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A remark on a mean value theorem

of Alexander Weinstein in

Generalized Axially Symmetric
Potential Theory

J.B. Diaz and John G. Leschen

Cordial ly dedicated to Professor Alexander Weinstein,

on the occasion of his Seventyseventh bir thday, January 21 , 1974.

This note contains the proof of an extension of Alexander
Weinstein's mean value theorem for Generalized Axially Symmetric
Potential Theory.

1. Introduction

In his, now classical, paper [41, on Generalized Axially Symmetric

Potential Theory (GASPT), Weinstein proved a mean value theorem, which he

states as follows (see page 31*1* of [4]; the notation (WT) is introduced

in the present note).

"MEAN VALUE THEOREM.

(WT)
fiT riT

, 0) sinP6d6 = <j>(x,
J0 J0

where 8 denotes the polar angle. The integral on the right-hand side is
taken over a half-circle of arbitrary radius a .
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A similar formula holds obviously for <ji(x0, o) at any regular point

(x0, 0) of * ."

In this quotation from [4], ${x, y) is a solution of the partial

differential equation (see page 31*3 of [4]):

(GP) y (f^-%) + Pty = ° .

which is even in y , is analytic in the two real variables (x, y) in an

open set which intersects the x-axis, and is such that the partial

34
derivative g- vanishes for y = 0 .

(The notations (WT) and (GP) have been introduced in the present note,

for convenience of reference.)

2. Weinstein's mean value theorem for p > -1

Weinstein's development of his mean value theorem (WT) is based on the

assumptions that p > 0 and that $ is a solution of (GP) which is even

in y and is analytic in a region containing a segment of the x-axis.

Weinstein also uses the fact that there is an associated "stream function"

ty which satisfies the partial differential equation

ii [\p +\p ) - pip = 0 .° *• xx yy y

However, i t is clear that the definite integral on the right hand side

of (WT) e x i s t s , for p > -1 , whenever the integrand function <$>(x, y) i s

continuous on 0 5 9 S n . Furthermore, the premise that <j> is an even

function of y appears to be somewhat unnecessary, specially when one

considers that any solution of (GP) which i s "regular" on a portion of the

singular l ine y = 0 , must be such t ha t , i f p # 0 , i t s par t ia l
3d)

derivat ive -5— vanishes on the x-axis.oy

We are , therefore, led to ask whether Weinstein's mean value theorem

(WT) might hold for p > -1 , p t 0 , with weakened hypotheses on the

function <j> . An affirmative answer to th is question i s provided by the

following extension of the Weinstein Theorem (WT):

THEOREM. Let p > -1 , p t 0 . Let G be an open set in the upper

half plane y > 0 , and suppose that the boundary of G contains a non-
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degenerate open segment I of the x-axis. In G , let <j>(x, y) £ C ,

with bounded second derivatives, be a real valued solution of (GP). In

G u I , let (J> € C . Let xQ and R , Ft > 0 , be any real numbers such

that the semicircle (x-x ) + y Si? , y > 0 ., lies entirely in G u I .

Then, (WT) holds.

Proof. ( i t is t rue , as follows from a known general theorem, that any

solution, of class Cr , of the e l l i p t i c pa r t i a l different ial equation

(GP), must necessarily be analyt ic , in (x, y) , in G . However, th is

fact is not used in the present proof.)

Since (GP) i s invariant under x- t rans la t ions , the center of the

semicircle may he taken to be the origin; thus, *x. = 0 . With r and

9 the usual polar coordinates, we define the "fan-shaped" region

D{a, 6) = {(r , 8) | a R < r < J , B < 9 < ir-B) ,

where 0 < a < 1 and 0 < 3 < n/2 . Clearly, D(a, 3) l i e s in G .

The proof wil l be based on the application of two Green's ident i t ies

for the pa r t i a l different ial operator occurring in equation (GP), which are

to be found in Weinstein [4, page 3**3> equations (1») and (5) ] :

< u > \\R *p(*«-Vw-\]&* = \c
 yP & * '

(5) JJ [**div(/grad(j>]-(()div(j/Pgrad<}.*)]dxdi/ = J /(<j>* J£ - * |j^]ds ,

where C is the boundary of a domain R , the l e t t e r s denotes arc

length on C , and n is the exterior normal to C , and ij> and <f>* are

"regular" functions (of class <f in , G ) . Ident i t ies (k) and (5) were

given by Weinstein for p > 0 , but they remain valid for any rea l p .

Several inequal i t ies , which wi l l be needed in the course of the proof,

wil l now be established. Recall t ha t , by hypothesis, the f i r s t and second

pa r t i a l derivatives of <$> are bounded in G . Thus, there is a positive

number M that i s a common upper bound of I ^ I J 1^1 > l^xx^' ^viJ ' i n

G • Then, as a consequence of the mean value theorem of the different ial

calculus for functions of two var iables , given a and 8 , there is a
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"mean value p o i n t " Q , i n t e r i o r to the s t r a i g h t l i n e segment j o i n i n g the

o r i g i n (0 , 0) t o the p o i n t (off, 6) , where 0 < a < 1 and 0 < 6 < TT ,

such t h a t (with <(i = <f>(0, 0) ) :

<t>(afl, 8) - <f> = (aflcose) • cj> (Q) + (aflsinG) • < ! > ( « ) .u x y

T h e r e f o r e ,

( 6 ) • |<t>(aff, © >—«J>0 f 5 2A*xff , f o r 0 < 9 < ir .

Since (}i is continuous on G u I , the inequality just written continues

to hold on the closed interval 0 5 8 5 1 . Further, one has

(T) lim <J>(aR, 6) = <f> ,

with the convergence being uniform on ,£he closed interval 0 5 8 5 w .

Also, i t follows, d i rec t ly from (GP), that

(8) \*y\ = I W ^ ^ / P I S 2yM/\p\

in G .

Now, consider two points of the closure of D(a, 3) , with polar

coordinates ( r , 3) and ( r , tr-B) , and, together with them, the "lens

shaped" domain D(3) which is bounded above by the closed circular arc

joining these two points , with center at the origin and radius r > 0 , and

lying in the upper half plane y > 0 ; and is bounded below by the

straight l ine segment joining these two points , also lying in the half

plane y > 0 , and which i s a subset of the straight l ine of equation

y = rsinft . If Green's f i r s t identity (k) is applied to th is domain

, then, since <(> is a solution of (GP) in G , the resul t i s

J30(B) °"

where 3£>(3) denotes the boundary of Z?(3) . Written out exp l i c i t ly , th i s

means tha t

f rcos3 aA

[rPsi.nP&) j£ (x, rsin3)c£r = 0 .
T h e r e f o r e , in view of t h e i n e q u a l i t y ( 8 ) ,
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(•TT-3 . frcos3

(sir/e) | i (r, ewe 5 (sin
p3) "• {x, rsinB) dx

2 ltMr(sinP+13)(rcos3)/|p| ,

and this means that (since p+1 > 0 , and p # 0 ) ,

/•TT-3 - .

(9) l im (s in P 6) | 2 - ( r , 6)d0 = 0 .
3-*-+0 ' 3

(This last equation holds, in particular, for r = off and for r = Ft , and

will be used below for these two particular values of r .)

Let us now apply the identity (5) to the closure of the domain

D(a, 3) . We take (f>* to be the function *i>*(.r) = (r~P) /p , where

2 2 2
r = x + y and p # 0 ( i t is at this point of the proof that the

restriction p f 0 is again essential) . This function 41* can easily be

shown to be a solution of (GP) which is regular for y > 0 . Since a l l

points of the closure of D{a, 3) l ie above the x axis, and since <j)

is regular there, then div[y grad<t>) = div[t/ gradifi*) = 0 on D{a, 3) , and

the integral over D(d, 3) vanishes. The final result i s :

do)

where 3D(a, 6) denotes the boundary of D{a, 3) •

Now, along any radius, -jp— H O ; on the circular arc of radius if ,

-jp- = -R~P~ ; and, on the circular arc of radius Off , - ^ - = (afl)~P~

Hence,

(• - . 4 fTT-3 fTT-3
(11) - wp(j) - p - ^e = <!>(*> e)sinP6de -

J3D(a,3) 3 w J3 J6

Now, for p+1 > 0 , the definite integral

sinP9d8
J0

is improperj but convergent, as follows from the well known inequalities
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26/TT < sin6 5 9 , for 0 S 9 « — . Consequently, making use of the uniform

convergence over 0 5 9 5 TT in (7), the desired resul t (WT) would seem to

follow upon f i r s t taking the l imit as 6 approaches 0 in (11), and then

taking the l imit as a approaches 0 , in succession. That is

llm [~ I ,(9O(a,6)

and

(12) lim lim I- J

yP($> ds 1 =
J

, e)sinP6<f9 ,

<f»(i?, ejsir^ede - <j> siJo Jo

Consequently, in order to complete the proof of (WT), i t only remains

to verify that (see (10)):

(13) lim lim [f yp<j>* | ^ ds] = 0 .
udD(a&) Ja-M-0 6-H-O LJ3£(a,g)

Now, when written out explicitly, the integral is

f a* 'R

J8Z?(a,6)

[

(off, 9)sinP9d9

, 9)sinP9d9 ,

where the definit ion of the auxiliary function <J>* is to be kept in mind.

As g approaches zero, the l a s t two terms on the r ight hand side of

equation (lk) approach zero, by equation (9) for the par t icular values

T = off and r = R . Further, from inequality (8) for |<j> | , and the

common bound M for a l l the f i r s t and second pa r t i a l derivatives of <(> i

G , we obtain
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(15) I V 1 * ' B ) l = I****"' B)sinB<|> (

S WsinB + (2rsinB)McosB/|p|

and the same upper bound is valid for |<t> (r , TT—3) | , yielding

(16) |(J>n(r, 3) | + |4>n(r, 1t-B)| £ (2Afein8)(l+2ff/|p|) .

Using the definition of the auxiliary function 4>* , the inequality (16),

and the inequality p+1 > 0 , i t follows that the first term on the right

hand side of (lit) also approaches zero as 6 approaches 0 . Therefore,

from {lh) we have that

(17 X lim f j/*V |J ds = 0 ,
S-H-0 J9D(ct,B) dn

which means that

(18) lim lim [ / * * -P- ds = 0 .
6-H-o J3D(a,B) n

Hie desired result, (WT), now follows directly from (10), (12) and

(18), and the proof is complete.

It is a corollary that the theorem holds for al l p > -1 , provided we

require, for p = 0 , that $ {x, 0) B 0 on I . In fact, when, p = 0 ,

the harmonic function <j> can then be continued into the lower half-plane

as an even function of y , and (WT) is equivalent to the classical Gauss

mean value theorem for harmonic functions.

3. Weinstein's mean value theorem for p < -1 ?

It is clear from (WT), however, that the theorem cannot hold for

p 5 -1 , unless (possibly) restrictions are placed on <t> . The same

conclusion can be reached, in a quite intuitive formal manner, by recalling

Weinstein's concept of <|> as an axially symmetric potential in a

fictitious space of (p+2) dimensions (for definiteness, if desired, think

of p as a positive integer). Indeed, if dS and r are, respectively,

the surface element and radius of a sphere, centered at the origin, in

(p+2)-dimensional space, and, if u _ + 1
 i s t n e surface area of a (p+l)-

dimensional unit sphere, then the classical Gauss mean value relation for
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the sphere (for harmonic functions), becomes, by virtue of the axial

symmetry, a re la t ion on a meridian plane:

This i s precisely (WT), and i t i s apparent that the Weinstein Theorem

concerns the mean value of a symmetric harmonic function on a sphere in

(p+2)-dimensional space. Now, one of these (p+2) dimensions must be

assigned to the axis of symmetry, leaving (p+l) "residual" dimensions at

our disposal for constructing the (p+2)-dimensional sphere about the axis

of symmetry. Unless p > - 1 , however, no "residual" dimensions are

avai lable for constructing the sphere, and this in tu i t ive interpretat ion of

the theorem f a i l s . Such considerations must, of course, be purely formal,

without a definit ion of nonintegral dimensionality.

Can "analytic continuation" (with respect to the real variable p ,

s t a r t i n g with the in terval p > - 1 , and then proceeding to the interval

p 5 -1 ; compare, for example, Riesz [3 ] , Diaz and Ludford [ I ] , Diaz and

Weinberger [2] ) ; or , a l te rna t ive ly , Weinstein's "correspondence principle"

(compare, for example, Weinstein [5]), be employed to provide an answer to

the question formulated in the t i t l e of this section?
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