\{f \circ \sigma_{t}: t \in T\right\}$ and $\left\{f \circ \hat{f}_{x}: x \in X\right\}$ are totally bounded.

Proof. Let $\mathscr{B}=A(T)$. By Theorem 3.2, there exists an extension $\bar{\sigma}$ of σ. Since \bar{T} is compact, contains a dense subgroup, and has jointly continuous multiplication by the remarks preceding Corollary $2.10, \bar{T}$ is a topological group. Since $\bar{\sigma}$ is separately continuous, $\bar{\sigma}$ is jointly continuous by Ellis' Theorem [7]. By Corollary 3.4 and the above remark, $\left\{f \circ \sigma_{t}: t \in T\right\}$ and $\left\{f \circ \hat{\boldsymbol{\gamma}}_{x}: x \in X\right\}$ are totally bounded.

For a more recent proof of Ellis' Theorem, see [20].
Remark. In Corollary 3.5, one need only assume that $\Delta(A(T))$ is a topological group; for example, we could assume that T has a dense subgroup.

The setting for the remainder of this section is as follows. S and T will denote semitopological semigroups with 1 ; $\mathscr{E}(S)$ will denote the continuous endomorphisms of S; σ will denote a separately continuous semigroup homomorphism from T into $\mathscr{E}(S)$ such that the map

$$
(s, t) \rightarrow s \sigma_{t}\left(s_{0}\right)
$$

from $S \times T$ into S is continuous for each fixed s_{0} in S, such that σ_{1} is the identity endomorphism of S, and such that $\sigma_{t}(1)=1$ for all t in T. For (s, t) and $\left(s^{\prime}, t^{\prime}\right)$ in $S \times T$, set

$$
(s, t)\left(s^{\prime}, t^{\prime}\right)=\left(s \sigma_{t}\left(s^{\prime}\right), t t^{\prime}\right) .
$$

Then $S \times T$ with this operation and the product topology is a semitopological semigroup with identity $(1,1)$ which we designate by $S \odot T$. We call $S \odot T$ the semidirect product of S with T induced by σ.

Remark. Notice that $f \circ \sigma_{t}$ is in $A(S)$ [resp. $\left.W(S)\right]$ for all t in T whenever f is in $A(S)$ [resp. $W(S)]$. This follows from the identity

$$
s\left(f \circ \sigma_{t}\right)=\sigma_{t}(s) f \circ \sigma_{t}
$$

which shows that the left orbit of $f \circ \sigma_{t}$ lies in the image of the left orbit of f under the norm [hence weakly] continuous map $F \rightarrow F \circ \sigma_{t}$ of $C(S)$ into $C(S)$.

Definition 3.6. Let \mathscr{A} and \mathscr{B} be translation-invariant unital C^{*} subalgebras of $W(S)$ and $W(T)$ respectively. Let \bar{S} and \bar{T} be the $\left(\mathscr{A}, I_{1}\right)$ and (\mathscr{B}, I_{2})-compactifications of S and T respectively. Then \bar{S} and \bar{T} are both compact semitopological semigroups with identity by Lemma 2.12 and remarks preceding it. Let $\bar{\sigma}: \bar{T} \rightarrow \mathscr{E}(\bar{S})$ be such that $\bar{S} \circlearrowleft \bar{\sigma}$ is a compact semitopological semidirect product semigroup with identity. Call $\bar{S}(\overparen{\sigma} \bar{T}$ a semidirect product compactification (s.p.c.) of $S \odot T$ induced by \mathscr{A} and \mathscr{B} if $\bar{\sigma}$ is an extension of σ.

Landstad [15], Junghenn [$\mathbf{1 0}, \mathbf{1 1}$], and Junghenn and Lerner [14] have also investigated s.p.c. of $S \odot T$ induced by subalgebras of $A(S \odot T)$ and have considered when $A(S \odot T)$ splits into a tensor product.

For the last part of the proof of the next theorem, we need to know the semigroup operation on \bar{S}. It is left Arens multiplication; that is,

$$
\tau \tau^{\prime}(f)=\tau\left(\tau^{\prime} \circ f\right), \quad \tau, \tau^{\prime} \in \bar{S}, f \in \mathscr{A}
$$

where

$$
\tau^{\prime} \circ f(s)=\tau^{\prime}(. f), \quad s \in S
$$

as was defined in the comments preceding Corollary 2.10. Recall that \mathscr{A} is left M-introverted by Lemma 2.12 and, therefore, $\tau^{\prime} \circ f$ is in \mathscr{A}.

Theorem 3.7. Let $\mathscr{A}, \mathscr{B}, \bar{S}$, and \bar{T} be as in Definition 3.6. The following are equivalent:

1) There exists a s.p.c. $\bar{S} \odot \overparen{\sigma}$ of $S \odot T$ induced by \mathscr{A} and \mathscr{B},
2) $\mathscr{A} \otimes \mathscr{B}$ is a translation-invariant unital C^{*}-subalgebra of $W(S \odot T)$,
3) \mathscr{A} and \mathscr{B} satisfy the following for each f in \mathscr{A} :
a) $\left\{{ }_{s} f \circ \sigma_{t}: s \in S, t \in T\right\}$ is w.c.c. in \mathscr{A},
b) $\left\{f_{\sigma_{t}(s) 0}: t \in T\right\}$ is totally bounded in \mathscr{A} for each s_{0} in S,
c) $f \circ \hat{\boldsymbol{\sigma}}_{s}$ is in \mathscr{B} for each sin S.

Proof. To show 1) implies 2), assume 1) and notice that since $\bar{\sigma}$ is an extension of σ, the map \bar{P} defined by

$$
\phi(s, t)=\left(I_{1}(s), I_{2}(t)\right) \quad \text { for } s \text { in } S \text { and } t \text { in } T
$$

is a continuous semigroup homomorphism from $S \odot T$ onto a dense subset of $\bar{S} \overparen{\mathscr{C}} \bar{T}$. Hence, letting \mathscr{C} be the image of $C(\bar{S}(\overparen{\sigma}) \bar{T})$ under the adjoint map of ϕ, it follows by Lemma 2.13 that \mathscr{C} is a translation-invariant unital C^{*}-subalgebra of $W(S \odot T)$. It remains to show that $\mathscr{C}=\mathscr{A} \otimes \mathscr{B}$. Since

$$
C(\bar{S} \circledast \bar{T})=C(\bar{S}) \otimes C(\bar{T})
$$

by the Stone-Weierstrass theorem and

$$
\phi^{*}(F \otimes G)=I_{1}^{*}(F) \otimes I_{2}^{*}(G)
$$

for all F in $C(\bar{S})$ and G in $C(\bar{T})$, it follows that $\mathscr{A} \otimes \mathscr{B} \subset \mathscr{C}$. Let h be in
\mathscr{C} and let ${ }^{\wedge}$ denote the Gelfand transform on \mathscr{C}. Then \hat{h} is in $C(\bar{S} \mathscr{\sigma} \bar{T})$ $=C(\bar{S}) \otimes C(\bar{T})$, and so $\left\{(\hat{h})^{I_{\mathbf{2}}(t)}: t \in T\right\}$ is totally bounded in $C(\bar{S})$. Since

$$
I_{1}^{*}\left((\hat{h})^{\left.I_{\mathbf{\prime}}^{(t)}\right)}\right)=h^{t} \text { for all } t \text { in } T,
$$

$\left\{h^{t}: t \in T\right\}$ is totally bounded in \mathscr{A}. Similarly, ${ }^{s} h$ is in \mathscr{B} for all s in S. Therefore, $\mathscr{C} \subset \mathscr{A} \otimes \mathscr{B}$ by Theorem 2.7. Hence, $\mathscr{C}=\mathscr{A} \otimes \mathscr{B}$.
To show 2) implies 3), we again use Theorem 2.7. Let f be in \mathscr{A}. For s in S and t in T,

$$
f \circ \sigma_{t}=[(s, t)(f \otimes 1)]^{1}
$$

and so $f \circ \sigma_{t}$ is in \mathscr{A}. Since $\{(s, t)(f \otimes 1): s \in S, t \in T\}$ is w.c.c., so is $\left\{, f \circ \sigma_{t}: s \in S, t \in T\right\}$. Hence, a) holds. For s_{0} in S and t in T,

$$
f_{\sigma_{t}\left(s_{0}\right)}=\left[(f \otimes 1)_{\left(s_{0}, 1\right)}\right]^{t} .
$$

Hence, $\left\{f_{\sigma_{t}\left(s_{0}\right)} ; t \in T\right\}$ is totally bounded. For s in S,

$$
f \circ \partial_{s}={ }^{1}\left[(f \otimes 1)_{(s, 1)}\right]
$$

and so $f \circ \hat{f}_{g}$ is in \mathscr{B}.
We now show that 3) implies 1). First note that conditions a) and c) imply by Theorem 3.2 that there exists an extension $\bar{\sigma}$ of σ.

We first show that for fixed s_{0} in S, the map

$$
(\tau, \mu) \rightarrow \tau \bar{\sigma}_{\mu}\left(I_{1}\left(s_{0}\right)\right)
$$

is continuous from $\bar{S} \times \bar{T}$ into \bar{S}, where $\tau \bar{\sigma}_{\mu}\left(I_{1}\left(s_{0}\right)\right)$ is left Arens multiplication of τ and $\bar{\sigma}_{\mu}\left(I_{1}\left(s_{0}\right)\right)$. Fix f in \mathscr{A} and define γ from \bar{T} into \mathscr{A} by

$$
\gamma(\mu)=\bar{\sigma}_{\mu}\left(I_{1}\left(s_{0}\right)\right) \circ f, \quad \mu \in \bar{T} .
$$

Note that $\gamma(\mu)$ is in \mathscr{A} since \mathscr{A} is left M-introverted by Lemma 2.12. For s in S,

$$
\gamma(\mu)(s)=\bar{\sigma}_{\mu}\left(I_{1}\left(s_{0}\right)\right)\left({ }_{s} f\right) .
$$

Since $\bar{\sigma}$ is separately continuous, it follows that γ is continuous with the topology of pointwise convergence on \mathscr{A}. For t in T,

$$
\gamma\left(I_{2}(t)\right)=\bar{\sigma}_{I_{\mathbf{2}}(t)}\left(I_{1}\left(s_{0}\right)\right) \circ f=f_{\sigma_{t}\left(s_{0}\right)}
$$

and so from b), $\left\{\gamma\left(I_{2}(t)\right): t \in T\right\}$ is totally bounded. By Lemma 2.2, γ is continuous from \bar{T} into $\left(\mathscr{A},\| \|_{u}\right)$. Since

$$
\tau \bar{\sigma}_{\mu}\left(I_{1}\left(s_{0}\right)\right)(f)=\tau\left(\bar{\sigma}_{\mu}\left(I_{1}\left(s_{0}\right)\right) \circ f\right), \quad \tau \in \bar{S}, \mu \in \bar{T}
$$

and γ is norm continuous, it follows that

$$
(\tau, \mu) \rightarrow \tau \bar{\sigma}_{\mu}\left(I_{1}\left(s_{0}\right)\right)(f)
$$

is continuous for each f in \mathscr{A}, and hence

$$
(\tau, \mu) \rightarrow \tau{\overline{\sigma_{\mu}}}\left(I_{1}\left(s_{0}\right)\right)
$$

is continuous from $\bar{S} \times \bar{T}$ into \bar{S}.
We now show that for fixed τ_{0} in \bar{S}, the map $(\tau, \mu) \rightarrow \tau \bar{\sigma}_{\mu}\left(\tau_{0}\right)$ is continuous from $\bar{S} \times \bar{T}$ into \bar{S}. Fix f in \mathscr{A} and define Γ from $\bar{S} \times \bar{T}$ into \mathscr{A} by

$$
\Gamma(\tau, \mu)\left(s^{\prime}\right)=\tau \bar{\sigma}_{\mu}\left(I_{1}\left(s^{\prime}\right)\right)(f), \quad \tau \in \bar{S}, \mu \in \bar{T}, s^{\prime} \in S
$$

That $\Gamma(\tau, \mu)$ is in \mathscr{A} follows by defining F in $C(\bar{S})$ by

$$
F\left(\tau^{\prime}\right)=\hat{f}\left(\tau \bar{\sigma}_{\mu}\left(\tau^{\prime}\right)\right), \quad \tau^{\prime} \in \bar{S}
$$

where ${ }^{\wedge}$ is the Gelfand transform on \mathscr{A}, and noting that $I_{1}{ }^{*}(F)=\Gamma(\tau, \mu)$. Since $(\tau, \mu) \rightarrow \tau \bar{\sigma}_{\mu}\left(I_{1}\left(s_{0}\right)\right)$ is continuous for fixed s_{0} in S, it follows that Γ is continuous with the topology of pointwise convergence on \mathscr{A}. For s in S and t in T,

$$
\Gamma\left(I_{1}(s), I_{2}(t)\right)=s \circ \sigma_{t} .
$$

By a) and Lemma $2.2, \Gamma$ is continuous from $\bar{S} \times \bar{T}$ into $(\mathscr{A}, w k)$. From the continuity of $\bar{\sigma}_{\mu}$ and the separate continuity of multiplication in \bar{S}, it follows that

$$
\tau_{0}(\Gamma(\tau, \mu))=\tau \bar{\sigma}_{\mu}\left(\tau_{0}\right)(f), \quad \tau, \tau_{0} \in \bar{S}, \mu \in \bar{T}
$$

Consequently, for fixed τ_{0} in \bar{S}, since Γ is weakly continuous, the map $(\tau, \mu) \rightarrow \tau \bar{\sigma}_{\mu}\left(\tau_{0}\right)(f)$ is continuous for each f in \mathscr{A}. Thus $(\tau, \mu) \rightarrow \tau \bar{\sigma}_{\mu}\left(\tau_{0}\right)$ is continuous from $\bar{S} \times \bar{T}$ into \bar{S} for each fixed τ_{0} in \bar{S}.

Noting that $\bar{\sigma}_{I_{2}(1)}$ is the identity endomorphism of \bar{S} and that

$$
\bar{\sigma}_{\mu}\left(I_{1}(1)\right)=I_{1}(1) \quad \text { for all } \mu \text { in } \bar{T},
$$

we have that $\bar{S} \odot \bar{T}$ is a s.p.c. of $S \odot T$.
Remark. If \mathscr{A} is a translation-invariant subalgebra of $A(S)$ and $\left\{f \circ \sigma_{t}: t \in T\right\}$ is totally bounded for each f in \mathscr{A}, then

$$
\left\{s f_{s^{\prime}} \circ \sigma_{t}: s, s^{\prime} \in S, t \in T\right\}
$$

is totally bounded for each f in \mathscr{A}. To see this let f be in \mathscr{A} and fix $\epsilon>0$. Since f is in $A(S),\left\{s_{s^{\prime}}: s, s^{\prime} \in S\right\}$ is totally bounded. Thus there exists $s_{1}, \ldots, s_{n}, s_{1}{ }^{\prime}, \ldots, s_{n}{ }^{\prime}$ in S such that $\left\{_{s_{k}} f_{s_{k}}: k=1, \ldots, n\right\}$ is an ϵ-net for $\left\{s_{s} f_{s^{\prime}}: s, s^{\prime} \in S\right\}$. For each $k,\left\{_{s_{k}} f_{s_{k}} \circ \circ \sigma_{t}: t \in T\right\}$ is totally bounded and so there exists $t_{k, 1}, \ldots, t_{k, p_{k}}$ in T such that

$$
\left\{s_{k} f_{s_{k}} \circ \sigma_{t_{k}, j}: j=1, \ldots, p_{k}\right\}
$$

is an ϵ-net for $\left\{{ }_{s_{k}} f_{s_{k^{\prime}}} \circ \sigma_{t}: t \in T\right\}$. It follows that

$$
\left\{s_{k} f_{s_{k}} \circ \sigma_{t_{k, j}}: k=1, \ldots, n ; j=1, \ldots, p_{k}\right\}
$$

is a 2ϵ-net for $\left\{s f_{s^{\prime}} \circ \sigma_{t}: s, s^{\prime} \in S, t \in T\right\}$.

Corollary 3.8. Let $\mathscr{A}, \mathscr{B}, \bar{S}$, and \bar{T} be as in Definition 3.6. There exists a s.p.c. $\bar{S} \circledast \bar{T}$ of $S \odot T$ induced by \mathscr{A} and \mathscr{B} which is a topological semigroup if and only if $\mathscr{A} \subset A(S), \mathscr{B} \subset A(T),\left\{f \circ \sigma_{t}: t \in T\right\}$ is totally bounded in \mathscr{A} and $f \circ \mathcal{\gamma}_{s}$ is in \mathscr{B} for each f in \mathscr{A} and $\sin S$.

Proof. If $\bar{S} \circlearrowleft \bar{T}$ is a s.p.c. of $S \odot T$ which is a topological semigroup, then $\bar{\sigma}$ is jointly continuous. By Corollary $3.4,\left\{f \circ \sigma_{t}: t \in T\right\}$ is totally bounded in \mathscr{A} and $f \circ \hat{\sigma}_{s}$ is in \mathscr{B} for each f in \mathscr{A} and s in S. Since \bar{S} and \bar{T} are topological semigroups, $\mathscr{A} \subset A(S)$ and $\mathscr{B} \subset A(T)$.

We now prove the converse. Since $\mathscr{A} \subset A(S)$, condition b) of Theorem 3.7 is satisfied and by the preceding remark, condition a) of Theorem 3.7 is satisfied. By Theorem 3.7 there exists a s.p.c. $\bar{S} \odot \bar{T}$ of $S \odot T$ induced by \mathscr{A} and \mathscr{B}. By Corollary 3.4, $\bar{\sigma}$ is jointly continuous. Since $\mathscr{A} \subset A(S)$ and $\mathscr{B} \subset A(T), \bar{S}$ and \bar{T} are topological semigroups. It follows that $\bar{S}(\bar{\sigma} \bar{T}$ is a topological semigroup.

Definition 3.9. Given f in $A(S)$, call $f \sigma$-Bochner almost periodic if for each s_{1} and s_{2} in $S,\left\{_{s_{1}} f_{s_{2}} \circ \sigma_{t}: t \in T\right\}$ is totally bounded. Let $A^{\sigma}(S)$ denote the set of all σ-Bochner almost periodic functions on S. Given f in $W(S)$, call $f \sigma$-weakly almost periodic if $\left\{f_{s_{2}} \circ \sigma_{t}: s \in S, t \in T\right\}$ is w.c.c. and $\left\{f_{\sigma_{t}\left(s_{1}\right) s_{2}}: t \in T\right\}$ is totally bounded for each s_{1} and s_{2} in S. Let $W^{\sigma}(S)$ denote the set of all σ-weakly almost periodic functions on S.

Proposition 3.10. $A^{\sigma}(S)$ and $W^{\sigma}(S)$ are translation-invariant unital C^{*}-subalgebras of $A(S)$ and $W(S)$ respectively. Moreover, each of these algebras is closed under composition with the family $\left\{\sigma_{t}: t \in T\right\}$.

Proof. It follows directly that $A^{\sigma}(S)$ is a unital C^{*}-subalgebra of $A(S)$. Let f be in $A^{\sigma}(S)$ and s in S. Then for s_{1}, s_{2} in S and t in T,

$$
s_{1}(s f)_{s_{2}} \circ \sigma_{t}={ }_{s s_{1}} f_{s_{2}} \circ \sigma_{t}
$$

and

$$
s_{1}\left(f_{s}\right)_{s_{2}} \circ \sigma_{t}={ }_{s_{1}} f_{s_{2} s} \circ \sigma_{t}
$$

from which it follows that ${ }_{s} f$ and f_{s} are in $A^{\sigma}(S)$. Hence, $A^{\sigma}(S)$ is transla-tion-invariant. From the remark preceding Definition 3.6, $A(S)$ is closed under composition with the family $\left\{\sigma_{t}: t \in T\right\}$. That this is true for $A^{\sigma}(S)$ follows from the following: for f in $A^{\sigma}(S), s_{1}, s_{2}$ in S, t_{0}, t in T,

$$
s_{1}\left(f \circ \sigma_{t_{0}}\right)_{s_{2}} \circ \sigma_{t}={ }_{\sigma_{0}\left(s_{1}\right)} f_{\sigma_{t_{0}}\left(s_{2}\right)} \circ \sigma_{t_{0} t} .
$$

It follows directly that $W^{\sigma}(S)$ is a linear subspace of $W(S)$ containing the constant functions and is self-adjoint. To show that $W^{\sigma}(S)$ is closed, let f be in the uniform closure of $W^{\sigma}(S)$. For fixed s_{2} in S, we must show that

$$
\left\{s f_{s_{2}} \circ \sigma_{t}: s \in S, t \in T\right\}
$$

is w.c.c. By Grothendieck's criterion [8], it suffices to show that if ($s_{n}{ }^{\prime}$) and $\left(s_{m}\right)$ are sequences in S and $\left(t_{m}\right)$ is a sequence in T such that

$$
\lim _{m} \lim _{n} s_{m} f_{s_{2}} \circ \sigma_{t_{m}}\left(s_{n}^{\prime}\right)=L_{1}
$$

and

$$
\lim _{n} \lim _{m} s_{m} f_{s_{2}} \circ \sigma_{t_{m}}\left(s_{n}^{\prime}\right)=L_{2},
$$

then $L_{1}=L_{2}$. Assume $L_{1} \neq L_{2}$ and set $\epsilon=\left|L_{1}-L_{2}\right| / 2$. Choose g in $W^{\sigma}(S)$ such that $\|f-g\|_{u}<\epsilon$. Set

$$
a_{m, n}=s_{m} f_{s_{2}} \circ \sigma_{t_{m}}\left(s_{n}^{\prime}\right)
$$

and

$$
b_{m, n}=s_{m} g_{s_{2}} \circ \sigma_{t_{m}}\left(s_{n}{ }^{\prime}\right)
$$

for all m and n. Then $\left\{b_{m, n}\right\}$ is bounded in the complex plane. By using a diagonalization argument, there exist $\phi(1)<\phi(2)<\ldots$ and $\psi(1)$ $<\psi(2)<\ldots$ such that

$$
\lim _{m} \lim _{n} b_{\phi(m), \psi(n)}=L_{1}^{\prime}
$$

and

$$
\lim _{n} \lim _{m} b_{\phi(m), \psi(n)}=L_{2}^{\prime}
$$

for some complex numbers $L_{1}{ }^{\prime}$ and $L_{2}{ }^{\prime}$. Since g is in $W^{\sigma}(S)$, by Grothendieck's criterion, $L_{1}{ }^{\prime}=L_{2}{ }^{\prime}$. Also,

$$
\lim _{m} \lim _{n} a_{\phi(m), \Downarrow(n)}=L_{1}
$$

and

$$
\lim _{n} \lim _{m} a_{\phi(m), \Downarrow(n)}=L_{2} .
$$

However,

$$
\left|a_{m, n}-b_{m, n}\right| \leqq\|f-g\|_{u}
$$

for all m and n. Hence,

$$
\left|L_{1}-L_{1}^{\prime}\right| \leqq\|f-g\|_{u}<\epsilon
$$

and

$$
\left|L_{2}-L_{2}^{\prime}\right| \leqq\|f-g\|_{u}<\epsilon
$$

and therefore

$$
\left|L_{1}-L_{2}\right|<2 \epsilon=\left|L_{1}-L_{2}\right|
$$

which is a contradiction. Thus, $L_{1}=L_{2}$.

For s_{1} and s_{2} in S, we must show that $\left\{f_{\sigma_{t}\left(s_{1}\right) s_{2}}: t \in T\right\}$ is totally bounded. Let $\epsilon>0$ and choose $h \in W^{\sigma}(S)$ such that $\|f-h\|_{u}<\epsilon$. There exist t_{1}, \ldots, t_{n} such that

$$
\left\{h_{\sigma_{t_{k}}\left(s_{1}\right) s_{2}}: k=1, \ldots, n\right\}
$$

is an ϵ-net for $\left\{h_{\sigma_{t}\left(\mathcal{s}_{1}\right) s_{2}}: t \in T\right\}$. It follows directly that

$$
\left\{f_{\sigma_{\tau_{k}}\left(s_{1}\right) s_{2}}: k=1, \ldots, n\right\}
$$

is a 3ϵ-net for $\left\{f_{\sigma_{t}\left(s_{1}\right)} s_{s}: t \in T\right\}$. Hence, f is in $W^{\sigma}(S)$ and $W^{\sigma}(S)$ is closed.
To see that $W^{\sigma}(S)$ is an algebra, let f, g be in $W^{\sigma}(S), s_{1}, s_{2}$ in S, and t in T. Then

$$
(f g)_{\sigma_{t}\left(s_{1}\right) s_{2}}=f_{\sigma_{t}\left(s_{1}\right) s_{2}} \cdot g_{\sigma_{t}\left(s_{1}\right) s_{2}}
$$

from which it follows that $\left\{(\mathrm{fg})_{\sigma_{t}\left(s_{1}\right) s_{2}}: t \in T\right\}$ is totally bounded. Also, for s in S,

$$
s(f g)_{s_{2}} \circ \sigma_{t}=\left[s f_{s_{2}} \circ \sigma_{t}\right] \cdot\left[s g_{s_{2}} \circ \sigma_{t}\right]
$$

Either by applying Grothendieck's criterion or by applying a corollary to Grothendieck's theorem [8] which states that for Z a set, \mathscr{A} a unital C^{*}-subalgebra of $B(Z), K$ a norm bounded subset of \mathscr{A}, then K is w.c.c. if and only if K is conditionally compact in the topology induced by the multiplicative linear functionals on \mathscr{A}, one obtains that

$$
\left\{s(f g)_{s_{2}} \circ \sigma_{t}: s \in S, t \in T\right\}
$$

is w.c.c. Thus, $f g$ is in $W^{\sigma}(S)$.
That $W^{\sigma}(S)$ is translation-invariant follows from the following: for f in $W^{\sigma}(S), s, s_{1}, s_{2}$ in S and t in T one has that

$$
\begin{aligned}
& s\left(s_{1} f\right)_{s_{2}} \circ \sigma_{t}={ }_{s_{1}} f_{s_{2}} \circ \sigma_{t}, \\
& s\left(f_{s_{1}} s_{s_{2}} \circ \sigma_{t}={ }_{s} f_{s_{s_{s}}}^{\circ} \circ \sigma_{t},\right. \\
& (s f)_{\sigma_{t}\left(s_{1}\right) s_{2}}={ }_{s}\left[f_{\sigma_{t}\left(s_{1}\right) s_{2}}\right],
\end{aligned}
$$

and

$$
\left(f_{s}\right)_{\sigma_{t}\left(s_{1}\right) s_{2}}=f_{\sigma_{t}\left(s_{1}\right) s_{2} s}
$$

From the remark preceding Definition 3.6, $W(S)$ is closed under composition with the family $\left\{\sigma_{t}: t \in T\right\}$. That this is true for $W^{\sigma}(S)$ follows from the following: for f in $W^{\sigma}(S), s, s_{1}, s_{2}$ in S, t_{0}, t in T,

$$
s\left(f \circ \sigma_{t_{0}}\right)_{s_{2}} \circ \sigma_{t}=\sigma_{t_{0}(s)}(s) f_{\sigma_{t_{0}}\left(s_{2}\right)} \circ \sigma_{t_{0} t}
$$

and

$$
\left(f \circ \sigma_{t_{0}}\right)_{\sigma_{t}\left(s_{1}\right) s_{2}}=f_{\sigma_{t_{0}} t\left(s_{1}\right) \sigma_{t_{0}}\left(s_{2}\right)} \circ \sigma_{t_{0}} .
$$

Let $a T$ denote the almost periodic compactification of T (induced by $A(T)$) and $w T$ denote the weakly almost periodic compactification of T
(induced by $W(T)$). Let $a S^{\sigma}$ denote the compactification of S induced by $A^{\sigma}(S)$ and $w S^{\sigma}$ denote the compactification of S induced by $W^{\sigma}(S)$. Then $a S^{\sigma}$ is a compact topological semigroup and $w S^{\sigma}$ is a compact semitopological semigroup by Lemma 2.12 and by remarks preceding it and Corollary 2.10 .
Theorem 3.11. $A^{\sigma}(S)$ and $A(T)$ induce a s.p.c. $a S^{\sigma} \circledast \overparen{\sigma} a T$ of $S \odot T$ which is a topological semigroup. Moreover, if $\bar{S} \odot \bar{T}$ is a s.p.c. of $S \odot T$ induced by \mathscr{A} and \mathscr{B} such that $\bar{S} \circledast \bar{T}$ is a topological semigroup, then $\mathscr{A} \subset A^{\sigma}(S)$ and $\mathscr{B} \subset A(T)$.

Proof. Recall from Proposition 3.10 that $f \circ \sigma_{t}$ is in $A^{\sigma}(S)$ for each f in $A^{\sigma}(S)$ and t in T. For s in S, t in T, f in $A^{\sigma}(S)$,

$$
t\left(f \circ \hat{\sigma}_{s}\right)=f \circ \sigma_{t} \circ \hat{\sigma}_{s}
$$

Since $\left\{f \circ \sigma_{t}: t \in T\right\}$ is totally bounded and the map $F \rightarrow F \circ \hat{\sigma}_{s}$ from $C(S)$ into $C(T)$ is norm continuous, $f \circ \hat{\sigma}_{s}$ is in $A(T)$. By Corollary 3.8, there is a s.p.c. $a S^{\sigma} \overparen{(} a T$ of $S \odot T$ which is a topological semigroup.

Next let $\bar{S} \mathscr{\sigma}^{\mathscr{C}} \bar{T}$ be any s.p.c. of $S \odot T$ induced by \mathscr{A} and \mathscr{B} which is a topological semigroup. By Corollary 3.8, $\mathscr{A} \subset A(S), \mathscr{B} \subset A(T)$, and $\left\{f \circ \sigma_{t}: t \in T\right\}$ is totally bounded in \mathscr{A} for each f in \mathscr{A}. Since \mathscr{A} is transla-tion-invariant, $\mathscr{A} \subset A^{\sigma}(S)$.

Remark. Theorem 3.11 states that $a S^{\sigma} \odot a T$ is, in terms of the algebras, the largest s.p.c. of $S \odot T$ which is a topological semigroup. The next result states that $w S^{\sigma}(\overparen{\sigma} w T$ is the largest s.p.c. of $S \odot T$.

Theorem 3.12. $W^{\sigma}(S)$ and $W(T)$ induce a s.p.c. w $\mathrm{S}^{*} \odot(6) T$ of $S \odot T$. Moreover, if $\bar{S} \overparen{(\sigma} \bar{T}$ is any s.p.c. of $S \odot T$ induced by \mathscr{A} and \mathscr{B}, then \mathscr{A} $\subset W^{\sigma}(S)$ and $\mathscr{B} \subset W(T)$.

Proof. Recall from Proposition 3.10 that $f \circ \sigma_{t}$ is in $W^{\sigma}(S)$ for each f in $W^{\sigma}(S)$ and t in T. Hence, conditions a) and b) of Theorem 3.7 are satisfied. To show condition c), let f be in $W^{\sigma}(S), s$ in S, t in T. Then,

$$
t\left(f \circ \hat{\sigma}_{s}\right)=f \circ \sigma_{t} \circ \hat{\sigma}_{s}
$$

Since $\left\{f \circ \sigma_{t}: t \in T\right\}$ is w.c.c. and the map $F \rightarrow F \circ \sigma_{s}$ from $C(S)$ into $C(T)$ is weakly continuous, $f \circ \hat{\sigma}_{s}$ is in $W(T)$. By Theorem 3.7, there exists a s.p.c. $w S^{\sigma} \circledast w T$ of $S \odot T$.

Next let $\bar{S} \circledast \bar{T}$ be a s.p.c. of $S \odot T$ induced by \mathscr{A} and \mathscr{B}. Let f be in \mathscr{A}, s_{1}, s_{2} in S. By Theorem 3.7 a), $\left\{s f \sigma_{t}: s \in S, t \in T\right\}$ is w.c.c. in \mathscr{A} and hence, $\left\{\left\{_{s} f_{s_{2}} \circ \sigma_{t}: s \in S, t \in T\right\}\right.$ is w.c.c. in \mathscr{A} by the translation invariance of \mathscr{A}. By Theorem 3.7 b), $\left\{f_{\sigma_{t}\left(s_{1}\right)}: t \in T\right\}$ is totally bounded in \mathscr{A}. Since

$$
f_{\sigma_{t}\left(s_{1}\right) s_{2}}=\left(f_{s_{2}}\right)_{\sigma_{t}\left(s_{1}\right)}
$$

and \mathscr{A} is translation-invariant, $\left\{f_{\sigma_{t}\left(s_{1}\right) s_{2}}: t \in T\right\}$ is totally bounded in \mathscr{A}.

Thus f is in $W^{\sigma}(S)$, and so $\mathscr{A} \subset W^{\sigma}(S)$. That $\mathscr{B} \subset W(T)$ follows from Definition 3.6.

Theorem 3.13. $A^{\sigma}(S)$ and $W(T)$ induce a s.p.c. $a S^{\circ}$ © $\mathfrak{\sigma} w T$ of $S \odot T$ for which $\bar{\sigma}$ is jointly continuous. Moreover, if $\bar{S}(\mathscr{\sigma} \bar{T}$ is a s.p.c. of $S \widetilde{\sigma} T$ induced by \mathscr{A} and \mathscr{B} for which \bar{S} is a topological semigroup and $\bar{\sigma}$ is jointly continuous, then $\mathscr{A} \subset A^{\sigma}(S)$.

Proof. Clearly $A^{\sigma}(S)$ and $W(T)$ satisfy conditions a) and b) of Theorem 3.7. Condition c) follows as in the previous two theorems. Hence, there is a s.p.c. $a S^{\sigma}(\overparen{(}) T$ of $S \odot T$ induced by $A^{\sigma}(S)$ and $W(T)$. By Corollary $3.4, \bar{\sigma}$ is jointly continuous.
Next suppose that $\bar{S} \circledast \bar{T}$ is a s.p.c. of $S \odot T$ induced by \mathscr{A} and \mathscr{B} such that $\bar{\sigma}$ is jointly continuous and \bar{S} is a topological semigroup. By remarks preceding Corollary $2.10, \mathscr{A} \subset A(S)$. By Corollary $3.4,\left\{f \circ \sigma_{t}: t \in T\right\}$ is totally bounded for each f in \mathscr{A}. Since \mathscr{A} is translation-invariant, $\mathscr{A} \subset A^{\sigma}(S)$.

Corollary 3.14. If S is a semitopological group, then

$$
A^{\sigma}(S)=W^{\sigma}(S) \cap A(S)
$$

Proof. From the remark preceding Corollary 3.8, it is clear that

$$
A^{\sigma}(S) \subset W^{\sigma}(S) \cap A(S)
$$

Let $\mathscr{A}=W^{\sigma}(S) \cap A(S)$ and $\mathscr{B}=W(T)$. Then \mathscr{A} is a translationinvariant unital C^{*}-subalgebra of $A(S)$ and \mathscr{A} and \mathscr{B} satisfy conditions a), b), and c) of Theorem 3.7 [c) follows as in the previous three theorems].

Hence \mathscr{A} and \mathscr{B} induce a s.p.c. $\bar{S} \circledast \mathscr{C} w$ of $S \mathbb{\odot} T$ where $\bar{S}=\Delta(\mathscr{A})$. Since $\mathscr{A} \subset A(S), \bar{S}$ is a topological group (as \bar{T} is in the proof of Corollary 3.5). Consider the (right) action ψ of \bar{S} on $\bar{S}(\mathscr{O} w T$ given by

$$
\left(\tau^{\prime}, \mu^{\prime}\right) \psi_{\tau}=\left(\tau^{\prime}, \mu^{\prime}\right)\left(\tau, I_{2}(1)\right)=\left(\tau^{\prime} \bar{\sigma}_{\mu^{\prime}}(\tau), \mu^{\prime}\right),
$$

where I_{2} is the embedding map of T into $w T$. Since ψ is separately continuous, ψ is jointly continuous by Ellis' Theorem [7]. Hence, $\bar{\sigma}$ is jointly continuous. By Theorem 3.13, $\mathscr{A} \subset A^{\sigma}(S)$. Consequently, $A^{\sigma}(S)=W^{\sigma}(S) \cap A(S)$.

Remark. If $\left\{\sigma_{t}: t \in T\right\}$ is finite, then clearly $A^{\sigma}(S)=A(S)$ and $W^{\sigma}(S)$ $=W(S)$. The following shows that $A^{\sigma}(S)$ can equal $A(S)$ when $\left\{\sigma_{t}: t \in T\right\}$ is infinite. Let S be an infinite commutative idempotent discrete semigroup with 1. Define $\sigma: S \rightarrow \mathscr{E}(S)$ by $\sigma_{t}(s)=t s$ if $s \neq 1$ and $\sigma_{t}(1)=1$. Let f be in $A(S)$. For s_{1}, s_{2} in S, t in S,

$$
s_{1} f_{s_{2}} \circ \sigma_{t}(s)=s_{s_{1} s_{2} t} f(s) \quad \text { if } s \neq 1
$$

and

$$
{ }_{s_{1}} f_{s_{2}} \circ \sigma_{t}(1)={ }_{s_{1}} f_{s_{2}}(1)
$$

It follows that f is in $A^{\sigma}(S)$.
The following is a more interesting example.
Example 3.15. Let S be an infinite set and let 0 and 1 be two elements of S. Define an operation on S by

$$
s s^{\prime}=\left\{\begin{array}{l}
s \text { if } s^{\prime}=1 \text { or } s^{\prime}=s \\
s^{\prime} \text { if } s=1 \\
0 \quad \text { otherwise }
\end{array}\right.
$$

Equip S with the discrete topology and observe that S is a commutative idempotent semigroup with identity, 1. Define $\sigma: S \rightarrow \mathscr{E}(S)$ by $\sigma_{t}(s)$ $=t s$ if $s \neq 1$ and $\sigma_{t}(1)=1$.

From the previous remark, one has that $A^{\sigma}(S)=A(S)$. However, it is interesting to note that

$$
A(S)=\left\{f \in B(S): \operatorname{limit}_{s \rightarrow \infty} f(s)=f(0)\right\}
$$

where $\operatorname{limit}_{s \rightarrow \infty} f(s)=L$ means that given $\epsilon>0$, there exists a finite subset F of S such that $|f(s)-L|<\epsilon$ for all s not in F. Also, $a S=(S, \mathscr{U})$, where \mathscr{U} is the topology in which neighborhoods of $I(0)$ [I being the embedding map] are complements of finite sets and every other point is open. Also, $W^{\sigma}(S)=W(S)$ due to the collapsing of the sets which need to be w.c.c. or totally bounded. Finally, $w S=\beta S=$ the Stone-Čech compactification of S [that is, $W(S)=B(S)$], since βS can be made into a compact semitopological semigroup such that the embedding map $I_{1}: S \rightarrow \beta S$ is a homomorphism by defining

$$
\tau \tau^{\prime}=\left\{\begin{array}{l}
\tau \text { if } \tau=\tau^{\prime} \text { in } I_{1}(S) \text { or } \tau^{\prime}=I_{1}(1) \\
\tau^{\prime} \text { if } \tau=I_{1}(1) \\
I_{1}(0) \quad \text { otherwise }
\end{array}\right.
$$

4. Almost periodic functions on semidirect products of semi-

 groups. In this section we obtain sufficient conditions for$$
A(S \odot T)=A^{\sigma}(S) \otimes A(T) \quad \text { and } \quad W(S \odot T)=W^{\sigma}(S) \otimes W(T)
$$

To do this we first develop some results on tensor products.
Let X and Y be sets and let \mathscr{C} be a unital C^{*}-subalgebra of $B(X \times Y)$ such that $\left\{h^{y}: y \in Y\right\}$ is w.c.c. for all h in \mathscr{C}. By Grothendieck's criterion [8], $\left\{{ }^{x} h: x \in X\right\}$ is w.c.c. for each h in \mathscr{C}. Let \mathscr{A} be the unital C^{*}-subalgebra of $B(X)$ generated by $\left\{h^{\nu}: h \in \mathscr{C}, y \in Y\right\}$ and let \mathscr{B} be the unital C^{*}-subalgebra of $B(Y)$ generated by $\{x h: h \in \mathscr{C}, x \in X\}$. Let \bar{X} be the
$\left(\mathscr{A}, I_{1}\right)$-compactification of $X ; \bar{Y}$ the $\left(\mathscr{B}, I_{2}\right)$-compactification of Y; and $\overline{X \times Y}$ the (\mathscr{C}, I)-compactification of $X \times Y$.
Definition 4.1. Given h in \mathscr{C}, τ in \bar{X}, μ in \bar{Y}, set ${ }^{\tau} h\left(y^{\prime}\right)=\tau\left(h^{\nu^{\prime}}\right)$ and $h^{\mu}\left(x^{\prime}\right)=\mu\left(x^{\prime} h\right)$ for all x^{\prime} in X and y^{\prime} in Y.

Note that ${ }^{I_{1}(x)} h={ }^{x} h$ and $h^{I_{2}(v)}=h^{y}$ for all h in \mathscr{C}, x in X, y in Y. Fix h in \mathscr{C} and τ in \bar{X}. Let $\left(x_{\alpha}\right)$ be a net in X such that $I_{1}\left(x_{\alpha}\right) \rightarrow \tau$. Then $\left({ }^{x_{\alpha}} h\right)$ converges pointwise to ${ }^{\top} h$. Since $\left\{{ }^{x} h: x \in X\right\}$ is w.c.c., $\left({ }^{x} \alpha h\right)$ converges weakly to ${ }^{\tau} h$. Since \mathscr{B} is weakly closed, ${ }^{\tau} h$ is in \mathscr{B}. Define ψ from \bar{X} into \mathscr{B} by

$$
\psi(\tau)=\tau h, \quad \tau \in \bar{X} .
$$

Then ψ is continuous in the topology of pointwise convergence on \mathscr{B} and $\left\{\psi\left(I_{1}(x)\right): x \in X\right\}=\{x h: x \in X\}$ is w.c.c. By Lemma 2.2, the map $\tau \rightarrow{ }^{\top} h$ is continuous from \bar{X} into $(\mathscr{B}, w k)$. Similarly for each h in \mathscr{C} and μ in \bar{Y}, h^{μ} is in \mathscr{A} and the map $\mu \rightarrow h^{\mu}$ is continuous from \bar{Y} into $(\mathscr{A}, w k)$.

For τ in \bar{X}, μ in \bar{Y}, define

$$
\tau \otimes \mu(h)=\tau\left(h^{\mu}\right), \quad h \in \mathscr{C} .
$$

The following properties follow directly:

1) $\tau \otimes \mu$ is in $\overline{X \times Y}$ for all τ in \bar{X}, μ in \bar{Y};
2) the map $(\tau, \mu) \rightarrow \tau \otimes \mu$ is separately continuous from $\bar{X} \times \bar{Y}$ into $\overline{X \times Y}$;
3) $I(x, y)=I_{1}(x) \otimes I_{2}(y)$ for all x in X, y in Y;
4) $\tau \otimes \mu(h)=\mu\left({ }^{\tau} h\right)$ for all τ in \bar{X}, μ in \bar{Y}, h in \mathscr{C}.

Let

$$
\bar{X} \otimes \bar{Y}=\{\tau \otimes \mu: \tau \in \bar{X}, \mu \in \bar{Y}\} .
$$

Note that $I(X \times Y) \subset \bar{X} \otimes \bar{Y} \subset \bar{X} \times \bar{Y}$ and hence $\bar{X} \otimes \bar{Y}$ is dense in $\overline{X \times Y}$. Let π be the map from $\bar{X} \times \bar{Y}$ into $\overline{X \times Y}$ such that $\pi:(\tau, \mu)$ $\rightarrow \tau \otimes \mu$.

Theorem 4.2. The following are equivalent:
i) π is jointly continuous,
ii) $\left\{h^{\nu}: y \in Y\right\}$ is totally bounded for all h in \mathscr{C},
iii) $\mathscr{C} \subset \mathscr{A} \otimes \mathscr{B}$.

Proof. To show i) implies ii), assume π is jointly continuous and let h be in \mathscr{C}. Let (y_{α}) be a net in Y and assume that $\left\{I_{2}\left(y_{\alpha}\right)\right\}$ converges to some μ in \bar{Y}. Since $\mu \rightarrow h^{\mu}$ is continuous from \bar{Y} into $(\mathscr{A}, w k)$, $\left\{h^{\nu_{a}}\right\}$ $=\left\{h^{I_{2}\left(y_{\alpha}\right)}\right\}$ converges weakly to h^{μ}. If the convergence is not uniform, by passing to subnets, we may assume that there exists a net $\left(x_{\alpha}\right)$ in X such that $\left\{h^{\nu_{\alpha}}\left(x_{\alpha}\right)-h^{\mu}\left(x_{\alpha}\right)\right\}$ does not converge to 0 and $\left\{I_{1}\left(x_{\alpha}\right)\right\}$ converges to some τ in \bar{X}. Since π is jointly continuous,

$$
\lim _{\alpha} h^{\nu_{\alpha}}\left(x_{\alpha}\right)=\lim _{\alpha} I_{1}\left(x_{\alpha}\right) \otimes I_{2}\left(y_{\alpha}\right)(h)=\tau \otimes \mu(h)
$$

and

$$
\lim _{\alpha} h^{\mu}\left(x_{\alpha}\right)=\lim _{\alpha} I_{1}\left(x_{\alpha}\right)\left(h^{\mu}\right)=\tau\left(h^{\mu}\right)=\tau \otimes \mu(h)
$$

which is a contradiction. Therefore, $\left\{h^{y_{\alpha}}\right\}$ converges uniformly to h^{μ}.
To show ii) implies iii), assume ii) and recall from Theorem 2.7 that

$$
\mathscr{A} \otimes \mathscr{B}=\left\{h \in B(X \times Y):{ }^{x} h \in \mathscr{B}, x \in X, h^{y} \in \mathscr{A}, y \in Y, \quad\right. \text { and }
$$

$\left\{h^{y}: y \in Y\right\}$ is totally bounded $\}$.
Hence, $\mathscr{C} \subset \mathscr{A} \otimes \mathscr{B}$.
To show iii) implies i), assume that $\mathscr{C} \subset \mathscr{A} \otimes \mathscr{B}$. By Theorem 2.7, $\left\{h^{y}: y \in Y\right\}$ is totally bounded for each h in \mathscr{C}. By Lemma 2.2 , it follows that the $\operatorname{map} \mu \rightarrow h^{\mu}$ is continuous from \bar{Y} into $\left(\mathscr{A},\| \|_{u}\right)$ for each h in \mathscr{C}. That π is jointly continuous now follows as in the proof of Theorem 2.6.

Remark. If $\mathscr{C} \subset \mathscr{A} \otimes \mathscr{B}$, then $\bar{X} \times \bar{Y}=\overline{X \times Y}$. To see this, note that by Theorem 4.2 iii), π is jointly continuous. Hence, $\pi(\bar{X} \times \bar{Y})$ is a compact dense subset of $\overline{X \times Y}$ and, therefore, $\bar{X} \otimes \bar{Y}=\pi(\bar{X} \times \bar{Y})$ $=\overline{X \times Y}$.

Corollary 4.3. $\mathscr{A} \otimes \mathscr{B}=\mathscr{C}$ if and only if π is a homeomorphism from $\bar{X} \times \bar{Y}$ onto $\overline{X \times \bar{Y}}$.

Proof. Assume that $\mathscr{A} \otimes \mathscr{B}=\mathscr{C}$. Let τ_{1}, τ_{2} be in \bar{X} and μ_{1}, μ_{2} be in \bar{Y} such that $\tau_{1} \otimes \mu_{1}=\tau_{2} \otimes \mu_{2}$. By evaluation at $f \otimes 1$ in \mathscr{C} for each f in \mathscr{A}, one obtains $\tau_{1}=\tau_{2}$. Similarly, $\mu_{1}=\mu_{2}$. Hence, π is one-to-one. By Theorem 4.2 and the above remark, π is a homeomorphism onto $\overline{X \times Y}$.

Now assume that π is a homeomorphism. Then π^{*} is an isometry from $C(\overline{X \times Y})$ onto $C(\bar{X} \times \bar{Y})=C(\bar{X}) \otimes C(\bar{Y})$. Let $\phi: X \times Y \rightarrow \bar{X} \times \bar{Y}$ be given by

$$
\phi(x, y)=\left(I_{1}(x), I_{2}(y)\right)
$$

Then ϕ^{*} is an isometry from $C(\bar{X} \times \bar{Y})$ onto $\mathscr{A} \otimes \mathscr{B}$. Also, I^{*} is an isometry from $C(\overline{X \times Y})$ onto \mathscr{C}. Setting

$$
\Phi=\phi^{*} \circ \pi^{*} \circ\left(I^{*}\right)^{-1}
$$

Φ is an isometry from \mathscr{C} onto $\mathscr{A} \otimes \mathscr{B}$. It follows directly that Φ^{-1} is the identity map on functions of the form $f \otimes g$ for f in \mathscr{A} and g in \mathscr{B}. Hence, Φ is the identity map and $\mathscr{C}=\mathscr{A} \otimes \mathscr{B}$.

Our setting for the remainder of the paper is as follows. $S \odot T$ will denote a semitopological semidirect product semigroup as in the previous section; \mathscr{C} will denote a translation-invariant unital C^{*}-subalgebra of $W(S \odot T)$; and \mathscr{A} and \mathscr{B} will be defined as earlier in this section.

Proposition 4.4. For each h in $\mathscr{C},\left\{h^{t}: t \in T\right\}$ is w.c.c. Moreover, \mathscr{A} is translation-invariant in $W(S)$ and \mathscr{B} is translation-invariant in $W(T)$.

Proof. Let h be in \mathscr{C}. For t in T and s in S,

$$
h^{t}(s)=h_{(1, t)}(s, 1) .
$$

Since $\left\{h_{(1, t)}: t \in T\right\}$ is w.c.c., so is $\left\{h^{t}: t \in T\right\}$. Also,

$$
{ }_{s}\left(h^{t}\right)=[(s, 1) h]^{t}
$$

is in \mathscr{A} and

$$
\left(h^{t}\right)_{s}=\left[h_{(s, t)}\right]^{1}
$$

is in \mathscr{A}. Since \mathscr{A} is generated by $\left\{h^{t}: h \in \mathscr{C}, t \in T\right\}$, it follows that \mathscr{A} is translation-invariant. Also, given h in \mathscr{C}, t in T, since $\{(s, 1) h: s \in S\}$ is w.c.c., so is

$$
\left\{[(s, 1) h]^{t}: s \in S\right\}=\left\{_{s}\left(h^{t}\right): s \in S\right\} .
$$

Thus, h^{t} is in $W(S)$ and so $\mathscr{A} \subset W(S)$. That \mathscr{B} is translation-invariant in $W(T)$ follows similarly.

Let \bar{S}, \bar{T}, and $\overline{S \times T}$ denote the $\left(\mathscr{A}, I_{1}\right)-,\left(\mathscr{B}, I_{2}\right)$-, and (\mathscr{C}, I)-compactifications of S, T, and $S \odot T$, respectively. By Lemma 2.12 and remarks preceding it, \bar{S}, \bar{T}, and $\overline{S \times T}$ are compact semitopological semigroups and the embedding maps are homomorphisms.

Lemma 4.5. Given τ, τ^{\prime} in \bar{S} and μ, μ^{\prime} in \bar{T}, one has that
a) $\left(\tau \tau^{\prime}\right) \otimes \mu=\left(\tau \otimes I_{2}(1)\right)\left(\tau^{\prime} \otimes \mu\right)$,
b) $\tau \otimes\left(\mu \mu^{\prime}\right)=(\tau \otimes \mu)\left(I_{1}(1) \otimes \mu^{\prime}\right)$.

In particular,

$$
\begin{aligned}
\tau \otimes \mu=\left(\tau \otimes I_{2}(1)\right)\left(I_{1}(1) \otimes \mu\right), & \left(\tau \tau^{\prime}\right) \otimes I_{2}(1) \\
& =\left(\tau \otimes I_{2}(1)\right)\left(\tau^{\prime} \otimes I_{2}(1)\right), \text { and }
\end{aligned}
$$

$I_{1}(1) \otimes\left(\mu \mu^{\prime}\right)=\left(I_{1}(1) \otimes \mu\right)\left(I_{1}(1) \otimes \mu^{\prime}\right)$.
Proof. Since $I: S \odot T \rightarrow \overline{S \times T}$ is a homomorphism, one obtains that

$$
\begin{aligned}
& \left(I_{1}(s) I_{1}\left(\sigma_{t}\left(s^{\prime}\right)\right)\right) \otimes\left(I_{2}(t) I_{2}\left(t^{\prime}\right)\right) \\
& \quad=\left(I_{1}(s) \otimes I_{2}(t)\right)\left(I_{1}\left(s^{\prime}\right) \otimes I_{2}\left(t^{\prime}\right)\right), \quad s, s^{\prime} \in S, t, t^{\prime} \in T
\end{aligned}
$$

Since π is separately continuous, it follows that
(1) $\left(\tau I_{1}\left(\sigma_{t}\left(s^{\prime}\right)\right)\right) \otimes\left(I_{2}(t) \mu^{\prime}\right)=\left(\tau \otimes I_{2}(t)\right)\left(I_{1}\left(s^{\prime}\right) \otimes \mu^{\prime}\right)$,

$$
s^{\prime} \in S, t \in T, \tau \in \bar{S}, \mu^{\prime} \in \bar{T}
$$

Letting $t=1$ in (1), one has that

$$
\left(\tau I_{1}\left(s^{\prime}\right)\right) \otimes \mu^{\prime}=\left(\tau \otimes I_{2}(1)\right)\left(I_{1}\left(s^{\prime}\right) \otimes \mu^{\prime}\right)
$$

By separate continuity, a) follows. Letting $s^{\prime}=1$ in (1), one has that

$$
\left(\tau I_{1}(1)\right) \otimes\left(I_{2}(t) \mu^{\prime}\right)=\left(\tau \otimes I_{2}(t)\right)\left(I_{1}(1) \otimes \mu^{\prime}\right)
$$

By separate continuity, b) follows.
Theorem 4.6. Assume that one of the following conditions is satisfied:
P) \bar{T} is a topological group and $1 \otimes g$ is in \mathscr{C} for each g in \mathscr{B};
Q) \bar{S} is a topological group and $f \otimes 1$ is in \mathscr{C} for each f in \mathscr{A}. Then $\mathscr{C}=\mathscr{A} \otimes \mathscr{B}$.

Proof. Assume that condition P) is satisfied. By Corollary 4.3 it suffices to show that π is a surjective homeomorphism. Define a (right) action of \bar{T} on $\overline{S \times T}$ by

$$
(\nu) \psi_{\mu}=\nu\left(I_{1}(1) \otimes \mu\right), \quad \mu \in \bar{T}, \nu \in \overline{S \times T}
$$

By Lemma 4.5, $(\nu) \psi_{\mu \mu^{\prime}}=(\nu) \psi_{\mu} \psi_{\mu^{\prime}}$ for all μ, μ^{\prime} in \bar{T}, ν in $\overline{S \times T}$. Since ψ is separately continuous, it is jointly continuous by Ellis' Theorem [7]. For τ in \bar{S}, μ in \bar{T},

$$
\left(\tau \otimes I_{2}(1)\right) \psi_{\mu}=\tau \otimes \mu
$$

by Lemma 4.5 and therefore π is jointly continuous. To show that π is one-to-one, assume that $\tau_{1} \otimes \mu_{1}=\tau_{2} \otimes \mu_{2}$ where τ_{1}, τ_{2} are in \bar{S} and μ_{1}, μ_{2} are in \bar{T}. By evaluation at $1 \otimes g$ in \mathscr{C} for each g in \mathscr{B}, one obtains that $\mu_{1}=\mu_{2}$. Choose any μ in \bar{T} and note that

$$
\left(\tau_{1} \otimes \mu_{1}\right)\left(I_{1}(1) \otimes \mu_{1}^{-1} \mu\right)=\tau_{1} \otimes \mu
$$

and

$$
\left(\tau_{2} \otimes \mu_{1}\right)\left(I_{1}(1) \otimes \mu_{1}^{-1} \mu\right)=\tau_{2} \otimes \mu
$$

by b) of Lemma 4.5. Thus, $\tau_{1} \otimes \mu=\tau_{2} \otimes \mu$ for all μ in \bar{T} and so $\tau_{1}\left(h^{\mu}\right)$ $=\tau_{2}\left(h^{\mu}\right)$ for all h in \mathscr{C} and μ in \bar{T}. Therefore, $\tau_{1}=\tau_{2}$ and π is one-to-one. From the remark preceding Corollary 4.3 , it follows that π is surjective. Hence $\mathscr{C}=\mathscr{A} \otimes \mathscr{B}$.

If condition Q) is assumed instead of condition P), a similar proof using a) of Lemma 4.5 will show that $\mathscr{C}=\mathscr{A} \otimes \mathscr{B}$.

Proposition 4.7. $A(S \odot T) \subset A(S \times T)$. In particular, if $A^{\sigma}(S)$ $=A(S)$, then $A(S \odot T)=A(S \times T)$.

Proof. Let h be in $A(S \odot T)$. Since $A(S \times T)=A(S) \otimes A(T)$ (this was proved after Corollary 2.9), we apply Corollary 2.9 in showing that h is in $A(S \times T)$. For s in S, t in T,

$$
{ }^{s} h(t)={ }_{(s, 1)} h(1, t) .
$$

Thus $\left\{{ }^{s} h: s \in S\right\}$ is totally bounded. Also,

$$
\left.t^{s} h\right)\left(t^{\prime}\right)={ }_{(s, t)} h\left(1, t^{\prime}\right), \quad s \in S, t, t^{\prime} \in T
$$

Consequently, $\left.\left\{t^{s} h\right): t \in T\right\}$ is totally bounded and so ${ }^{s} h$ is in $A(T)$. Finally,

$$
s\left(h^{t}\right)\left(s^{\prime}\right)=(s, 1) h\left(s^{\prime}, t\right), \quad s, s^{\prime} \in S, t \in T .
$$

Hence, $\left\{s\left(h^{t}\right): s \in S\right\}$ is totally bounded and so h^{t} is in $A(S)$. Thus,

$$
A(S \odot T) \subset A(S \times T)
$$

By the remark preceding Corollary 3.8 or by Theorem 3.11, it follows that

$$
A^{\sigma}(S) \otimes A(T) \subset A(S \odot T) .
$$

Thus, if $A^{\sigma}(S)=A(S)$, then $A(S \odot T)=A(S \times T)$.
In [11] Junghenn shows that there is a s.p.c. of $S \odot T$ induced by $A(S \odot T)$ when T contains a dense subgroup and in such a case obtains $A(S \odot T)$ as a tensor product. The following theorem together with Theorem 3.11 contain his result.

Theorem 4.8. Assume that a T is a topological group. Then

$$
A(S \odot T)=A^{\sigma}(S) \otimes A(T)
$$

Proof. Let $\mathscr{C}=A(S \mathscr{\odot} T)$. Let \mathscr{A} and \mathscr{B} be as defined earlier in this section (before Definition 4.1). Since $A(S \odot T) \subset A(S \times T)$, it follows that $\mathscr{A} \subset A(S)$ and $\mathscr{B} \subset A(T)$. Given g in $A(T)$, s in S, t in T, then

$$
{ }_{(s, t)}(1 \otimes g)=1 \otimes t g
$$

and thus $\{(s, t)(1 \otimes g): s \in S, t \in T\}$ is totally bounded. Consequently, $1 \otimes g$ is in \mathscr{C} for each g in $A(T)$. Since ${ }^{1}(1 \otimes g)=g$ for all g in $A(T)$, $\mathscr{B}=A(T)$. Since condition P) of Theorem 4.6 is satisfied, $\mathscr{C}=\mathscr{A}$ $\otimes A(T)$. To see that $\mathscr{A} \subset A^{\sigma}(S)$, let f be in \mathscr{A}. Then $f \otimes 1$ is in \mathscr{C} $=A(S \subset T)$ and therefore

$$
\{(s, t)(f \otimes 1): s \in S, t \in T\}
$$

is totally bounded in \mathscr{C}. Since

$$
(s, t)(f \otimes 1)=\left(s f \circ \sigma_{t}\right) \otimes 1 \quad \text { for each } s \text { in } S \text { and } t \text { in } T
$$

it follows that $\left\{{ }_{s} f \circ \sigma_{t}: s \in S, t \in T\right\}$ is totally bounded. Moreover,

$$
[(s, t)(f \otimes 1)]^{1}=f \circ \sigma_{t}
$$

and so ${ }_{s} f \circ \sigma_{t}$ is in \mathscr{A} for each s in S and t in T by the definition of \mathscr{A}. Thus, f is in $A^{\sigma}(S)$ and $\mathscr{A} \subset A^{\sigma}(S)$. For f in $A^{\sigma}(S)$,

$$
{ }_{(s, t)}(f \otimes 1)=f \circ \sigma_{t} \otimes 1
$$

from which it follows that $f \otimes 1$ is in \mathscr{C}. But $(f \otimes 1)^{1}=f$ is then in \mathscr{A}. Therefore, $\mathscr{A}=A^{\sigma}(S)$.

In [2] it is shown that $w(S \times T)=w S \times T$ where S is a semitopological semigroup with right identity and T is a compact topological group. The following theorem generalizes this result to semidirect products. A similar theorem, obtained independently, appears in [16].

Theorem 4.9. Assume that wT is a topological group. Then

$$
W(S \odot T)=W^{\sigma}(S) \otimes W(T)
$$

Proof. Let $\mathscr{C}=W(S \odot T)$ and \mathscr{A} and \mathscr{B} be as defined earlier in this section. By Proposition 4.4, $\mathscr{B} \subset W(T)$. For g in $W(T)$, it follows that $1 \otimes g$ is in \mathscr{C} and hence ${ }^{1}(1 \otimes g)=g$ is in \mathscr{B}. Therefore, $\mathscr{B}=W(T)$. By Theorem 4.6, $\mathscr{C}=\mathscr{A} \otimes W(T)$. To see that $\mathscr{A} \subset W^{\sigma}(S)$, first note that \mathscr{A} is a translation-invariant subalgebra of $W(S)$ by Proposition 4.4. Since $\mathscr{A} \otimes W(T)=W(S \odot T), 2)$ of Theorem 3.7 holds. Therefore, a) and b) of Theorem 3.7 hold, namely, $\left\{s f \circ \sigma_{t}: s \in S, t \in T\right\}$ is w.c.c. in \mathscr{A} and $\left\{f_{\sigma_{t}\left(s_{0}\right)}: t \in T\right\}$ is totally bounded in \mathscr{A} for each f in \mathscr{A} and s_{0} in S. Since \mathscr{A} is translation-invariant and

$$
f_{\sigma_{t}\left(s_{1}\right) s_{2}}=\left(f_{s_{2}}\right)_{\sigma_{t}\left(s_{1}\right)},
$$

$\mathscr{A} \subset W^{\sigma}(S)$. For f in $W^{\sigma}(S)$,

$$
(s, t)(f \otimes 1)=\left({ }_{s} f \circ \sigma_{t}\right) \otimes 1
$$

from which it follows that $f \otimes 1$ is in \mathscr{C}. But $(f \otimes 1)^{1}=f$ is then in \mathscr{A}. Therefore, $\mathscr{A}=W^{\sigma}(S)$.

Theorem 4.10. Let $\mathscr{C}=\left\{h \in W(S \odot T): h^{t} \in A^{\sigma}(S)\right.$ for all t in $\left.T\right\}$. If $a S^{\sigma}$ is a topological group, then $\mathscr{C}=A^{\sigma}(S) \otimes W(T)$.

Proof. For h in \mathscr{C}, s_{0} in S, t, t_{0} in T,

$$
\left[\left(s_{0}, t_{0}\right) h\right]^{t}=s_{s_{0}}\left(h^{t_{0} t}\right) \circ \sigma_{t_{0}}
$$

is in $A^{\sigma}(S)$ and

$$
\left[h_{\left(s_{0}, t_{0}\right)}\right]^{t}=\left(h^{t t_{0}}\right)_{\sigma_{t}\left(s_{0}\right)}
$$

is in $A^{\sigma}(S)$, since $A^{\sigma}(S)$ is closed under composition with the family $\left\{\sigma_{t}: t \in T\right\}$ by Proposition 3.10. Hence, \mathscr{C} is translation-invariant. It follows directly that \mathscr{C} is a unital C^{*}-subalgebra of $W(S \odot T)$. Let \mathscr{A} and \mathscr{B} be as defined earlier in this section. From the definition of \mathscr{C}, \mathscr{A} $\subset A^{\sigma}(S)$. For f in $A^{\sigma}(S), f=(f \otimes 1)^{t}$ for all t in T and so $f \otimes 1$ is in \mathscr{C} and hence f is in \mathscr{A} and $\mathscr{A}=A^{\sigma}(S)$. Hence, condition Q) of Theorem 4.6 is satisfied and so $\mathscr{C}=A^{\sigma}(S) \otimes \mathscr{B}$. By Proposition 4.4, $\mathscr{B} \subset W(T)$. If g is in $W(T)$, then $1 \otimes g$ is in \mathscr{C} since $(1 \otimes g)^{t}$ is a constant function on S for each t in T. Since ${ }^{1}(1 \otimes g)=g$ is in $\mathscr{B}, \mathscr{B}=W(T)$.

The following example shows that in general

$$
A(S \odot T) \neq A^{\sigma}(S) \otimes A(T) \quad \text { and } \quad W(S \odot T) \neq W^{\sigma}(S) \otimes W(T)
$$

Example 4.11. Let $S=(\mathbf{R},+)$ where \mathbf{R} denotes the real numbers with the usual topology and let $T=\left\{2^{-n}: n=0,1,2, \ldots\right\}$ under multiplication with the discrete topology. Define $\sigma_{t}(s)=t s$ for all t in T, s in S. We first show that $A^{\sigma}(S)$ consists of just the constant functions. Choose any net $\left\{t_{\alpha}\right\}$ in T such that

$$
\lim _{\alpha} t_{\alpha}=0 \quad \text { and } \quad \lim _{\alpha} I_{2}\left(t_{\alpha}\right)=\mu,
$$

where μ is in $a T$. Fix s in S and let $s_{\alpha}=s / t_{\alpha}$. By passing to subnets, we may assume that $\lim _{\alpha} I_{1}\left(s_{\alpha}\right)=\tau_{s}$ where τ_{s} is in $a S^{\sigma}$. Then

$$
I_{1}(s)=\lim _{\alpha} I_{1}\left(\sigma_{t_{\alpha}}\left(s_{\alpha}\right)\right)=\lim _{\alpha} \bar{\sigma}_{I_{2}\left(t_{\alpha}\right)}\left(I_{1}\left(s_{\alpha}\right)\right)=\bar{\sigma}_{\mu}\left(\tau_{s}\right),
$$

where $\bar{\sigma}$ is the extension of σ induced by $A^{\sigma}(S)$ and $A(T)$. By Theorem 3.11, such a $\bar{\sigma}$ exists and is jointly continuous. For s^{\prime} in S and f in $A^{\sigma}(S)$,

$$
\begin{aligned}
\bar{\sigma}_{\mu}\left(I_{1}\left(s^{\prime}\right)\right)(f)=\lim _{\alpha} \bar{\sigma}_{I_{2}\left(t_{\alpha}\right)}\left(I_{1}\left(s^{\prime}\right)\right) & (f)=\lim _{\alpha} I_{1}\left(t_{\alpha} s^{\prime}\right)(f) \\
& =\lim _{\alpha} f\left(t_{\alpha} s^{\prime}\right)=f(0)=I_{1}(0)(f) .
\end{aligned}
$$

Therefore, $\bar{\sigma}_{\mu}(\tau)=I_{1}(0)$ for all τ in $a S^{\sigma}$ and so $I_{1}(s)=\bar{\sigma}_{\mu}\left(\tau_{s}\right)=I_{1}(0)$. Hence, $f(s)=f(0)$ for all f in $A^{\sigma}(S)$.
We next show that $A(S) \otimes C_{0}(T) \subset A(S \odot T)$, where $C_{0}(T)$ consists of those functions in $B(T)$ which vanish at infinity. Let f be in $A(S)$ and g in $C_{0}(T)$. Then

$$
(s, t)(f \otimes g)\left(s^{\prime}, t^{\prime}\right)=f\left(s+t s^{\prime}\right) g\left(t t^{\prime}\right), \quad s, s^{\prime} \in S, t, t^{\prime} \in T
$$

Given $\epsilon>0$, there exists a $\delta>0$ such that if $t<\delta$, then

$$
\left|(s, t)(f \otimes g)\left(s^{\prime}, t^{\prime}\right)\right|<\epsilon \text { for all } s, s^{\prime} \text { in } S \text { and } t^{\prime} \text { in } T,
$$

since g is in $C_{0}(T)$. Since $\{t \in T: t \geqq \delta\}$ is finite, it suffices to show that $\left\{\left(s, t_{0}\right)(f \otimes g): s \in S\right\}$ is totally bounded for fixed t_{0} in T. Since

$$
\left(s, t_{0}\right)(f \otimes g)={ }_{s} f \circ \sigma_{t_{0}} \otimes{t_{0}} g
$$

and f is in $A(S),\left\{\left(s, t_{0}\right)(f \otimes g): s \in S\right\}$ is totally bounded. Hence,

$$
A(S) \otimes C_{0}(T) \subset A(S \odot T)
$$

and so $A(S \odot T) \neq A^{\sigma}(S) \otimes A(T)$.
To see that $W(S \odot T) \neq W^{\sigma}(S) \otimes W(T)$, one can argue as follows. Suppose that $W(S \odot T)=W^{\sigma}(S) \otimes W(T)$. Then from the previous paragraph,

$$
A(S) \otimes C_{0}(T) \subset W^{\sigma}(S) \otimes W(T)
$$

Let f be any non-constant function in $A(S)$, and let g be the identity
function on T. Then $f \otimes g$ is in $W^{\sigma}(S) \otimes W(T)$ and hence, $(f \otimes g)^{1}=f$ is in $W^{\sigma}(S)$. Thus, f is in $A(S) \cap W^{\sigma}(S)=A^{\sigma}(S)$ by Corollary 3.14. Since $A^{\sigma}(S)$ consists of just the constant functions, this is a contradiction.

It is possible to show more. We will show that $W^{\sigma}(S)$ consists of just the constant functions; from which it also follows that

$$
W(S \odot T) \neq W^{\sigma}(S) \otimes W(T)
$$

since as before, $A(S) \otimes C_{0}(T) \subset A(S \odot T) \subset W(S \odot T)$.
Since $w S^{\sigma}$ is a compact commutative semitopological semigroup (the commutativity follows from the fact that $w S^{\sigma}$ has separately continuous multiplication and contains a dense commutative subsemigroup), the kernel, K, of $w S^{\sigma}$ is a compact topological group ([5], Corollary 2.5). Let e be the identity of K. We first show that $e \circ f$ is a constant function for all f in $W^{\sigma}(S)$. Fix an f in $W^{\sigma}(S)$ and set $f_{0}=f-(e \circ f)$. Recall that $e \circ f$ is in $W^{\sigma}(S)$ since $W^{\sigma}(S)$ is left M-introverted. Then,

$$
e \circ f_{0}=(e \circ f)-e \circ(e \circ f)=(e \circ f)-(e \circ f)=0
$$

since for s in S,

$$
(e \circ(e \circ f))(s)=e\left({ }_{s}(e \circ f)\right)=e\left(e \circ{ }_{s} f\right)=e e\left({ }_{s} f\right)=e\left({ }_{s} f\right)=(e \circ f)(s) .
$$

Note that the third equality involves left Arens multiplication, as defined before Theorem 3.7. Also, $(e \circ f)^{\wedge}=(\hat{f})_{e}$, where \wedge denotes the Gelfand transform on $W^{\sigma}(S)$.

Let $F=(\hat{f})_{e}$ and note that K is an ideal in $w S^{\sigma}[\mathbf{5}]$. Define ρ from $w S^{\sigma}$ into K by $\rho\left(\tau^{\prime}\right)=\tau^{\prime} e$ for all τ^{\prime} in $w S^{\sigma}$, and note that ρ is a continuous homomorphism. Since K is a compact topological group, by Lemma 5.2 of [5],

$$
\rho^{*}(C(K)) \subset A\left(w S^{\sigma}\right)
$$

where $\rho^{*}(G)=G \circ \rho$ for all G in $C(K)$. Since $\left.\hat{f}\right|_{K}$ is in $C(K)$, where $\left.\hat{f}\right|_{K}$ denotes the restriction of \hat{f} to $K, \rho^{*}\left(\left.\hat{f}\right|_{K}\right)=F$ is in $A\left(w S^{\sigma}\right)$. Thus, $\left\{F_{\tau}: \tau \in w S^{s}\right\}$ is norm compact and, therefore, $\left\{F_{I_{1}(s)}: s \in S\right\}$ is totally bounded in $C\left(w S^{\sigma}\right)$, where I_{1} is the embedding map of S into $w S^{\sigma}$. Hence, $\left\{(e \circ f)_{s}: s \in S\right\}$ is totally bounded in $W^{\sigma}(S)$, and so $e \circ f$ is in $A(S)$ $\cap W^{\sigma}(S)=A^{\sigma}(S)$ by Corollary 3.14. Hence, $e \circ f$ is a constant function for all f in $W^{\sigma}(S)$.

Let τ be in $w S^{\sigma}$. We now show that $\tau e=e$. Let f be in $W^{\sigma}(S)$. Then $f=c+f_{0}$ where c is a constant and f_{0} is as defined above. Since $e \circ f_{0}=0$, $e\left(f_{0}\right)=0$ and so

$$
\tau e(f)=\tau e(c)+\tau e\left(f_{0}\right)=c=e(f) .
$$

Let I_{2} be the embedding map of T into $w T$; and let $\bar{\sigma}$ be the extension of σ induced by $W^{\sigma}(S)$ and $W(T)$. By Theorem 3.12, such a $\bar{\sigma}$ exists and is separately continuous. Note that $w T \sim I_{2}(T)$ is non-empty for, since
$A(T)$ separates the points of T, I_{2} is one-to-one and hence I_{2} cannot map a discrete T onto a compact $w T$. Let μ be in $w T \sim I_{2}(T)$. We now show that $\bar{\sigma}_{\mu}(\tau)=I_{1}(0)$ for all τ in $w S^{\sigma}$. Let $\left(t_{\alpha}\right)$ be a net in T with $I_{2}\left(t_{\alpha}\right) \rightarrow \mu$ and note that $\left(t_{\alpha}\right)$ converges to 0 . For s in S,

$$
\bar{\sigma}_{I_{2}\left(t_{\alpha}\right)}\left(I_{1}(s)\right)=I_{1}\left(t_{\alpha} s\right) \rightarrow I_{1}(0)
$$

and, by the separate continuity of $\bar{\sigma}$,

$$
\bar{\sigma}_{I_{2}\left(f_{\alpha}\right)}\left(I_{1}(s)\right) \rightarrow \bar{\sigma}_{\mu}\left(I_{1}(s)\right) .
$$

Therefore, $\bar{\sigma}_{\mu}\left(I_{1}(s)\right)=I_{1}(0)$ for all s in S. By the separate continuity of $\bar{\sigma}$ again and the fact that $I_{1}(S)$ is dense in $w S^{\sigma}$,

$$
\bar{\sigma}_{\mu}(\tau)=I_{1}(0) \quad \text { for all } \tau \text { in } w S^{\sigma} .
$$

We next show that $\bar{\sigma}_{I_{2}(t)}(e)=e$ for all t in T. Fix t in T. Since

$$
\bar{\sigma}_{I_{2}(t)}\left(I_{1}(s)\right)=I_{1}(t s), \quad s \in S,
$$

$\bar{\sigma}_{I_{2}(t)}$ maps $I_{1}(S)$ onto $I_{1}(S)$ and, therefore, $\bar{\sigma}_{I_{2}(t)}$ maps $w S^{\sigma}$ onto $w S^{\sigma}$. Hence, there exists a τ^{\prime} in $w S^{\sigma}$ such that

$$
\bar{\sigma}_{I_{2}(t)}\left(\tau^{\prime}\right)=e .
$$

Since $\tau e=e$ for all τ in $w S^{\sigma}$,

$$
\bar{\sigma}_{I_{2}(t)}(e)=\bar{\sigma}_{I_{2}(t)}\left(\tau^{\prime} e\right)=\bar{\sigma}_{I_{2}(t)}\left(\tau^{\prime}\right) \bar{\sigma}_{I_{2}(t)}(e)=e \bar{\sigma}_{I_{2}(t)}(e)=e .
$$

We now show that $w S^{\sigma}$ consists of a single point, and hence $W^{\sigma}(S)$ consists of just the constant functions. Since $\bar{\sigma}_{I_{2}(t)}(e)=e$ for all t in T and $\bar{\sigma}$ is separately continuous, $\bar{\sigma}_{\mu}(e)=e$ for all μ in $w T$. Since $\bar{\sigma}_{\mu}(e)$ $=I_{1}(0)$ for all μ in $w T \sim I_{2}(T), e=I_{1}(0)$. Then, for all τ in $w S^{\sigma}$,

$$
\tau=\tau I_{1}(0)=\tau e=e .
$$

Therefore, $w S^{\sigma}$ is a single point.
We complete this paper by obtaining certain conditions which force a semidirect product to be a direct product.
A character of a topological group G is a continuous homomorphism from G into the circle group ($=$ the group of complex numbers of modulus one). Let \hat{G} denote all characters of G.

Given any χ_{1}, χ_{2} in \hat{G} with $\chi_{1} \neq \chi_{2}$, one has that

$$
\left\|x_{1}-\chi_{2}\right\|_{u} \geqq \sqrt{3} .
$$

Theorem 4.12. Let S be a topological group such that $\hat{S} \cap A^{\sigma}(S)$ separates the points of S, and let T be connected. Then $S \odot T=S \times T$.
Proof. For each χ in $\hat{S} \cap A^{\sigma}(S),\left\{\chi \circ \sigma_{t}: t \in T\right\}$ is totally bounded and contained in \hat{S}. Hence, $\left\{\chi \circ \sigma_{t}: t \in T\right\}$ is finite. Fix a χ in $\hat{S} \cap A^{\sigma}(S)$. Let

$$
U=\left\{t \in T: \chi \circ \sigma_{t}=\chi\right\} .
$$

Then U is both closed and open in T and 1 is in U. Thus, $U=T$ and $\chi \circ \sigma_{t}=\chi$ for all t in T, for all χ in $\hat{S} \cap A^{\sigma}(S)$. Since $\hat{S} \cap A^{\sigma}(S)$ separates the points of $S, \sigma_{t}=$ the identity endomorphism for all t in T. Hence, $S \odot T=S \times T$.

Corollary 4.13. Let S be a locally compact, Hausdorff, abelian topological group and let T be a connected semitopological group. If $S \odot T$ is maximally almost periodic, then $S \subset T=S \times T$.

Proof. From [9], p. 345, \hat{S} separates the points of S. As in Corollary 3.5, $a T$ and $a S^{\sigma}$ are topological groups. Hence, by Theorem 4.8, $A^{\sigma}(S) \otimes A(T)$ separates the points of $S \odot T$. Thus, $A^{\sigma}(S)$ separates the points of S and so the embedding map $I_{1}: S \rightarrow a S^{\sigma}$ is one-to-one. Since $a S^{\sigma}$ is a compact abelian topological group, $\left(a S^{\sigma}\right)^{\wedge}$ separates the points of $a S^{\sigma}$. Since $\left(a S^{\sigma}\right)^{\wedge}$ is isometrically isomorphic to $\hat{S} \cap A^{\sigma}(S)$ via the adjoint map $I_{1}{ }^{*}$ restricted to $\left(a S^{\sigma}\right)^{\wedge}, \hat{S} \cap A^{\sigma}(S)$ separates the points of S.

Corollary 4.14. Let G be any semidirect product of $\left(\mathbf{R}^{n},+\right)$ with $\left(\mathbf{R}^{m},+\right)$ induced by some σ such that σ_{t} is not the identity endomorphism for some t in \mathbf{R}^{m}. Then $A^{\sigma}\left(\mathbf{R}^{n}\right) \neq A\left(\mathbf{R}^{n}\right)$.

Proof. If $A^{\sigma}\left(\mathbf{R}^{n}\right)=A\left(\mathbf{R}^{n}\right)$, then $\hat{\mathbf{R}}^{n} \cap A^{\sigma}\left(\mathbf{R}^{n}\right)=\hat{\mathbf{R}}^{n}$ separates the points of \mathbf{R}^{n}. By Theorem $4.12, G=\mathbf{R}^{n} \times \mathbf{R}^{m}$, which is a contradiction.

References

1. J. F. Berglund, H. D. Junghenn and P. Milnes, Compact right topological semigroups and generalizations of almost periodicity (Springer-Verlag, New York, 1978).
2. J. F. Berglund and P. Milnes, Algebras of functions on semi-topological left-groups, Trans. Amer. Math. Soc. 222 (1976), 157-178.
3. R. B. Burckel, Weakly almost periodic functions on semigroups (Gordon and Breach, New York, 1970).
4. K. Deleeuw and I. Glicksberg, Almost periodic functions on semigroups, Acta Math. 105 (1961), 99-140.
5. - Applications of almost periodic compactifications, Acta Math. 105 (1961), 63-97.
6. R. Edwards, Functional analysis (Holt, Rinehart, and Winston, New York, 1965).
7. R. Ellis, Locally compact transformation groups, Duke Math. J. 24 (1957), 119-125.
8. A. Grothendieck, Critères de compacité dans les espaces fonctionnels généraux, Amer. J. Math. 74 (1952), 168-186.
9. E. Hewitt and K. A. Ross, Abstract harmonic analysis I (Academic Press, New York, 1963).
10. H. D. Junghenn, Almost periodic compactifications of transformation semigroups, Pacific J. Math. 57 (1975), 207-216.
11. -_ Almost periodic functions on semidirect products of transformation semigroups, Pacific J. Math. 79 (1978), 117-128.
12. - C*-algebras of functions on direct products of semigroups, Rocky Mountain J. Math. 10 (1980), 589-597.
13. - Tensor products of spaces of almost periodic functions, Duke Math J. 41 (1974), 661-666.
14. H. D. Junghenn and B. T. Lerner, Semigroup compactifications of semidirect products, Trans. Amer. Math. Soc. 265 (1981), 393-404.
15. M. Landstad, On the Bohr compactification of a transformation group, Math. Zeit. 127 (1972), 167-178.
16. P. Milnes, Semigroup compactifications of direct and semidirect products, Preprint.
17. T. Mitchell, Function algebras, means, and fixed points, Trans. Amer. Math. Soc. 130 (1968), 117-126.
18. C. R. Rickart, General theory of Banach algebras (D. Van Nostrand, Princeton, N.J., 1960).
19. R. Schatten, A theory of cross-spaces (Ann. of Math. Studies, Princeton University Press, Princeton, N.J., 1950).
20. J.-P. Troallic, Fonctions à valeurs dans des espaces fonctionnels généraux: théorèmes de R. Ellis et de I. Namioka, C. R. Acad. Sc. Paris 287 (1978), 63-66.

Shippensburg State College,
Shippensburg, Pennsylvania;
Morehead State University, Morehead, Kentucky

[^0]: Received September 23, 1980 and in revised form November 4, 1981, May 28, 1982 and July 6,1982 . The authors wish to express their sincere appreciation and gratitude to Robert Burckel for his help and encouragement during the preparation of this paper.

