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Abstract

This note deals with some properties of algebraic number fields generated by numbers having
all their conjugates on a circle. In particular, it is shown that an algebraic number field is a
CM-field if and only if it is generated over the rationals by an element (not equal to ±1)
whose conjugates all lie on the unit circle.

Subject classification (Amer. Math. Soc. (MOS) 1970): 12 A 15, 12 A 40, 14 K 22.

1. Introduction

An interesting and important class of fields which arise in algebraic number theory
and elsewhere are the so-called fields of complex multiplication, or CM-fields for
short. These are defined as follows.

DEFINITION. An algebraic number field is called a CM-field if it is a totally
imaginary quadratic extension of a totally real algebraic number field. (Here, an
algebraic number field is a subfield of C which is also a finite extension of Q.
As usual, Q and C denote the fields of rational and complex numbers respectively.)

The set of totally real fields and CM-fields go collectively under the designation
J-fields (Gold (1974)), or almost real fields (Grossman (1976)).

CM-fields have a number of interesting characterizations. (See, for example,
Shimura (1971), Gyory (1975), Parry (1975).) In particular, the following propo-
sition is well known and may be used as an alternative definition.
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PROPOSITION. A non-real algebraic number field K is a CM-field if and only if K
is closed under the operation of complex conjugation and complex conjugation
commutes with all the Q-monomorphisms of K into C.

The aim of this paper is to add a further simple characterization of CM-fields
which does not seem to have been exploited elsewhere.

The following piece of notation will be useful. If 9 is an algebraic number of
degree n, we denote the conjugates of 9 by 9 = 0lt 92,...,9n and we write

|~0| = max|0, | .

THEOREM 1. A necessary and sufficient condition that an algebraic number field be
a CM-field is that it be generated over the rationals by an element 9 ( # ±1) for
which \B\ = \.

COROLLARY. A necessary and sufficient condition that an algebraic number field
be totally real is that it be generated over the rationals by an element of the form
6+Bwhere\6\ = 1.

Note thatffl] = 1 implies 9 is reciprocal and so | 9$\ = 1 for./ = 1,2, ...,n. In the
case that there exists such a generator 6 which is an algebraic integer, then 9 is a
root of unity by a classical theorem of Kronecker, and so Q(9) is a cyclotomic
field. The 9 with [9~\ = 1 have a simple characterization. (See Ennola and Smyth
(1974), Theorem 3.)

The necessity of the condition in Theorem 1 will be an immediate consequence
of the following.

THEOREM 2. A necessary and sufficient condition that a non-real algebraic number
field be closed under the operation of complex conjugation is that it be generated
over the rationals by an element a. with | a | = 1.

2. Proof of Theorem 1

The sufficiency of the condition follows from the Proposition, since S = 9~l and
9^ ± 1 imply that K = Q(0) is a non-real field which is closed under complex
conjugation; and since | 05-| = 1 (1 Kj^n), we have for all Q-monomorphisms a of
K into C

a(6) being some conjugate of 9.

The necessity follows from Theorem 2, for if a is a member of a CM-field, then

| a | = 1 is equivalent to [a] = 1.
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3. Proof of Theorem 2

The sufficiency of the condition is clear since a"1 = a.
To prove the necessity, suppose K = Q(j8). Then pV ft and, since K = R,we know

ft is in K. For r in Q, define

7r =

and let at (1 *?./<«) be the Q-monomorphisms of K into C. (Here, n is the degree
of p" and we take ax to be the identity.) The field conjugates of yr are the

We aim to show that for some r in Q, yr generates K over Q, and so, to the
contrary, let us suppose that the degree of yr is strictly less than n for all r in Q.
Then there are distinct numbers r and s in Q and an integer t with 1 < t ̂  n such
that ys = at(ys) and yr = ot(yr). That is

Now, by considering the generator fi+s in place of j8, we may suppose s = 0.
Thus, if we write S = CT,(J8) and e = <r((fi), we have

p5 e ' )g+r

Since r # 0, we deduce from these equations that

But pVj5 so )5 = e, whence j8 = 5. This yields CT,(J3) = j8, contradicting that <> 1.
Thus there exists a number r such that yr has degree n, and since | yr\ = 1, we may
take a = yr and the necessity of the theorem is established.

4. Additional remarks

(a) Suppose that 6 = 0lt 62,..., 0n are the conjugates of 0, and that

(i) Kf = * (
Write K = Q(0) and let L be the normal closure of K in C. We will dispense with
the case n = 2 with the comment that K is totally real if 6 is real and K is a
CM-field if 6 is not real.
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Suppose now that n > 2. If cr is any Q-automorphism of L, then since R is in L,

a{R) = a(00") = o{0)o{B) = ^ . R .

Thus o(R) = R if and only if a(G) = <r(0). Since 0 has at least one non-real conjugate,
we deduce that when 0 satisfies (1) and n > 2, then Q(0) is a CM-field if and only if
R is in Q.

(b) In general, when 0 satisfies (1), we have Rin in Q. Let k be the least positive
integer such that Rk is in Q and write Kx = Q(0fc). Since | 6$\2 is in Q, we deduce
as in (a) that either Kx is a real quadratic extension of Q or Kx is a CM-field.
Now K = K^d) is a pure root extension of Kx. The conjugates of 0 over Kx are
of the form 0£ where £fc = 1. If [K: Kj] = dso that d^k, then NK/Ki6 is an element
of Kx with all its conjugates on the circle |z|2 = Rd, and since Kx is CM or real
quadratic, we deduce that Rd is in Q and so d = k. Thus K is a pure root extension
of Kx of degree k.

(c) More generally again, suppose (1) is replaced by

(2) |0 , -y | 2 = * (Kj<n),

where as before we need only consider n > 2. Then y is real, and indeed y is in L.
(For if 0J, Slt d2, say, are distinct conjugates then | 61—y\ = | 82—y\ implies that
y is in Q(^, 0\, 62, B^L.)

Suppose that K = Q(0) is a CM-field and let o- be any Q-automorphism of L.
Then

a(R) =

Thus the a(0^) (1 ^j<n), that is the 0< (1 < i^n), lie on the circle | z - a(y)|2 = a(R).
Since «>2, we deduce that a(y) = y and o(R) = i?. This holds for all a, so y and
R are in Q. Conversely, if y and /? are in Q, then K is a CM-field. So when 0
satisfies (2) and «>2, then Q(0) is a CM-field if and only if y and R are in Q.
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