A NOTE ON SUBNORMAL SUBGROUPS OF DIVISION ALGEBRAS

GARY R. GREENFIELD

Let D be a division algebra and let D^{*} denote the multiplicative group of nonzero elements of D. In [3] Herstein and Scott asked whether any subnormal subgroup of D^{*} must be normal in D^{*}. Our purpose here is to show that division algebras over certain p-local fields do not satisfy such a "subnormal property".

Definition. We say a division algebra D satisfies the subnormal property if whenever $H \triangleleft G$ and $G \triangleleft D^{*}$ then $H \triangleleft D^{*}$.

Let K be a p-local field, and for convenience assume p is an odd prime, $p>3$. Let D be a K-division ring (a division algebra central over K) of index $n>1$. Our goal is to prove D does not satisfy the subnormal property.

If $|\bar{K}|=q$, then D contains a unique unramified extension $L=K(\epsilon)$ where ϵ is a primitive $q^{n}-1$ st root of unity. D is a cyclic crossed product $D \cong(L, \sigma, \lambda)$ where λ is a fixed prime element of K and $\langle\sigma\rangle \cong \operatorname{Gal}(L / K)$. The rings of integers of K, L, D will be denoted O_{K}, O_{L}, O_{D}, their unique maximal ideals by P_{K}, P_{L}, P_{D} and their groups of units by U_{K}, U_{L}, and U_{D}. We note that $O_{K} / P_{K} \cong G F(q)$ while $O_{L} / P_{L} \cong O_{D} / P_{D} \cong G F\left(q^{n}\right)$. This fact plays an important role in the sequel.

Let N be the reduced norm of D^{*} and let | | be any nontrivial valuation of K. Then N induces a valuation on D^{*} via $|\alpha|_{D}=|N(\alpha)|^{1 / n}$. The kernel G_{0} of the homomorphism N is the normal subgroup of D^{*} consisting of those elements of reduced norm one. By [4, Lemma 5$] G_{0} \subset U_{D}$. Set $U_{D}{ }^{0}=U_{D}$ and for any integer $j \geqq 1$ define $U_{D}{ }^{j}=\left\{\alpha \in U_{D} \mid \alpha \equiv 1 \bmod P_{D}{ }^{j}\right\}$. For any integer $r \geqq 0$ we define, as in [4], the "congruence subgroups" of G_{0} by setting

$$
\begin{aligned}
H_{r} & =\left\{\alpha \in G_{0} \mid \alpha \equiv 1 \bmod P_{D}{ }^{r}\right\}, \text { and } \\
G_{r} & =\left\{\alpha \in G_{0} \mid \alpha \equiv \beta \bmod P_{D}{ }^{r} \text { for some } \beta \in U_{K}\right\} .
\end{aligned}
$$

Clearly, H_{r}, G_{r} are subgroups of G_{0} and, as is evident from the definition, $H_{r}, G_{r} \triangleleft G_{0}$. We shall be interested in these subgroups principally when $n \nmid r$.

Assume $n \nmid r$. For $\alpha \in U_{K}{U_{D}}^{r}$ write $\alpha \equiv a+b \pi^{r} \bmod P_{D}{ }^{r+1}$ where $a \in U_{K}$, $b \in O_{L}$, and π is a generator for P_{D}. Define

$$
\rho_{T}: U_{K} U_{D}{ }^{r} \rightarrow O_{D} / P_{D}
$$

Received November 24, 1976.
via $\rho_{r}(\alpha)=a^{-1} b+P_{D}$. One checks ρ_{r} is a well-defined (additive) homomorphism. Since ρ_{r} restricted to H_{r} (respectively G_{r}) i; surjective [4, Lemma 6] and has kernel H_{r+1} (respectively G_{r+1}) we have:

Lemma 1. $H_{r+1} \triangleleft H_{r}, G_{r+1} \triangleleft G_{r}$, and $G_{r} / G_{r+1} \cong H_{r} / H_{r+1} \cong O_{D} / P_{D} \cong G F\left(q^{n}\right)$.
Viewing $G F\left(q^{n}\right)$ as an additive abelian group, it is isomorphic to a direct sum of n copies of $G F(q)$. Let G be the preimage under ρ_{r} restricted to H_{r} of one such copy. Then by the Correspondence Theorem for group homomorphisms it follows that $H_{r+1} \subset G \subset H_{r}$ where the inclusions are proper and $G \triangleleft H_{r}$.

Lemma 2. $H_{r}, G_{r} \triangleleft D^{*}$.
Proof. If $r=0$, then $G_{0}=H_{0}$ and we know $G_{0} \triangleleft D^{*}$. For $r \geqq 1$ we prove that $G_{r} \triangleleft D^{*}$ as the proof for H_{r} is identical. Let $\alpha \in G_{r}$ so $\alpha \equiv \beta \bmod P_{D}{ }^{r}$ for some $\beta \in U_{K}$. Thus $\alpha-\beta \in P_{D}{ }^{r}$. If $r=1$, then since $P_{D}=\left\{\left.\eta \in D| | \eta\right|_{D}<1\right\}$ and N is invariant under conjugation it follows that $\gamma(\alpha-\beta) \gamma^{-1} \in P_{D}$ for any $\gamma \in D^{*}$. Then by induction on r one obtains $\gamma(\alpha-\beta) \gamma^{-1} \in P_{D}{ }^{r}$ for any $\gamma \in D^{*}$. So $\gamma \alpha \gamma^{-1}-\beta \in P_{D}{ }^{r}$ and the result follows.

Definition. A subgroup M of G_{0} is of level s if $M \subset G_{s}$ but $M \not \subset G_{s+1}$.
Proposition 3. The subnormal property does not hold for D.
Proof. We first show our G (as constructed above) is of level r. Since $H_{r} \subset G_{r}$ it suffices to show $G \not \subset G_{r+1}$. If not, G is contained in the kernel of ρ_{r} restricted to G_{r} and in H_{r}. Thus G is contained in the kernel of ρ_{r} restricted to H_{r}. But the latter is H_{r+1} so $G \subset H_{r+1}$ contrary to assumption. Now suppose D satisfies the subnormal property. Then since $G \triangleleft H_{r}$ and $H_{r} \triangleleft D^{*}$ we must have $G \triangleleft D^{*}$. In particular, $G \triangleleft G_{0}$. But by [4, Theorem 15] we must have $H_{r} \subset G \subset G_{r}$, a contradiction. Thus $G \nsucc D^{*}$.

We conclude with an example to show that the subnormal property holds for the case $p=\infty$. Here the only possible division algebra is the real quaternions.

Example. The subnormal property holds for U_{R}, the division ring of real quaternions.

Proof. We first determine the normal subgroups of $U_{R}{ }^{*}$. Let G_{0} be the kernel of the usual sum of squares norm of $U_{R}{ }^{*}$, i.e., the quaternions of norm one. Suppose H is a finite subgroup of $U_{R}{ }^{*}$, with H not contained in the center, $Z\left(U_{R}\right)$. Note that this implies $|H|>2$ and $H \subset G_{0}$. If $\alpha \in H, \alpha \nexists Z\left(U_{R}\right)$ then [2, Theorem 1] α has an infinite number of distinct conjugates, say $\left\{\gamma_{j} \alpha \gamma_{j}{ }^{-1}\right\}$, in U_{R}. Then $\left\{\delta_{j} \alpha \delta_{j}{ }^{-1}\right\}$ where $\delta_{j}=\gamma_{j} /\left(N\left(\gamma_{j}\right)\right)^{1 / 2}$ is an infinite number of distinct conjugates in G_{0}. This shows $H \not \downarrow U_{R}{ }^{*}$ and $H \nleftarrow G_{0}$. Now, G_{0} modulo its center, $\langle-1\rangle$, is isomorphic to the special orthogonal group $\mathrm{SO}_{3}[\mathbf{5}, \mathrm{p} .115]$ which is simple [1, Theorems 4.8 and 4.9, p. 163 and 165]. Thus a composition series for G_{0} is $\left\{\mathrm{SO}_{3}, C_{2}\right\}$. Suppose $H \triangleleft G_{0}$ is an infinite group. If $-1 \in H, H$ contains the kernel of $\rho: G_{0} \rightarrow S_{3}$ so $H=G_{0}$. If $-1 \notin H$, then the cosets of H in G_{0} must
be H and $-H$. But then either $i \in H$ or $-i \in H$ so in either case the square $-1 \in H$, a contradiction. This shows the only proper normal subgroups of G_{0} are $\langle 1\rangle$ and $\langle-1\rangle$.

Claim. $G \triangleleft U_{R}{ }^{*}$ if and only if $G \subset Z\left(U_{R}\right)$ or $G \supset G_{0}$.
Proof. Clearly if either condition is satisfied $G \triangleleft U_{R}{ }^{*}$. Suppose $G \triangleleft U_{R}{ }^{*}$. Then $G \cap G_{0} \triangleleft G_{0}$. If $G \cap G_{0}=G_{0}$ then $G \supset G_{0}$ as required. If $G \cap G_{0}=\langle 1\rangle$ then for fixed $\alpha \in G$ and any $\beta \in G_{0}, \alpha\left(\beta \alpha^{-1} \beta^{-1}\right) \in G \cap G_{0}$ so $\alpha \beta=\beta \alpha$. Thus α commutes with G_{0} and hence with U_{R}, so $\alpha \in Z\left(U_{R}\right)$. Finally if $G \cap G_{0}=\langle-1\rangle$ and there exists $\alpha \in G, \alpha \notin Z\left(U_{R}\right)$ choose distinct conjugates $\beta_{j} \alpha \beta_{j}{ }^{-1}, 1 \leqq j \leqq 3$ of α in U_{R}. Then since $\left(\beta_{j} \alpha \beta_{j}^{-1}\right) \alpha^{-1} \in G \cap G_{0}$ we have, without loss of generality, $\beta_{1} \alpha \beta_{1}^{-1} \alpha^{-1}=\beta_{2} \alpha \beta_{2}^{-1} \alpha^{-1}$ and so $\beta_{1} \alpha \beta_{1}^{-1}=\beta_{2} \alpha \beta_{2}^{-1}$, a contradiction. Thus in this case we must also have $G \subset Z\left(U_{R}\right)$.

Assume $H \triangleleft G$ and $G \triangleleft U_{R}{ }^{*}$. Then we know either $G \subset Z\left(U_{R}\right)$ or $G \supset G_{0}$. If $G \subset Z\left(U_{R}\right)$ then $H \subset Z\left(U_{R}\right)$ so $H \triangleleft U_{R}{ }^{*}$. If $G \supset G_{0}$ and $H \supset G_{0}$ then $H \triangleleft U_{R}{ }^{*}$ so we need only consider the case where $G \supset G_{0}$ and $H \cap G_{0} \neq G_{0}$. Then $H \cap G_{0} \triangleleft G_{0}$ so $H \cap G_{0}=\langle-1\rangle$ or $\langle 1\rangle$ and the proof of the above claim shows $H \subset Z\left(U_{R}\right)$ so $H \triangleleft U_{R}{ }^{*}$.

References

1. E. Artin, Geometric algebra (Interscience Publishers Inc., New York, 1957).
2. I. N. Herstein, Conjugates in division rings, Proc. Amer. Math. Soc. 2 (19:56), 1021-1022.
3. I. N. Herstein and IV. R. Scott, Subnormal subgroups of division rings, Can. J. Math. 15 (1963), 80-83.
4. C. Riehm, The norm 1 group of p-adic division algebra, Amer. J. Math. 92 (1970), 499-523.
5. N. E. Steenrod, The topology of fibre bundles (Princeton University Press, Princeton, 1951).

Wayne State University,
Detroit, Michigan

