A NOTE ON SUBNORMAL SUBGROUPS OF DIVISION ALGEBRAS

GARY R. GREENFIELD

Let D be a division algebra and let D^* denote the multiplicative group of nonzero elements of D. In [3] Herstein and Scott asked whether any subnormal subgroup of D^* must be normal in D^* . Our purpose here is to show that division algebras over certain p-local fields do not satisfy such a "subnormal property".

Definition. We say a division algebra D satisfies the subnormal property if whenever $H \triangleleft G$ and $G \triangleleft D^*$ then $H \triangleleft D^*$.

Let *K* be a *p*-local field, and for convenience assume *p* is an odd prime, p > 3. Let *D* be a *K*-division ring (a division algebra central over *K*) of index n > 1. Our goal is to prove *D* does not satisfy the subnormal property.

If $|\vec{K}| = q$, then *D* contains a unique unramified extension $L = K(\epsilon)$ where ϵ is a primitive $q^n - 1$ st root of unity. *D* is a cyclic crossed product $D \cong (L, \sigma, \lambda)$ where λ is a fixed prime element of *K* and $\langle \sigma \rangle \cong \text{Gal}(L/K)$. The rings of integers of *K*, *L*, *D* will be denoted O_K , O_L , O_D , their unique maximal ideals by P_K , P_L , P_D and their groups of units by U_K , U_L , and U_D . We note that $O_K/P_K \cong GF(q)$ while $O_L/P_L \cong O_D/P_D \cong GF(q^n)$. This fact plays an important role in the sequel.

Let N be the reduced norm of D^* and let | | be any nontrivial valuation of K.Then N induces a valuation on D^* via $|\alpha|_D = |N(\alpha)|^{1/n}$. The kernel G_0 of the homomorphism N is the normal subgroup of D^* consisting of those elements of reduced norm one. By [4, Lemma 5] $G_0 \subset U_D$. Set $U_D^0 = U_D$ and for any integer $j \ge 1$ define $U_D^j = \{\alpha \in U_D | \alpha \equiv 1 \mod P_D^j\}$. For any integer $r \ge 0$ we define, as in [4], the "congruence subgroups" of G_0 by setting

 $H_r = \{ \alpha \in G_0 | \alpha \equiv 1 \mod P_D^r \}, \text{ and }$

 $G_r = \{ \alpha \in G_0 | \alpha \equiv \beta \mod P_D^r \text{ for some } \beta \in U_K \}.$

Clearly, H_r , G_r are subgroups of G_0 and, as is evident from the definition, H_r , $G_r \triangleleft G_0$. We shall be interested in these subgroups principally when $n \nmid r$.

Assume $n \nmid r$. For $\alpha \in U_K U_D^r$ write $\alpha \equiv a + b\pi^r \mod P_D^{r+1}$ where $a \in U_K$, $b \in O_L$, and π is a generator for P_D . Define

 $\rho_{\tau}: U_{K}U_{D}{}^{\tau} \to O_{D}/P_{D}$

Received November 24, 1976.

via $\rho_r(\alpha) = a^{-1}b + P_D$. One checks ρ_r is a well-defined (additive) homomorphism. Since ρ_r restricted to H_r (respectively G_r) is surjective [4, Lemma 6] and has kernel H_{r+1} (respectively G_{r+1}) we have:

LEMMA 1.
$$H_{r+1} \triangleleft H_r, G_{r+1} \triangleleft G_r, and G_r/G_{r+1} \cong H_r/H_{r+1} \cong O_D/P_D \cong GF(q^n).$$

Viewing $GF(q^n)$ as an additive abelian group, it is isomorphic to a direct sum of *n* copies of GF(q). Let *G* be the preimage under ρ_r restricted to H_r of one such copy. Then by the Correspondence Theorem for group homomorphisms it follows that $H_{r+1} \subset G \subset H_r$ where the inclusions are proper and $G \triangleleft H_r$.

LEMMA 2. $H_r, G_r \triangleleft D^*$.

Proof. If r = 0, then $G_0 = H_0$ and we know $G_0 \triangleleft D^*$. For $r \ge 1$ we prove that $G_r \triangleleft D^*$ as the proof for H_r is identical. Let $\alpha \in G_r$ so $\alpha \equiv \beta \mod P_D^r$ for some $\beta \in U_K$. Thus $\alpha - \beta \in P_D^r$. If r = 1, then since $P_D = \{\eta \in D \mid |\eta|_D < 1\}$ and N is invariant under conjugation it follows that $\gamma(\alpha - \beta)\gamma^{-1} \in P_D$ for any $\gamma \in D^*$. Then by induction on r one obtains $\gamma(\alpha - \beta)\gamma^{-1} \in P_D^r$ for any $\gamma \in D^*$. So $\gamma \alpha \gamma^{-1} - \beta \in P_D^r$ and the result follows.

Definition. A subgroup M of G_0 is of level s if $M \subset G_s$ but $M \not\subset G_{s+1}$.

PROPOSITION 3. The subnormal property does not hold for D.

Proof. We first show our G (as constructed above) is of level r. Since $H_r \subset G_r$ it suffices to show $G \not\subset G_{r+1}$. If not, G is contained in the kernel of ρ_r restricted to G_r and in H_r . Thus G is contained in the kernel of ρ_r restricted to H_r . But the latter is H_{r+1} so $G \subset H_{r+1}$ contrary to assumption. Now suppose D satisfies the subnormal property. Then since $G \triangleleft H_r$ and $H_r \triangleleft D^*$ we must have $G \triangleleft D^*$. In particular, $G \triangleleft G_0$. But by [4, Theorem 15] we must have $H_r \subset G \subset G_r$, a contradiction. Thus $G \triangleleft D^*$.

We conclude with an example to show that the subnormal property holds for the case $p = \infty$. Here the only possible division algebra is the real quaternions.

Example. The subnormal property holds for U_R , the division ring of real quaternions.

Proof. We first determine the normal subgroups of U_R^* . Let G_0 be the kernel of the usual sum of squares norm of U_R^* , i.e., the quaternions of norm one. Suppose H is a finite subgroup of U_R^* , with H not contained in the center, $Z(U_R)$. Note that this implies |H| > 2 and $H \subset G_0$. If $\alpha \in H$, $\alpha \notin Z(U_R)$ then [2, Theorem 1] α has an infinite number of distinct conjugates, say $\{\gamma_j \alpha \gamma_j^{-1}\}$, in U_R . Then $\{\delta_j \alpha \delta_j^{-1}\}$ where $\delta_j = \gamma_j / (N(\gamma_j))^{1/2}$ is an infinite number of distinct conjugates in G_0 . This shows $H \nleftrightarrow U_R^*$ and $H \nleftrightarrow G_0$. Now, G_0 modulo its center, $\langle -1 \rangle$, is isomorphic to the special orthogonal group SO_3 [5, p. 115] which is simple [1, Theorems 4.8 and 4.9, p. 163 and 165]. Thus a composition series for G_0 is $\{SO_3, C_2\}$. Suppose $H \triangleleft G_0$ is an infinite group. If $-1 \in H$, H contains the kernel of $\rho : G_0 \to SO_3$ so $H = G_0$. If $-1 \notin H$, then the cosets of H in G_0 must be H and -H. But then either $i \in H$ or $-i \in H$ so in either case the square $-1 \in H$, a contradiction. This shows the only proper normal subgroups of G_0 are $\langle 1 \rangle$ and $\langle -1 \rangle$.

Claim. $G \triangleleft U_R^*$ if and only if $G \subset Z(U_R)$ or $G \supset G_0$.

Proof. Clearly if either condition is satisfied $G \triangleleft U_R^*$. Suppose $G \triangleleft U_R^*$. Then $G \cap G_0 \triangleleft G_0$. If $G \cap G_0 = G_0$ then $G \supset G_0$ as required. If $G \cap G_0 = \langle 1 \rangle$ then for fixed $\alpha \in G$ and any $\beta \in G_0$, $\alpha(\beta\alpha^{-1}\beta^{-1}) \in G \cap G_0$ so $\alpha\beta = \beta\alpha$. Thus α commutes with G_0 and hence with U_R , so $\alpha \in Z(U_R)$. Finally if $G \cap G_0 = \langle -1 \rangle$ and there exists $\alpha \in G$, $\alpha \notin Z(U_R)$ choose distinct conjugates $\beta_j \alpha \beta_j^{-1}$, $1 \leq j \leq 3$ of α in U_R . Then since $(\beta_j \alpha \beta_j^{-1}) \alpha^{-1} \in G \cap G_0$ we have, without loss of generality, $\beta_1 \alpha \beta_1^{-1} \alpha^{-1} = \beta_2 \alpha \beta_2^{-1} \alpha^{-1}$ and so $\beta_1 \alpha \beta_1^{-1} = \beta_2 \alpha \beta_2^{-1}$, a contradiction. Thus in this case we must also have $G \subset Z(U_R)$.

Assume $H \triangleleft G$ and $G \triangleleft U_R^*$. Then we know either $G \subset Z(U_R)$ or $G \supset G_0$. If $G \subset Z(U_R)$ then $H \subset Z(U_R)$ so $H \triangleleft U_R^*$. If $G \supset G_0$ and $H \supset G_0$ then $H \triangleleft U_R^*$ so we need only consider the case where $G \supset G_0$ and $H \cap G_0 \neq G_0$. Then $H \cap G_0 \triangleleft G_0$ so $H \cap G_0 = \langle -1 \rangle$ or $\langle 1 \rangle$ and the proof of the above claim shows $H \subset Z(U_R)$ so $H \triangleleft U_R^*$.

References

- 1. E. Artin, Geometric algebra (Interscience Publishers Inc., New York, 1957).
- 2. I. N. Herstein, Conjugates in division rings, Proc. Amer. Math. Soc. 2 (1956), 1021-1022.
- I. N. Herstein and W. R. Scott, Subnormal subgroups of division rings, Can. J. Math. 15 (1963), 80-83.
- 4. C. Riehm, The norm 1 group of p-adic division algebra, Amer. J. Math. 92 (1970), 499-523.
- 5. N. E. Steenrod, The topology of fibre bundles (Princeton University Press, Princeton, 1951).

Wayne State University, Detroit, Michigan