
\ ( n ) - P A R A M E T E R FAMILIES 

Ronald M. Mathsen 

( rece ived M a r c h 29, 1969) 

I is an i n t e r v a l of R, the se t of r e a l n u m b e r s , n is a pos i t ive 

in teger and F C C (I) for j _> 0 l a rge enough so that the following 
defini t ions a r e p o s s i b l e : 

(i) Let X(n) = (\ . , V X, ) w h e r e k , X , , X ^ , . . . , X , a r e pos i t ive 
1 2 k 1 2 k 

i n t e g e r s and X + X + . . . +X = n . Then X(n) is an o r d e r e d pa r t i t i on 

of n . The se t of a l l such pa r t i t i ons of n is denoted by P (n ) . 

(ii) Let \ ( n ) e P(n) be given. The family F of r e a l valued functions 
on I is said to be a X (n)- p a r a m e t e r fami ly on I in c a s e for any 
choice of points x < x < . . . < x in I and any se t of n r e a l 

n u m b e r s y. t h e r e is a unique f e F sat isfying 

(1) f(j) (x.) = y . ( j ) , j = 0 , l , 2 , . . . , \ . - l , i = 1,2, . . . , k . 
i i l 

If F is a X (n) - p a r a m e t e r family for X(n) = (1, 1 , . . . , 1 ) , then F is 
cal led an n - p a r a m e t e r family, (See [5] . ) If F is a X(n) - p a r a m e t e r 
fami ly on I for X(n) = n, i . e . , a l l condi t ions a r e specified at one point, 
then we wil l say that in i t ia l value p r o b l e m s a r e uniquely so lvable in F 
on I . If F i s a X (n) - p a r a m e t e r fami ly on I for a l l X(n) e P(n) , 
then F is called an u n r e s t r i c t e d n - p a r a m e t e r fami ly on I . ( S e e [ l J . ) 

P . H a r t m a n [1] proved the following: 

THEOREM. A family F C C (I) , w h e r e I i s an open i n t e r v a l 
of R , i s an u n r e s t r i c t e d n - p a r a m e t e r family on I if and only if F is 
an n - p a r a m e t e r fami ly on I and in i t ia l value p r o b l e m s a r e uniquely 
so lvable in F £ n I . 

Z . Opial [4] gave a v e r y n ice shor t proof of H a r t m a n ' s r e s u l t in the 

c a s e that F is the solut ion se t for an n o r d e r homogeneous l inear 
d i f fe ren t ia l equat ion with s u m m a b l e coeff ic ients . Opial1 s proof u s e s the 
l i nea r i t y of F (F i s an n - d imens iona l r e a l vec to r space) and the 
cont inui ty with r e s p e c t to in i t ia l v a l u e s . 
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What happens if I is not open? In [1] H a r t m a n p o s e s that ques t i on 
for I c losed , but does not r e s o l v e i t . We give h e r e an example to show 
that ne i the r H a r t m a n ' s T h e o r e m nor Op ia l ' s T h e o r e m is valid if I is 
c lo sed . Befo re giving the example we have the following defini t ion and 
l e m m a : 

(iii) Let L [y] = y + a y + . . . + a y' + a y - 0 be a homogenous 

l inear d i f fe ren t ia l equat ion with cont inuous coeff ic ients on I . F o r each 
s G I let K(x , s) be the solu t ion to the in i t i a l va lue p r o b l e m 

L j y ] = 0 , y(s) =y ' ( s ) = . . . = y ( n ~ 2 ) ( s ) = 0 = y ^ ' ^ s ) 

K is cal led the Cauchy function for L . 
n 

(iv) L (or L [y] = 0) is said to be d i scon jusa t e on I in ca se no non-
n n u—° 

t r i v i a l solut ion to L [y] = 0 has m o r e than n - 1 z e r o s (counting mul t ip l i c i ty ) 

on I . 

C lea r ly L being d i sconjuga te on I i m p l i e s that 

n -1 
(2) sgn K(x, s) = sgn (x - s) for a l l x and s in I . 

(sgn x = 0 if x = 0, 1 if x > 0 , -1 if x < 0 . ) 

The l e m m a in [2] s t a t e s that the c o n v e r s e is a l so t rue for n = 3 . We s t a t e 
that l e m m a h e r e and supply it with a quite d i f ferent proof. 

LEMMA 1. Let a . a and a be cont inuous on I . If K(x , s) > 0 
— 0 1 2 — 

for a l l x and s in. I with x 4- s, then L [y] = 0 is d i scon juga te on I . 

Proof . Let s j ( s ^ and s^ be t h r e e d i s t inc t po in ts in I . Then 
1 2 3 

K(x, s ), K(x, s ) and K(x, s ) a r e l i n e a r l y independent on I . Suppose 

that c K(x, s ) + c K(x, s ) + c K(x, s ) = 0 for a l l x in I . Pu t 

x - s , s and s . The r e s u l t i n g homogeneous s y s t e m of equat ions in 

c , c and c 0 has only the so lu t ion c, = c - c ^ - 0 . 
1 2 3 y 1 2 3 

Now suppose that y = yn(x) is a n o n - t r i v i a l solut ion to L [y] = 0 on 

I , and let y n ( x ) have t h r e e z e r o s in I . C lea r ly y n (x) cannot have a 

double z e r o , so let the z e r o s be s , s and s^ . Then t h e r e a r e cons t an t s 
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c 

s 

(I- ')• " 

d> c and c 3 so that yQ(x) = c^ K(x, s ^ + c K(x, s ) + c K(x, s ) for 

a l l x in I . But then c - c - c - 0 as above . Hence L is d i scon juga te . 

E x a m p l e : (This example is f rom the a u t h o r ' s doc to r a l d i s s e r t a t i o n 
w r i t t e n under the d i r ec t i on of P r o f e s s o r L . K . Jackson at the Un ive r s i t y of 
Nebraska ; see [3] . ) Let F be the se t of so lu t ions to the d i f ferent ia l equat ion 

3 2 
(3) x y111 + 4x y " + 3xy ' + y = 0 

on the i n t e r v a l [ l , x ] where x is the f i r s t z e r o of — + s in log x - cos log x 

to the r igh t of 1 . We wil l show that F is a 3 - p a r a m e t e r fami ly on [1, x ] 

but F is not an u n r e s t r i c t e d 3 - p a r a m e t e r family on [1 , x ] . The Cauchy 
s 2 / 

function for (3) is given by K(x, s) = — ( — + s in log — - cos log 

so K(x , 1) = 0 and K(x , 1) > 0 for 1 < x < x . K(x , s) = s 2 K 

K(x , s) > 0 for s < x < x s . Also , one can show, using d e r i v a t i v e s , that 

K(x , s) > 0 if 1 < s < x and x < s. Hence (3) is d isconjugate on [1 , x ) 

and (1 , x ] by L e m m a 1. Let y - yn(x) be a solut ion to (3) sat isfying 

0 - y Q ( l ) = y0(xQ) = y Q ( c ) , l < c < x Q . Then yQ(x) = c ^ x ) + c 2 K(x , 1) 

1 3 1 
w h e r e c and c a r e cons tan t s and u (x) = — + ~ s in log x - — cos log x . 

1 L, X. £ X C, Ce 

Now exp(5TT/4) < x < exp(47r /3) , so that u (x ) < 0 and the re fo re 
y (c) = 0 imp l i e s that c = 0; so by the l inear i ty of F we conclude that 

F is a 3- p a r a m e t e r family on [1 , x ], but c l e a r l y F is not an u n r e s t r i c t e d 

3 - p a r a m e t e r family on [1 , x ] s ince y = 0 and y = K(x , 1) both sat isfy 

0 = y ( l ) = y ' ( l ) = y ( x Q ) . 

Is H a r t m a n ' s T h e o r e m valid on a half open i n t e r v a l ? If F is l inear 
and n = 3, 4 or 5, then the answer is yes . The author con jec tu re s that 
if F is l inear and I is half open, then H a r t m a n ' s T h e o r e m is c o r r e c t . 
A proof of this for the g e n e r a l c a s e (n a r b i t r a r y ) has not yet been given. 

A n a t u r a l ques t ion which a r i s e s is whether L e m m a 1 g e n e r a l i z e s , and, 
if so, how. It is easy to give an example to show that (2) does not imply 

d isconjugacy for L if n > 3; for ins t ance , for L [y] = y + y 
n n 

(2) is sa t isf ied on (-oo, oo) , but L is c l e a r l y not d isconjugate on (-oo, oo) . 
n 

One gene ra l i z a t i on of L e m m a 1 is the following t h e o r e m : 
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THEOREM 1. Let F be a linear \(n) - parameter family on I for 
\(n) = (2, 1, 1, . . . , 1 ) , \(n) = (1, 1, . . . , 1,2) and \ (n) = (2, 1, 1, . . . , 1, 2). 

Then F is an n- parameter family o.n I . 

Proof. Let f be a non-trivial member of F satisfying 
f(x ) = f(x ) = . . . = f(x ) = 0 where x < x^ < . . . < x are points in 

1 2 n 1 2 n 

I. Define g s F by g ^ ) . = g ' ^ ) - f ' ^ ) - g ^ ) = g(z4) = . . . = g U ^ ) = 

g ( x
n ) = g l ( x n ) = 0 , where z. = (x. + x )/2 for i = 3, 4, . . . , n- 2 . 

By hypothesis we must have f'(x) t 0 for x = x, , x^ , x , and x . 
1 2 n-1 n 

But g'(x ) = f'(x ) i 0, so g(x) does not vanish identically on I . 

g has a double zero at x and zeros at x, , z„, z , . . . , z , so these 
n 1 3 4 n-2 

points are the only zeros of g . If f changes sign at all the points x. , 

then f- g changes sign in each of the intervals (x„ , z„), (z^ , z ) 
3 3 3 4 ' 

(z , z ) , . . . , (z , z ) . f - g also changes sign in (z ^ , x ) since 
4 5 n-3 n-2 & b fo n-2 n 

g'(x ) = 0 i f!(x ), f(x , ) = f(x ) = 0, f changes signât x t and 
n n n - 1 n n-1 

g(z
 0) ~ g(x ) = 0 • So f - g has a double zero at x1 and n - 2 other n- c n 1 

zeros. This contradicts the uniqueness of solutions to (1) in F for 

\(n) = (2, 1, 1, . . . , 1) . If f does not change sign at all the points' x. , 
i 

let s be the number of points x. , i = 3, 4, . . . , n - 1 at which f changes 

sign and let d be the number of points x. , 3 < i < n - 2 , at which f 

does not change sign. Then s + d = n - 3. To each zero x at which f 
l 

changes sign there corresponds a point p . , z . J < p < z , i = 4, 5, . . . , n-2 
i l - 1 i i 

and z < p < x , such that f - g changes sign. Hence we have 
n-2 n-2 n & to 

at least s changes of sign of f - g. Let d be the number of double 

zeros x. of f ( i .e . f does not change signât x.) such that f and g 

have the same sign in (x. - 6 , x. + 6) for ô > 0 sufficiently small. 

There are two zeros of f - g in (z. . , z.) for each of these d double 
l - l i 1 

zeros of f . f - g has a double zero at x and as we have shown above, 

at least s + 2d + 1 other zeros in I . But since f and g are not identical, 

we must have s + 2 d . + 1 < n - 2 , i . e . , 2 d J < n - s - 3 = d, and then 
1 1 

2(d - 6) > d . At the remaining d - d , points x. at which f does not 
1 1 i 

change sign we must have a ô > 0 so that f(x) and g(x) have opposite 
signs for 0 < | x - x . | < ô . Then for e > 0 small enough the graphs of 

f and - eg will intersect at two points (in (z. , z.)) separated by x. . 

Hence for e >0 small enough there will be two points in (z. , , z.) at 
î - l i 

which f + eg changes sign. This will give 2(d - d ) changes of sign 

for f + eg . Also to each p. there corresponds a q. , z. t < q. < z . 
i n i î - l n i i 
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and z < q < x , at which f + e g changes sign. This follows 
n- 2 n-2 n 

s ince f(x.) = 0 , f'(x.) + 0 , f(x) + 0 for x in (z. . z.) with x + x , 
i i l - l l i 

and - e g(z. ) = - e g(z.) = 0 . f + £ g m u s t vanish in (z , x ) , 
i - l i n - 2 n 

s ince f(x ) = f(x ) = g(x ) = g(z ) = 0 and f' (x ) i 0 = g' (x ) . 
n - i n n n-Z n n 

So we will have 2(d - d ) + s > d + s + l = n - 2 changes of s ign in 

(x , x ) . This is i m p o s s i b l e (as we showed in the f i r s t p a r t of this 

proof) s ince f + £ g will a lso have z e r o s ( s imple) at x , and x , and 
1 n 

we know that f + £g is in F b e c a u s e F is a l inear family on I . 
Hence no such n o n - t r i v i a l f e F can ex i s t . This shows that un iqueness 
of solut ions of (1) in F for X(n) = (1 , 1, . . . , 1). The ex i s t ence of 
so lu t ions of (1) in F for the s a m e X (n) follows immed ia t e ly f rom 
un iqueness s ince F is l i nea r . To show this let (f , f , . . . , f ) be a 

1 1 2 nJ 

b a s i s for F . Then t h e r e ex is t n cons tan ts c , c c so that 
1 2 n 

n 
f = S c.f. . But the n X n s y s t e m of l inear equat ions gene ra t ed by 

i=l 
(1) f rom this r e p r e s e n t a t i o n of f m u s t (by uniqueness) have a n o n - z e r o 
coefficient de t e rminan t , and hence that s y s t e m has a solut ion. This 
p r o v e s the t h e o r e m . We h e r e note that in g e n e r a l for a l inear family 
F un iqueness of solut ions of (1) in F for a given X(n) impl i e s the 
ex i s t ence of solut ions of (1) in F for that X(n) . 

COROLLARY. If F is a l inear \ (n) - p a r a m e t e r family on the open 
i n t e r v a l I for X (n) = n and the va lues of X(n) as given in T h e o r e m 1 , 
then F is an u n r e s t r i c t e d n - p a r a m e t e r family on I . 

The c o r o l l a r y follows d i r ec t l y f rom T h e o r e m 1 and H a r t m a n ' s 
T h e o r e m . 

An af f i rmat ive answer to the ques t ion Q below would yield another 
g e n e r a l i z a t i o n of L e m m a 1. 

Q. If F is a l inear X (n) - p a r a m e t e r family on I for |x(n) | < 2 , is F 
an u n r e s t r i c t e d n - p a r a m e t e r family on I ? ( | \ ( n ) j denotes the 
length of the pa r t i t i on X (n) . ) That the answer to Q is yes for 
n = 4 follows f rom L e m m a 1 and f rom L e m m a 2 below. Q is as 
yet unsolved for n > 5 . 

LEMMA 2. E F is a l inea r X (n) - p a r a m e t e r family for \ (n) = ( n - 1 , 1 ) 
and ( n - 2, 2) (or for X (n) = (1, n - 1) and (2 , n - 2)), then F is an 
( n - 2 , 1 , 1) - p a r a m e t e r (or (1, 1, n - 2) - p a r a m e t e r ) fami ly on I . 

Proof . Let f be a n o n - t r i v i a l m e m b e r of F with f ( x j = 0 for 

i = 0, 1, 2, . . . , n -3 , f(x_) = f(x_) = 0 where x4 < x < x„ a r e t h ree 
2 3 1 2 3 

points in I . Let p = (x + x ) / 2 and pick g e F sat isfying g (x ) = 0 

for i = 0 , 1 , 2 n - 2 and g(p) = f(p) /2 i 0 . (We a s s u m e without 
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l o s s of gene ra l i t y that f(x) < 0 in (x , x ) and f(x) > 0 in (x , x ) . ) 

g(x) > 0 for x > x , so t h e r e a r e poin ts in (x , x ) at which 

f(x) - g(x) > 0 . Let M be the se t of r e a l n u m b e r s y such that 
f(x) " Y g(x) > 0 for some points in (x , x ) . Let y = sup M . Then 

t h e r e is a point x. in (x , x ) such that h = f - y g s a t i s f i e s 

h(x )= h ' (x ) = 0 . Also h ( l ) ( x ) = 0 for i = 0 , 1, 2 , . . . , n - 3 . 

F is a ( n - 2 , 2 ) - p a r a m e t e r family , so h(x) = 0 for a l l x in I . This 
of c o u r s e is i m p o s s i b l e s ince h(x ) = - y g(x ) < 0 . The o ther half 

of the l e m m a follows in a s i m i l a r fash ion . 

In t e r m s of boundary value p r o b l e m s for o r d i n a r y d i f fe ren t i a l 
equa t ions , ques t ion Q can be p h r a s e d as fo l lows: 

If eve ry two point boundary va lue p r o b l e m is so lvab le , is eve ry 
boundary va lue p r o b l e m so lvab le? 

Acknowledgement . Thanks a r e due to the U n i v e r s i t y of A l b e r t a and 
the Canadian M a t h e m a t i c a l C o n g r e s s S u m m e r R e s e a r c h Ins t i tu te for 
suppor t of this r e s e a r c h . 

Added in proof. The author has r e c e n t l y b e c o m e a w a r e of two 
p a p e r s ([6] and [7]) which a n s w e r the l a s t ques t ion in the a f f i rmat ive 
for a l i nea r d i f fe rent ia l equat ion with cont inuous coef f ic ien t s . 
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