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Abstract Biodiversity monitoring programmes should be
designed with sufficient statistical power to detect popula-
tion change. Here we evaluated the statistical power of mon-
itoring to detect declines in the occupancy of forest birds on
Christmas Island, Australia. We fitted zero-inflated bino-
mial models to 3 years of repeat detection data (2011, 2013
and 2015) to estimate single-visit detection probabilities
for four species of concern: the Christmas Island imperial
pigeon Ducula whartoni, Christmas Island white-eye
Zosterops natalis, Christmas Island thrush Turdus polioce-
phalus erythropleurus and Christmas Island emerald dove
Chalcophaps indica natalis. We combined detection prob-
abilities with maps of occupancy to simulate data collected
over the next 10 years for alternative monitoring designs and
for different declines in occupancy (10-50%). Specifically,
we explored how the number of sites (60, 128, 300, 500),
the interval between surveys (1-5 years), the number of re-
peat visits (2—4 visits) and the location of sites influenced
power. Power was high (> 80%) for the imperial pigeon,
white-eye and thrush for most scenarios, except for when
only 60 sites were surveyed or a 10% decline in occupancy
was simulated over 10 years. For the emerald dove, which is
the rarest of the four species and has a patchy distribution,
power was low in almost all scenarios tested. Prioritizing
monitoring towards core habitat for this species only slight-
ly improved power to detect declines. Our study demon-
strates how data collected during the early stages of
monitoring can be analysed in simulation tools to fine-
tune future survey design decisions.

Keywords Christmas Island, detectability, forest birds,
monitoring, occupancy models, simulation, statistical
power, survey design

The supplementary material for this article is available at
doi.org/10.1017/S0030605323001382

*Corresponding author, darren.southwell@newcastle.edu.au

'School of Environmental and Life Science, University of Newcastle, Callaghan,
Australia

*School of BioSciences, University of Melbourne, Parkville, Australia

*Parks Australia, Canberra, Australia

“wildlife Conservation and Science, Zoos Victoria, Parkville, Australia
*Durrell Institute of Conservation and Ecology (DICE), School of Anthropology
and Conservation, University of Kent, Canterbury, UK

Received 10 August 2022. Revision requested 8 December 2022.
Accepted 5 September 2023.

*1,2

, ADAM SMART?>®, SAMUEL D. MERSON?

and NicHoLAS A. MACGREGOR??

Introduction

B iodiversity monitoring is important for determining the
status of populations and how they are trending over
time (Gerber et al., 1999). Monitoring also provides essential
information for evaluating the effectiveness of management
actions (Holling, 1978) and raising awareness or political
support (Possingham et al., 2012). However, knowing how
much to invest in monitoring, and where, when and how
to allocate this effort across space and time is difficult
(Legge et al., 2018). Practitioners are faced with a series of
complex decisions about which species to monitor, what
to measure, the type(s) of sampling methods to deploy,
the duration of monitoring, the number and location of
sites and the frequency and intensity of sampling.
Although there are many examples of successful biodiver-
sity monitoring programmes, recent reviews have shown
that most are inadequately designed or resourced to achieve
their objectives (Scheele et al., 2019; Lavery et al., 2021).

If the goal is to detect a change or trend in a state variable
of interest (i.e. abundance or occupancy), then monitoring
should be designed to have sufficient statistical power to de-
tect that change (Steidl et al., 1997; Strayer, 1999). Statistical
power is the chance of correctly rejecting the null hypothesis
that no change has occurred in a state variable of interest,
such as population size or occupancy (Thomas & Juanes,
1996). Power analysis is a critical component of monitoring
design because it can assess the chance that monitoring will
detect a change in a population (Thorn et al., 2011; Loos
et al,, 2015) or the level of effort (e.g. the number of sites
or the time spent at sites) needed to detect a change with
a desired level of confidence (Barata et al., 2017). Although
many tools have been developed to assist practitioners in de-
signing monitoring programmes (Wauchope et al., 2019),
they are rarely utilized during the design phase of moni-
toring or to evaluate the performance of long-running
biodiversity monitoring programmes.

Correlative species distribution models are routinely used
in conservation planning to improve the coverage of pro-
tected areas (Elith & Leathwick, 2009; Carvalho et al,
2010); however, they can also be used to design cost-efficient
monitoring networks (Amorim et al., 2014; Vicente et al,,
2016). There are few studies that link species distribution
models, spatial prioritization and power analysis in a single
monitoring design framework (Ellis et al., 2014; Southwell
etal,, 2019; Smart et al., 2022). Spatially explicit power analysis
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is valuable for determining the optimal placement and num-
ber of sites within a landscape needed to detect change in the
expected distributions of species (Ellis et al., 2014; Southwell
et al,, 2019). The approach is especially useful when target
species are found at different locations or have fragmented
distributions, resulting in significant variation in power be-
tween species for a given positioning of sites across a land-
scape (Smart et al., 2022; Southwell et al., 2022).

In this study, we combined species distribution modelling,
detectability modelling, spatial prioritization and power ana-
lysis to evaluate the likely performance of biodiversity mon-
itoring on Christmas Island, a small island in the Indian
Ocean. The island has a high proportion of endemic species
and supports many threatened taxa, making it a site of inter-
national conservation significance (Eldridge et al., 2014).
Christmas Island biota are faced with a range of threats, in-
cluding invasive species and habitat disturbance. As a result,
the island has been the focus of several long-running and in-
tensive biodiversity monitoring programmes, including a
large island-wide multi-species monitoring programme
(Abbott, 2006). The availability of data from those past pro-
grammes provides a valuable opportunity to evaluate alter-
native monitoring designs that could be implemented in
future to ensure that resources are targeted most effectively
towards detecting trends in priority species.

We focused on four forest birds of conservation concern
on Christmas Island: the Christmas Island imperial pigeon
Ducula whartoni, Christmas Island white-eye Zosterops
natalis, Christmas Island thrush Turdus poliocephalus
erythropleurus and Christmas Island emerald dove
Chalcophaps indica natalis. We estimated detection prob-
abilities for these species by fitting detection models to
historic multi-year repeat detection data. We combined
existing maps of the predicted habitat suitability for each
species in a spatial prioritization tool, Zonation (Lehtomaki
& Moilanen, 2013), to rank grid cells in the landscape for
future surveys. We combined the occupancy maps and
detection probabilities to simulate data that could be col-
lected in future under various monitoring design scenarios
and assumptions about how species decline. For each
scenario we calculated the statistical power to detect declines
depending on decisions about the number of sites, the
interval between surveys and the number of repeat visits
to a site. Our analysis will help inform how monitoring
effort is allocated on Christmas Island in future and
provides a general simulation framework for evaluating
monitoring design.

Methods

Study area

Our study area comprised the entirety of Christmas Island
(135,000 ha), an Australian territory located 300 km south of
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Java (Indonesia) in the Indian Ocean (Fig. 1). The island re-
ceives c. 2,000 mm of rainfall per year, supporting a mix of
tall tropical rainforest and semi-deciduous rainforest on the
plateau and semi-evergreen thickets on coastal terraces.
A large proportion (c. 63%) of Christmas Island is protected
by a national park, supporting rich and distinctive biota.
Ecosystem dynamics are driven by abundant land crabs
(most notably the Christmas Island red crab Gecarcoidea
natalis), which regulate seedling recruitment and litter
breakdown (Green et al., 1999).

Forest bird monitoring data

Several monitoring programmes have targeted the four
forest bird species that are the focus of this study. During
2005-2006, a pilot survey for forest birds was conducted
at 128 sites located at c. 500-m intervals along roads and
tracks. These sites were chosen for ease of access and with
future repeatability in mind (James & Retallick, 2007). At
each site, a point survey was conducted for a fixed 10-min
period. All bird species detected either visually or audibly
at each point (including those flying overhead) were re-
corded as present; all others were recorded as not detected.

A more intensive island-wide biodiversity survey has also
been conducted biannually during 2001-2021 at c. 1,000
sites positioned in a regular grid across the island (spaced
400 m apart). Although the purpose of this programme
was primarily to monitor the abundance and activity of
Christmas Island red crabs and invasive yellow crazy ants
Anoplolepis gracilipes, forest birds were also recorded until
2015. At each site, a 5-min point-survey was conducted,
with bird species recorded visually or auditorily, followed
by opportunistic sightings whilst walking two 50-m trans-
ects to survey for other species (each starting in opposite
directions from the point count).
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Fic. 1 Christmas Island, with the major road network (black
lines). The inset map shows the location of Christmas Island
with respect to Australia and Indonesia.

doi:10.1017/50030605323001382


https://doi.org/10.1017/S0030605323001382

During the island-wide survey, within-year repeat sur-
veys were conducted in 2009, 2011, 2013 and 2015. In these
years, a random subset of c. 50 sites were surveyed twice,
25 sites were surveyed three times and a smaller number
were surveyed four times. Inspection of the data revealed
that the median time between repeats was 7-8 days (except
for surveys in 2009), which meant that repeat surveys were
generally completed within 2-3 weeks. All surveys were con-
ducted outside the birds’ breeding season during May-
October. From this, detection histories for forest birds ob-
served at least once during a survey were constructed,
with 1 representing the detection of a species and o repre-
senting non-detection.

Monitoring objective

We assumed that the primary objective of a targeted forest
bird monitoring programme was to detect declines in occu-
pancy of the four priority species over a 10-year time hori-
zon. Given the accessibility of the 128 sites piloted during
2005-2006, we assumed that these sites formed the founda-
tion of monitoring (hereafter referred to as ‘core sites’).
To evaluate alternative monitoring designs, we estimated
single-visit detection probabilities, collated published
maps of occupancy and simulated future monitoring data
under assumptions about change. These steps are outlined
in further detail below and illustrated in Fig. 2.

Single-visit detection probabilities

We calculated a mean single-visit detection probability for
the four species by fitting a zero-inflated binomial model
to island-wide survey data (Wintle et al, 2004, 2005).
We only used data collected in 2011, 2013 and 2015 when

1) Occupancy maps
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2) Estimate detection
probabilities from historic
detection histories
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Power analysis and spatial prioritization

the time between repeats was minimal (on average 7-8
days). When species are not perfectly detectable, site occu-
pancy data are the realizations of two binomial processes
acting simultaneously: (1) the probability of sites being oc-
cupied over a relatively long period, and (2) the probability
of observing the species in any one visit to those sites. The
outcome of these two processes over all survey sites is a finite
mixture distribution known as the zero-inflated binomial
mixture model, where the probability (PR) that the random
variable Y takes a value of o or y is given by:

PR[Y =0] = 1 — ¥ + W(1 — p)"

v B (1)
PRIY = y] = ‘1’<y) P - p

where y is the number of detections in v visits to sites, V' is
the probability of sites being occupied and p is the single-
visit detection probability. We estimated the single visit de-
tection probability using Markov chain Monte Carlo sam-
pling in the rjags package in R 4.2.0 (Plummer, 2003). We
ran two parallel chains for 100,000 iterations with the
burn-in set to 50,000 and thinning equal to 2. We assessed
model convergence using the CODA package (Plummer
et al., 2006) and ensured that R-hat values did not exceed
1.1 (Brooks & Gelman, 1998). We assigned vague normal
priors to all model parameters N(o, 10~ °).

Species distribution models

We obtained published raster layers of the predicted occu-
pancy of priority species on Christmas Island from Selwood
et al. (2019; Fig. 3). These authors developed maps by fitting
boosted regression trees to presence—absence data collected
during the island-wide survey collapsed across 2001-201s.
The maps predict the probability of occupancy on a o-1
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hundreds of times given models to simulated data

7) Fit occupancy detection
Fi. 2 Diagram of the spatially explicit

power analysis that combines
detectability modelling, species
distribution modelling, spatial
prioritization, data simulation and power
analysis.

and calculate power
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| (a) Emerald dove (b} Imperial pigeon

Occupancy
probability

(d) Thrush

Fic. 3 Species distribution models for (a) the Christmas Island
emerald dove Chalcophaps indica natalis, (b) the Christmas
Island imperial pigeon Ducula whartoni, (c) the Christmas
Island white-eye Zosterops natalis and (d) the Christmas Island
thrush Turdus poliocephalus erythropleurus obtained from
Selwood et al. (2019), with darker shades representing higher
predicted occupancy.

scale with a 10-m resolution. The environmental predictors
used in the boosted regression trees included vegetation
structure (canopy height, variation in canopy height, vege-
tation type), geology, topography (slope, elevation, aspect,
topographic wetness index) and landscape context (distance
to nearest valley, distance to nearest coast, distance to
cleared areas). Further information on the modelling and
the relative importance of key predictor variables is pre-
sented in Supplementary Figs 1-4.

The imperial pigeon, white-eye and thrush are predicted
to be widespread and common across the island, whereas
the emerald dove is predicted to be relatively restricted in
its range, with much lower probabilities of occupancy
(Fig. 3). Importantly, the occupancy maps were developed
in close consultation with experts (mainly national park
practitioners) to inform future decisions concerning
land use across the island. We therefore believe that they
provide reliable predictions of the current distribution
of the four forest birds. Further information about the
modelling and refinement of models with experts can be
found in Selwood et al. (2019).

Spatial prioritization

We input the occupancy raster layers described above into
the spatial prioritization tool Zonation to identify cells most
likely to contain the four priority species. Zonation runs by
iteratively removing cells that cause the smallest marginal
loss in the biodiversity value (e.g. abundance or occupancy
probability) across biodiversity features (e.g. species;
Lehtomaki & Moilanen, 2013). This generates a hierarchical
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ranking of cells across the landscape based on marginal
loss. Cells with a value of o are the lowest priority, whereas
those with a value of 1 are the highest priority. In this case,
highest-priority cells maximized predicted occupancy
across the four priority species whilst ensuring adequate
representation of each species.

We ran Zonation using the core area function with a warp
factor of 100, which is the number of cells removed at each
iteration. The core area function removed cells to ensure ad-
equate representation across all species rather than ranking
cells by species richness. Zonation can lock in designated
cells as the highest priority even if they have a small marginal
loss. This may be done to expand an existing reserve or
monitoring network as efficiently as possible, so that
the highest-ranked cells best complement those that are
already locked in. We ran Zonation with the 128 core sites
locked in, including a 100-m buffer around each site to
avoid placing new sites immediately adjacent to these. We
weighted all four species equally in the Zonation analysis.

Monitoring design scenarios and data simulation

We explored a range of alternative monitoring design scen-
arios targeting the priority forest birds. In Scenario 1, we
selected sites randomly across the island, ignoring the 128
core sites locked into the Zonation analysis. In Scenario 2,
we selected the core sites first then additional sites across
the island based on their Zonation ranking. In Scenario 3,
we targeted only habitats where the probability of occupan-
cy for the emerald dove exceeded o.5. In each scenario, we
varied the number of sites (60, 128, 300, 500), the number
of within-year repeats (2—4 visits) and the number of years
between surveys (survey frequency of once every 1-5 years).

For each scenario and monitoring design, we simulated
detection histories that could be collected in future assum-
ing plausible declines in occupancy. We simulated a linear
decline in occupancy of cell j for species s over time t, given
by Equation 2:

E
q’t,s - \1,0,5(1 - (Tmax> t) (2)

where E is the effect size, T),,, is the length of the monitor-
ing programme and s is the species. We tested a range of
plausible effect sizes over a 10-year time horizon (T,,,,,) ran-
ging from 10-50% declines in initial starting occupancy.
We simulated detection/non-detection data for each mon-
itoring scenario. To determine the occupancy state of cell j at
time ¢, we conducted a Bernoulli trial, with the probability of
success equal to the occupancy probability of that cell at time ¢.
We assigned an occupancy state of 1 to cells where species s
was deemed present, otherwise cells were given a value of o
(absent). For each species, we simulated detection histories
for k repeat visits to monitoring sites by conducting a second
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Bernoulli trial, with the probability of success equal to the
single-visit detection probabilities estimated above.

Spatial power analysis

For each species, we calculated the statistical power of the
alternative monitoring designs at detecting the simulated
declines in occupancy. To calculate statistical power, we fit-
ted an occupancy detection model to the simulated detec-
tion histories using the unmarked package in R (Kellner
et al,, 2022) according to Equation 3:

logit(W, ;) = ap + a; X year 3)

where ¥ is occupancy in year t for species s, o, is the inter-
cept and a, is the trend parameter. We simulated detection
histories 500 times for each species and scenario. We calcu-
lated statistical power as the proportion of those times that
the trend parameter o, estimated from the simulated data
was statistically significant. We conducted a one-tailed
test with a type I error rate of o.=0.05. A more detailed
description of the power analysis framework can be
found in Southwell et al. (2019).

Results

Single-visit detection probability

Across the years in which replicate surveys were conducted
(2011, 2013, 2015), there were 13,198 detections of the four
forest bird species. The emerald dove was detected on
861 occasions, the imperial pigeon on 3,067 occasions,
the white-eye on 4,345 occasions and the thrush on 4,925
occasions. Our single-visit detection model suggested
that the imperial pigeon (0.873; 95% CI: 0.859-0.897) and
the white-eye (0.904; 95% CI: 0.893-0.913) had the high-
est single-visit detection probabilities during one 5-min
point count survey, followed by the thrush (0.839; 95%
CI: 0.827-0.851). The emerald dove had the lowest single-
visit detection probability of the four species (0.122; 95%
CI: 0.109-0.136; Table 1).

TasLE 1 Detectability estimates for the Christmas Island emerald
dove Chalcophaps indica natalis, Christmas Island imperial pigeon
Ducula whartoni, Christmas Island white-eye Zosterops natalis
and Christmas Island thrush Turdus poliocephalus erythropleurus
during 5-min fixed counts and 50-m line-transect surveys in the
study area (Fig. 1).

Species Single-visit detection probability (95% CI)
0.122 (0.109-0.136)
0.873 (0.859-0.897)
0.904 (0.893-0.913)

0.839 (0.827-0.851)

Emerald dove
Imperial pigeon
White-eye
Thrush

Power analysis and spatial prioritization

Statistical power

Across all monitoring design scenarios, power increased as
the number of sites increased, as the number of repeat sur-
veys increased, as the interval between survey years de-
creased and when the decline in occupancy (i.e. the effect
size) increased (Figs 4-6). Power to detect declines in the
imperial pigeon, white-eye and thrush was relatively high
for most scenarios; there was generally at least an 80%
chance at detecting 30-50% declines over the 10-year
monitoring horizon when 60 or 128 sites were surveyed,
whereas surveying 300 or 500 sites resulted in > 80% power
even for 10% declines in occupancy. By contrast, power to
detect declines in the emerald dove was relatively low.
Power exceeded 80% only in cases when 300-500 sites
were monitored and declines of 40-50% were assumed.

There was relatively little gain in power as the number of
repeat visits increased from two to four, especially for
the imperial pigeon, white-eye and thrush. For example,
power to detect 10% declines in the thrush with 128 sites
increased from 0.276 to 0.308 when the number of repeat
visits to sites surveyed every second year increased from
two to four. Increasing the number of visits for the emerald
dove also had relatively little positive effect on power com-
pared to increasing the number of sites. For all species,
power decreased as the interval between surveys increased
from 1 year to 5 years. For example, power to detect 30%
declines of the imperial pigeon decreased from 0.892 to
0.661 when the monitoring frequency reduced from annu-
ally to every 5 years, assuming 128 sites were surveyed on
each occasion, with two repeat visits. However, changes
in the monitoring frequency did not influence power as
much as changes to the number of sites.

Spatial prioritization

The spatial prioritization ranked cells across Christmas
Island by their predicted occupancy whilst accounting for
equal representation of species. Because three of the four
species were widespread, the highest-ranked cells closely
matched the predicted distribution of the emerald dove
(Fig. 7). There was little difference in power for the imperial
pigeon, white-eye and thrush when monitoring was targeted
towards sites ranked highly by Zonation compared to ran-
domly selected sites. In contrast, there was a small gain in
power for the emerald dove when monitoring sites were
prioritized with Zonation, and there was a further gain
when sites specifically targeted the most suitable emerald
dove habitat. For example, power to detect 50% declines
in occupancy with 300 sites was 0.32 when sites were se-
lected at random, o0.45 when sites were prioritized with
Zonation and 0.71 when all sites targeted the most suitable
emerald dove habitat (Fig. 6).
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Fic. 4 Statistical power to detect declines
in occupancy for four forest birds on
Christmas Island: imperial pigeon,
white-eye, thrush and emerald dove,
under scenarios with a varying number
of survey sites and repeat visits. All
scenarios assume sites are surveyed every
2 years.

Fic. 5 Statistical power to detect declines
in occupancy for four forest birds on
Christmas Island: imperial pigeon,
white-eye, thrush and emerald dove,
under scenarios with a varying number
of survey sites and interval between
surveys. All scenarios assume sites are
visited twice during each survey year.
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In this study, we estimated single-visit detection probabil-
ities from 3 years of repeat detection data for four forest
bird species on Christmas Island, prioritized regions for

® Core sites
Prioritization ranking

Fig. 7 The spatial prioritization of Christmas Island using
Zonation, with yellow representing the highest-ranked cells for
new surveys (1) and purple representing the lowest-ranked cells
for new surveys (o). The black circles show the 128 core sites that
were locked into the Zonation analysis.

maps, simulated declines in occupancy and monitoring
data that may arise from alternative monitoring designs
and calculated the statistical power of each monitoring de-
sign to detect the simulated trend. Many studies have used
spatial prioritization tools to optimize survey locations
(Amorim et al., 2014; Moran-Ordonez et al., 2018) or used
statistical methods to inform survey effort (Steenweg et al.,
2016; Southwell et al., 2019), but few studies have combined
these components into a single monitoring design frame-
work (Smart et al., 2022; Southwell et al., 2022).

Statistical power

Our results demonstrate that power to detect occupancy
trends is highly sensitive to the number of sites surveyed
and the magnitude of decline. Large declines over 10 years
were more easily detected than small declines, and it was
more difficult to detect declines in rare and cryptic species
(emerald dove) than in widespread and common ones (im-
perial pigeon, white-eye and thrush). Increasing the number
of repeat visits to sites within a survey year had relatively lit-
tle influence on power because single-visit detection prob-
abilities were high for the imperial pigeon, white-eye and
thrush (0.839-0.904). Power to detect declines in these
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species was maximized by focusing effort on surveying
more sites rather than on increasing the number of repeat
surveys. However, the widespread distribution of these spe-
cies meant that the exact placement of sites had little
influence on power. Figure 6 shows that selecting sites at
random, targeting the 128 core sites or prioritizing site
placement using Zonation had little impact on the power
curves.

In contrast, power to detect declines in the emerald dove
was low for almost all scenarios tested. Even when 300-500
sites (including the core sites) were monitored, there was
only sufficient power (> 80%) to detect 40-50% declines
in occupancy. Power was low for the emerald dove because
both the single-visit detection probability (0.12) and the
probability of occupancy were low (the mean probability of
occupancy across the island was 0.19). More importantly,
the species was highly restricted, preferring specific habitat
types around the edge of the central plateau (Fig. 3). Only a
fraction of the 128 core sites overlapped with areas where
the species is predicted to occur, and for the sites that did,
the chance of simulating detections if it was deemed present
was low. This demonstrates that with rare and localized
species, monitoring effort is wasted on sites where the
species does not occur. It is far more efficient to survey
only in areas where the species is either known to occur
or is predicted to occur with high confidence. In some
cases, monitoring occupancy may not be the most appro-
priate metric; abundance or relative abundance may be
more sensitive to change.

Unsurprisingly, we found that power decreased as the
interval between surveys increased because fewer data are
used over a fixed time frame. We did, however, assume
that the number of sites monitored on each occasion was
constant, which may not always be the case. Power could in-
crease with long intervals between surveys if the resources
saved by not surveying every year are spent on surveying
more sites (Einoder et al., 2018). An interesting extension
of this research would be to develop a cost model that
links the number of sites and survey frequency to a total
budget (Smart et al., 2022). This would allow for the optimal
survey frequency to be identified given an overall monitor-
ing budget. The most appropriate survey frequency will also
depend on the status and generation length of target species
(i.e. it could be more important to monitor small popula-
tions that are close to extinction more frequently), the
timescale at which target species are expected to re-
spond to management and the risk tolerance of managers.

By conducting a spatial prioritization in Zonation, we
compared power for alternative site placements across this
island. Prioritizing site locations or targeting the 128 core
sites did not increase power for the imperial pigeon, white-
eye and thrush compared to selecting sites at random be-
cause these species are widespread. In contrast, power in-
creased for the emerald dove when sites were prioritized
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spatially. For example, 128 randomly selected sites had a
0.15% chance of detecting 50% declines in the emerald
dove. When the 128 core sites were surveyed, power slightly
increased to 0.17, whereas purposely targeting sites with the
most suitable habitat increased power to 0.27. This result is
unsurprising; to detect change in a species’ distribution, one
must look where the species occurs. However, the optimal
locations for monitoring sites are not always obvious in
areas with many overlapping range-restricted species. To
our knowledge, there are many examples where the place-
ment of sites in monitoring networks is optimized using
spatial prioritization tools (Amorim et al., 2014; Carvalho
et al.,, 2016), but few examples where the number of sites
needed to confidently detect change is also prioritized.

Assumptions and future research priorities

Like all simulations, our study was subject to limitations and
assumptions. We used published maps of forest bird occu-
pancy developed by Selwood et al. (2019) rather than fitting
our own species distribution models. We attempted to fit
dynamic occupancy detection models to the island-wide
survey data to predict species occupancy for each year of
monitoring. However, we decided against this approach
because: (1) the maps by Selwood et al. (2019) were validated
by experts and were used to inform future land use on the
island, (2) our preliminary analysis suggested that the spe-
cies distributions were relatively static over time, especially
for the white-eye, thrush and imperial pigeon, (3) dynamic
occupancy detection models have been shown to perform
relatively poorly for widespread and common species if
there is little turnover in site occupancy (Briscoe et al., 2021),
and (4) boosted regression trees perform well at modelling
interactions between predictor variables compared to dy-
namic occupancy detection models.

In addition, we weighted species equally in the spatial
prioritization. Our approach could be expanded to place
more value on rare or cryptic species such as the emerald
dove. We simulated linear declines in occupancy over 10
years across a range of plausible effect sizes. Our approach
could also be extended to include more complex temporal
and/or spatial range dynamics, such as patterns in range
contractions. Some species on Christmas Island, such as
reptiles, have demonstrated clear range contractions coin-
ciding with the spread of invasive species (Emery et al,
2021). Furthermore, we modelled trends in occupancy ra-
ther than trends in abundance over time and therefore as-
sumed a constant relationship between occupancy and
abundance (Stanley & Royle, 2005), meaning that all oc-
cupied cells declined in the same way regardless of how
many individuals were within them.

Finally, we assumed that the goal was to detect trends
with a targeted monitoring programme for four forest
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bird species rather than to develop a general surveillance
programme for a larger suite of species. Thus, we estimated
power based on the predicted distribution and detectability
of these species only. We could repeat our analysis for more
species if they were explicitly identified at the start as prior-
ities. For example, there is a varied group of threatened ter-
restrial taxa on the island, including plants, seabirds and
raptors, a flying fox and a single endemic reptile species
(the giant gecko Cyrtodactylus sadleiri) persisting in the
wild (Abbott, 2006). Adding more species to the analysis
would probably result in a more even coverage of sites across
the island but could reduce the power to detect change in
range-restricted species with patchy distributions.

Conclusion

In this study, we present a framework that links species
distribution modelling, detectability modelling and spatial
prioritization to compare the performance of alterna-
tive monitoring designs. Without tools to support robust
but efficient monitoring design, our understanding of de-
clining species will continue to be obscured by limited
data (Bates et al., 2014). We argue that spatial simulation
tools that link correlative species distribution models
with models simulating the observation process are needed
to maximize chances of detecting species’ responses to
environmental change. Our study demonstrates how data
collected during the early stages of monitoring can be
used to fine-tune design decisions, so that monitoring
can be implemented cost-effectively and with the greatest
chance of meeting its objectives.
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