Unitary equivalence and reducibility or invertibly weighted shifts

Alan Lambert

Abstract

Let H be a complex Hilbert space and let $\left\{A_{1}, A_{2}, \ldots\right\}$ be a uniformly bounded sequence of invertible operators on H. The operator S on $Z_{2}(H)=H \oplus H \oplus \cdots$ given by $$
S\left(x_{0}, x_{1}, \ldots\right\rangle=\left\langle 0, A_{1} x_{0}, A_{2} x_{1}, \ldots\right\rangle
$$ is called the invertibly weighted shift on $\mathcal{I}_{2}(H)$ with weight sequence $\left\{A_{n}\right\}$. A matricial description of the commutant of S is established and it is shown that S is unitarily equivalent to an invertibly weighted shift with positive weights. After establishing criteria for the reducibility of S the following result is proved: Let $\left\{B_{1}, B_{2}, \ldots\right\}$ be any sequence of operators on an infinite dimensional Hilbert space K. Then there is an operator T on K such that the lattice of reducing subspaces of T is isomorphic to the corresponding lattice of the W^{*} algebra generated by $\left\{B_{1}, B_{2}, \ldots\right\}$. Necessary and sufficient conditions are given for S to be completely reducible to scalar weighted shifts.

1. Introduction

Much attention has been paid recently to shift operators on Hilbert space. If H is a separable complex Hilbert space with orthonormal basis $\left\{e_{0}, e_{1}, \ldots\right\}$ and $\left\{\alpha_{1}, \alpha_{2}, \ldots\right\}$ is a bounded sequence of scalars then the operator S defined by $S e_{n}=\alpha_{n+1} e_{n+1}$ is called the scalar weighted shift with weight sequence $\left\{\alpha_{n}\right\}$. Most investigations of shifts
deal with shifts all of whose weights are non-zero. A natural generalization of weighted shifts is given by considering the Hilbert space $H \oplus H \oplus \ldots$, denoted by $l_{2}(H)$, and the operator S defined by $S\left(x_{0}, x_{1}, \ldots\right\rangle=\left\langle 0, A_{1} x_{0}, A_{2} x_{1}, \ldots\right\rangle$ where $\left\{A_{1}, A_{2}, \ldots\right\}$ is a bounded sequence of operators on H. The shift U_{+}defined in this way with each $A_{n}=I$, the identity operator on H, is of great interest and importance originally in investigations of isometries and later in studying general operators. It seems reasonable then to investigate these more general weighted shifts. Two difficulties, both avoided by U_{+}, are immediately apparent. First, for scalar shifts the product of several weights is independent of order and secondly, if the weights are all non-zero, one may divide by a weight. When the weights are operators order of multiplication is important and a non-zero operator need not be invertible. In this paper only shifts with invertible weights are considered. Commutativity of the weights is not assumed.

In $\S 2$ we establish the notation to be used in the remainder of this paper and state without proof some easily verified properties of operator weighted shifts and of operators commuting with such a shift. In $\S 3$ we establish necessary and sufficient conditions for two operator weighted shifts to be unitarily equivalent. We then show that every shift is unitarily equivalent to a shift with positive weights. (An operator A is said to be positive if the associated quadratic form ($A x, x$) is positive.) We exhibit two shifts whose weights are pairwise unitarily equivalent while the shifts are not unitarily equivalent. We also find necessary and sufficient conditions for an operator weighted shift to have a reducing subspace and characterize all its reducing subspaces. As an application we show that the lattice of invariant subspaces of a countably generated *algebra of operators on an infinite dimensional Hilbert space K is always isomorphic to the lattice of invariant subspaces of a singly generated *algebra of operators on K.

We point out now for future reference that a scalar shift may be thought of as an operator weighted shift on $l_{2}(C)$.

2. Preliminaries

Throughout this paper H will denote a complex Hilbert space and $Z_{2}(f)$ will be the Hilbert space of all square summable sequences $\left\langle x_{n}\right\rangle_{n=0}^{\infty}, x_{n}$ in H, with inner product $\left(\left\langle x_{n}\right\rangle,\left\langle y_{n}\right\rangle\right)=\sum_{n=0}^{\infty}\left(x_{n}, y_{n}\right)$. When convenient we will write $\left\langle x_{n}\right\rangle=\sum_{n=0}^{\infty} \oplus x_{n}$ or $\left\langle x_{n}\right\rangle=\left\langle x_{0}, x_{1}, \ldots\right\rangle$. For any Hilbert space $K, L(K)$ is the algebra of all bounded linear transformations (operators) from K to K.

For each bounded sequence A_{1}, A_{2}, \ldots of operators on H define the shift with weight sequence $\left\langle A_{n}\right\rangle$ to be the linear transformation S on $Z_{2}(H)$ given by $S\left(x_{0}, x_{1}, \ldots\right\rangle=\left\langle 0, A_{1} x_{0}, A_{2} x_{1}, \ldots\right\rangle$. We will sometimes write $S \sim\left\langle A_{n}\right\rangle$ to indicate S is the shift with weight sequence $\left\langle A_{n}\right\rangle$. If $S \sim\left\langle A_{n}\right\rangle$ and each A_{n} is invertible then we will say S is an invertibly weighted shift. The set of all invertibly weighted shifts on $I_{2}(H)$ is denoted by $I W I_{2}(H)$. Let $S \sim\left\langle A_{n}\right\rangle$ be in $I W Z_{2}(H)$. Define the sequence $S_{0}, S_{1}, S_{2}, \ldots$ by $S_{0}=I$ (the identity operator on H) and $S_{n}=A_{n} A_{n-1} \cdots A_{1}, n \geq 1$. We note that each S_{n} is invertible and $S_{n+1}=A_{n+1} S_{n}$. If T is in $L\left(Z_{2}(H)\right)$ then T can be represented by a matrix $\left[T_{i j}\right]_{i, j=0}^{\infty}$ where each $T_{i j}$ is in $L(H)$. The rules for adding, multiplying, and forming the adjoints of operator matrices are the same as in the scalar matrix case. It is also easy to see that $\left\|T_{i j}\right\| \leq\|T\|$ for each i, j. The following two lemmas are stated without proof, as their proofs differ only in notation from the proofs in [4] of the corresponding results for scalar matrices.

LEMMA 2.1. Let $S \sim\left\langle A_{n}\right\rangle$ and $T \sim\left\langle B_{n}\right\rangle$ be in $I W Z_{2}(H)$ and let X be in $L\left(Z_{2}(H)\right)$ with matrix $\left[X_{i j}\right]$. Then $S X=X T$ if and on l_{y} if

$$
x_{i j}= \begin{cases}0 & \text { for } i<j, \\ S_{i} S_{i-j}^{-1} X_{i-j, 0^{T} j}^{-1} & \text { for } i \geq j .\end{cases}
$$

LEMMA 2.2. Let $S \sim\left\langle A_{n}\right\rangle$ be in $\operatorname{IWZ}_{2}(H)$. Then
(i) $\|i S\|=\sup _{k}\left\|A_{k}\right\| ;$
(ii) the spectral radius, $r(S)$, of S is $\underset{n \rightarrow \infty}{\operatorname{limit}} \sup _{k}\left\|S_{k+n} S_{k}^{-1}\right\|^{1 / n} ;$ and
(iii) the spectrum of S is $\{\lambda:|\lambda| \leq r(S)\}$. In addition, the point spectrum of S is empty.

3. Unitary equivalence and reducibility

It is shown in [4] that two scalar weighted shifts are unitarily equivalent if and only if the n-th weights of the two shifts have the same modulus for each n. After establishing some necessary and sufficient conditions for unitary equivalence of operators in $I W Z_{2}(H)$ we will give an example of two such shifts whose weights are pairwise unitarily equivalent but the shifts themselves are not unitarily equivalent. We will also show that every shift in $\mathrm{IWZ}_{2}(H)$ is unitarily equivalent to a shift with positive weights.

LEMMA 3.1. Let S and T be in $I W Z_{2}(H)$. Then S and T are unitarily equivalent if and only if there is a unitamy operator U on H such that $T_{n} U S_{n}^{-1}$ is unitary for all n.

Proof. Suppose U and $T_{n} U S_{n}^{-1}$ are unitary for all n. Let $V_{n}=T_{n} U S_{n}^{-1}$ and $V=\sum_{n=0}^{\infty} \oplus V_{n}$, which is unitary on $Z_{2}(H)$. Since $V_{0}=U, V_{n}=T_{n} V_{0} S_{n}^{-1}$. Thus by Lemma 2.1 (with S and T interchanged) $V S=T V$. Conversely, suppose $V S=T V$ where V is unitary with matrix $\left[V_{i j}\right]$. Then $S V^{*}=V^{*} T$ and so by Lemma 2.1 both V and V^{*} are lower
triangular. (We will say an operator $B=\left[B_{i j}\right]$ on $\tau_{2}(H)$ is lower triangular if $B_{i j}=0$ for $\left.i<j.\right)$ This implies that V is diagonal, say $V=\sum_{n=0}^{\infty} \oplus V_{n}$ and each V_{n} is unitary on H. Moreover, $V_{n}=T_{n} V_{0} S_{n}^{-1}$ as required.

COROLLARY 3.2. If $S \sim\left(A_{n}\right\rangle$ and $T \sim\left\langle B_{n}\right\rangle$ are in $I W Z_{2}(H)$ where each A_{n} and each B_{n} is unitary on H, then S and T are unitarily equivalent.

Proof. $T_{n} S_{n}^{-1}$ is unitary for all n. Apply Lemma 3.1 with $U=I$.
The next corollary seems a reasonable generalization of the equal modulus condition for equivalence of scelar shifts.

COROLLARY 3.3. Let S and T be in $I W Z_{2}(H)$. Then S and T are unitarily equivalent if and only if there is a unitary operator U on H such that $T_{n}^{* *} n^{U}=U S_{n}^{*} S_{n}$ for all n.

Proof. If S and T are unitarily equivalent then there is a unitary operator U on H such that $T_{n} U S_{n}^{-1}$ is unitary for all n. Thus, for each n,

$$
\begin{aligned}
I & =\left(T_{n} U S_{n}^{-1}\right)\left(T_{n}^{U S_{n}^{-1}}\right)^{*} \\
& =T_{n} U\left(S_{n}^{*} S_{n}\right)^{-1} U^{*} T_{n}^{*}
\end{aligned}
$$

so that

$$
T_{n}^{-1} T_{n}^{*-1}=U\left(S_{n}^{*} S_{n}\right)^{-1} U^{*},
$$

from which it follows that $\left(T_{n}^{*} T\right) U=U\left(S_{n}^{*} S_{n}\right)$.
Conversely, suppose U is unitary on H and $T_{n}^{*} T_{n}^{U}=U S_{n}^{*} S_{n}$ for all n. Let $T_{n}=V_{n}\left(T_{n}^{*} T_{n}\right)^{1 / 2}, S_{n}=W_{n}\left(S_{n}^{*} S_{n}\right)^{1 / 2}$ be the polar decompositions of T_{n} and S_{n} respectively (see $\left[3\right.$, p. 68]). Since $\left(T_{n}^{*} T_{n}\right)^{1 / 2}$ and
$\left(S_{n}^{*} S_{n}\right)^{1 / 2}$ are the uniform limits of sequences $\left\{P_{k}\left(T_{n}^{*} T_{n}\right)\right\}$ and $\left\{P_{k}\left(S_{n}^{*} S_{n}\right)\right\}$ respectively where $\left\{P_{k}\right\}$ is a sequence of polynomials [3, p. 48], it follows that $\left(T_{n}^{*} T\right)^{1 / 2} U=U\left(S_{n}^{*} S_{n}\right)^{1 / 2}$, hence

$$
\begin{aligned}
T_{n} U & =V_{n}\left(T_{n}^{*} T n\right. \\
& =V_{n} U\left(S_{n}^{*} S_{n}\right)^{1 / 2}
\end{aligned}
$$

Now, T_{n} and S_{n} are invertible so V_{n} and W_{n} are unitary. Thus

$$
\begin{aligned}
T_{n} U & =V_{n} U W_{n}^{-1} W_{n}\left(S_{n}^{*} S_{n}\right)^{1 / 2} \\
& =V_{n} U W_{n}^{-1} S_{n}
\end{aligned}
$$

so that $T_{n} U S_{n}^{-1}$ is unitary for all n. By Lemma 3.1, S and T are unitarily equivalent.

Using Corollary 3.3 it is easy to exhibit two non-unitarily equivalent operators in $\mathrm{IWZ}_{2}(H)$ whose weights are pairwise unitarily equivalent. Let A be an invertible positive operator on H and let W be a unitary operator on H which does not commute with A. If $S \sim\left\langle A_{n}\right\rangle$ where $A_{n}=A$ for all n and $T \sim\left\langle B_{n}\right\rangle$ where $B_{n}=A$ for even n and $B_{n}=W A W^{*}$ for odd n, then A_{n} is unitarily equivalent to B for all n. However, suppose S and T are unitarily equivalent. Then there is a unitary operator U on H such that $T_{n}^{*} T n_{n} U=U S_{n}^{*} S_{n}$ for all n. In particular, since $T_{1}=S_{1}=A, S_{2}=A^{2}$, and $T_{2}=W A W^{*} A$ we have $A^{2} U=U A^{2}$ and

$$
\begin{aligned}
U A^{4} & =U S_{2}^{*} S_{2} \\
& =T_{2}^{*} T_{2} U \\
& =\left(A W A W^{*}\right)\left(W A W^{*} A\right) U \\
& =A W A^{2} W^{*} A U
\end{aligned}
$$

But $A^{4} U=U A^{4}$, so

$$
A^{2}=W A^{2} W^{*},
$$

hence

$$
A^{2} W=W A^{2} .
$$

But then $A W=W A$, contradicting the choice of A and W.
A useful form of the unitary equivalence theorem for scalar weighted shifts is that every scalar weighted shift is unitarily equivalent to a shift with non-negative real weights. We now state and prove the analogue of this statement for operators in $I W Z_{2}(H)$.

THEOREM 3.4. Let $S \sim\left\langle A_{n}\right\rangle$ be in $I W Z_{2}(H)$. Then S is unitarily equivalent to a shift $T \sim\left\langle B_{n}\right\rangle$ in $I W Z_{2}(H)$ where each B_{n} is positive.

Proof. Let $A_{n}=U_{n} P_{n}$ be the polar decomposition of A_{n}, $n=1,2, \ldots$ Then P_{n} is positive and invertible and U_{n} is unitary. Let $P=\sum_{n=0}^{\infty} \oplus P_{n+1}$ and let $U=\sum_{n=0}^{\infty} \oplus U_{n+1}$. If U_{+}denotes the unilateral shift given by $U_{+}\left(x_{0}, x_{1}, \ldots\right)=\left(0, x_{0}, x_{1}, \ldots\right\rangle$ then U_{+} is in $I W Z_{2}(H)$ and $S=\left(U_{+} U\right) P$. Moreover, this last equation gives the usual polar decomposition of S. Now $U_{+} U$ is in $I W Z_{2}(H)$ and has unitary weights since $U_{+} U \sim\left\langle U_{n}\right\rangle$. Thus by Corollary 3.2 , there is a unitary operator W such that $U_{+} U=W U_{+} W^{*}$. Moreover, W can be chosen to be diagonal. Thus

$$
\begin{aligned}
S & =\left(U_{+} U\right) P \\
& =W U_{+} W^{*} P \\
& =W\left(U_{+} W^{*} P W\right) W^{*}
\end{aligned}
$$

that is S is unitarily equivalent to $U_{+}\left(W^{*} P W\right)$. Now $W^{*} P W$ is a diagonal operator with positive invertible operators on its diagonal and so $U_{+}(W * P W)$ is an operator in $I W Z_{2}(H)$ with positive weights.

The operator U_{+}mentioned in the above proof is used extensively in the study of canonical models and isometries (see [1, p. 21], [2]). The lattice of reducing subspaces of U_{+}is well known to be the collection of
all spaces of the form $\sum_{n=0}^{\infty} \oplus K_{n}$ where $K_{n}=K$ for all n and K is a subspace of H [2].

For an arbitrary shift S in $I W Z_{2}(H)$ the lattice of its reducing subspaces need not be as simple as that of U_{+}, however it does admit a reasonably simple description in terms of the lattice of invariant
subspaces for the weakly closed *algebra generated by $\left\{S_{n}^{*} S_{n}\right\}_{n=0}^{\infty}$. We introduce the following notation:

For S in $I W Z_{2}(H), T(S)$ is the weakly closed *subalgebra of $L(H)$ generated by $\left\{S_{n}^{*} S_{n}\right\}_{n=0}^{\infty}$.

For any algebra of operators A, $\operatorname{lat} A$ is the lattice of all invariant subspaces of A. By relatA we mean the lattice of all reducing subspaces of A. Similar definitions are assumed for latS etc.

By "projection" we mean orthogonal projection. Also Q_{n} is, for each n, the projection of $Z_{2}(H)$ onto $0 \oplus 0 \oplus \ldots \oplus H \oplus 0 \oplus \ldots$, with H in the n-th position.

In this section we will show that relats is lattice isomorphic to lat $T(S)$. As a corollary we show that for any countable collection $\left\{B_{n}\right\}$ of operators there is a single operator B such that the lattice of reducing subspaces for the *algebra generated oy $\left\{B_{n}\right\}$ is isomorphic to relat B. We also find a necessary and sufficient condition for an operator S in $I W Z_{2}(H)$ to be decomposable into a direct sum of scalar weighted shifts.

Let $S \sim\left\langle A_{n}\right\rangle$ be in $I W Z_{2}(H)$ and suppose M is a subspace of $Z_{2}(H)$ reducing S. Then for P the projection of $Z_{2}(H)$ onto $M, P S=S P$. Since $P^{*}=P$ it follows that $P=\sum_{n=0}^{\infty} \oplus P_{n}$ where each P_{n} is a projection. Moreover for each $n, P_{n}=S_{n} P_{0} S_{n}^{-l}$. Let $M_{n}=P_{n} H$,
$n=0,1,2, \ldots$. Then $P Z_{2}(H)=\sum_{n=0}^{\infty} \oplus M_{n}$. Also

$$
\begin{aligned}
S_{n} M_{0} & =S_{n} P_{0} H \\
& =P_{n} S_{n} H \subset M_{n} \\
& =P_{n}^{H} \\
& =P_{n} S_{n}\left(S_{n}^{-1} H\right) \\
& =S_{n} P_{0}\left(S_{n}^{-1} H\right) \subset S_{n}^{H_{0}}
\end{aligned}
$$

Hence $M_{n}=S_{n} M_{0}, n=0,1,2, \ldots$. We have thus proved the following lemma:

LEMMA 3.5. If M reduces S, then $M=\sum_{n=0}^{\infty} \oplus S_{n} M_{0}$ for some subspace M_{0} of H. In particular $Q_{n} M$ is closed for all n.

Note that for any subspace M_{0} of $H, \sum_{n=0}^{\infty} \oplus S_{n} M_{0}$ is invariant for S but need not reduce S. We now give some necessary and sufficient conditions for a subspace to reduce S.

THEOREM 3.6. Let $M=\sum_{n=0}^{\infty} \oplus S_{n} M_{0}$ be a subspace of $\tau_{2}(H)$. The following are equivalent:
(i) M reduces S;
(ii) $S_{n} M_{0}$ is invariant for $A_{n+1}^{*} A_{n+1}, n=0,1, \ldots$;
(iii) $\quad\left(S_{n} M_{0}\right)^{\perp}=S_{n}\left(M_{0}^{\perp}\right), \quad n=0,1, \ldots$;
(iv) $S_{n}^{\star} S_{n} M_{0}=M_{0}, n=0,1, \ldots$.

Proof. We show that (i) and ($i i$) are equivalent, (i) and (i ii) are equivalent, and ($i i i$) and ($i v$) are equivalent. Suppose M reduces S.

Then $S^{*} S M \subset M$. It is easily seen that for $\sum_{n=0}^{\infty} \oplus x_{n}$ in $l_{2}(H)$, $S^{*} \sum_{n=0}^{\infty} \oplus x_{n}=\sum_{n=0}^{\infty} \oplus A_{n+1}^{*} x_{n+1}$. Thus for $\sum_{n=0}^{\infty} \oplus S_{n} x_{n}$ in M,

$$
\begin{aligned}
S^{* S} \sum_{n=0}^{\infty} \oplus S_{n} x_{n} & =S^{*}\left(0 \oplus \sum_{n=1}^{\infty} \oplus A_{n} S_{n-1} x_{n-1}\right) \\
& =S^{*}\left(0 \oplus \sum_{n=1}^{\infty} \oplus S_{n} x_{n-1}\right) \\
& =\sum_{n=0}^{\infty} \oplus A_{n+1}^{*} S_{n+1} x_{n} .
\end{aligned}
$$

Hence for fixed n and x in $M_{0}, A_{n+1}^{*} A_{n+1} S_{n} x\left(=A_{n+1}^{*} S_{n+1} x\right)$ is in $S_{n} M_{0}$, showing that (i) implies (ii). But if $A_{n+1}^{*} A_{n+1} S_{n} M_{0} \subset S_{n} M_{0}$ for all n then for $\sum_{n=0}^{\infty} \oplus S_{n} x_{n}$ in M,

$$
\begin{aligned}
S^{*} \sum_{n=0}^{\infty} \oplus S_{n} x_{n} & =\sum_{n=0}^{\infty} \oplus A_{n+1}^{*} S_{n+1} x_{n+1} \\
& =\sum_{n=0}^{\infty} \oplus A_{n+1}^{*} A_{n+1} S_{n} x_{n+1} \subset \sum_{n=0}^{\infty} \oplus S_{n} M_{0},
\end{aligned}
$$

showing that ($i i$) implies (i).
To show that (i) implies (iii) note that if M reduces S then so does M^{\perp}. Thus by Lemma 3.5, $M^{\perp}=\sum_{n=0}^{\infty} \oplus S_{n} N_{0}$ for some $N_{0} \subset H$. It is easily seen that

$$
\begin{aligned}
M^{\perp} & =\left(\sum_{n=0}^{\infty} \oplus S_{n} M_{0}\right)^{\perp} \\
& =\sum_{n=0}^{\infty} \oplus\left(S_{n} M_{0}\right)^{\perp}
\end{aligned}
$$

so that $S_{n} N_{0}=\left(S_{n} M_{0}\right)^{\perp}$. In particular $N_{0}=M_{0}^{\perp}$ and so $S_{n}\left(M_{0}^{\perp}\right)=\left(S_{n} M_{0}\right)^{\perp}$,
that is (i ii) holds. Conversely if $\left(S_{n} M_{0}\right)^{\perp}=S_{n}\left(M_{0}^{1}\right)$ for all n, $M^{\perp}=\sum_{n=0}^{\infty} \oplus\left(S_{n} M_{0}\right)^{\perp}=\sum_{n=0}^{\infty} \oplus S_{n}\left(M_{0}^{\perp}\right)$ is invariant for S, hence M reduces S.

Finally, to show that (iii) and (iv) are equivalent note that since $S_{n}^{*} S_{n}$ is an invertible self-adjoint operator, if $S_{n}^{*} S_{n} K \subset K$ for a subspace K, then $S_{n}^{*} S_{n} K=K$. Thus it suffices to show that for any invertible operator A and a subspace $K,(A K)^{\perp}=A\left(K^{\perp}\right)$ if and only if $A * A K=K$. This is a straightforward calculation and is omitted.

COROLLARY 3.7. The lattice of reducing subspaces of S is isomorphic to lat $T(S)$. In particular S is irreducible if and only if $T(S)=L(H)$.

Proof. Since
$\operatorname{lat} T(S)=\left\{M_{0}: M_{0}\right.$ a subspace of H and $\left.S_{n}^{*} S_{n} H_{0}=M_{0}, n=0,1, \ldots\right\}$, we have, by Theorem 3.6, the reformulation

$$
T(S)=\left\{M_{0} \subset H:\left(S_{n} M_{0}\right)^{\perp}=S_{n}\left(M_{0}^{\perp}\right), n=0,1, \ldots\right\}
$$

and

$$
\text { relat } S=\left\{\sum_{n=0}^{\infty} \oplus S_{n} M_{0}: M_{0} \quad \text { in } T(S)\right\}
$$

We now show that the map $\Gamma: M_{0} \rightarrow \sum_{n=0}^{\infty} \oplus S_{n} M_{0}$ is a lattice isomorphism of latT (S) onto relatS . Clearly Γ is bijective. Note that

$$
\begin{aligned}
\Gamma\left(M_{0}\right)^{\perp} & =\left(\sum_{n=0}^{\infty} \oplus S_{n} M_{0}\right)^{\perp} \\
& =\sum_{n=0}^{\infty} \oplus\left(S_{n} M_{0}\right)^{\perp} \\
& =\sum_{n=0}^{\infty} \oplus S_{n}\left(M_{0}^{\perp}\right) \\
& =\Gamma\left(M_{0}^{\perp}\right) .
\end{aligned}
$$

We must show that for M_{1} and M_{2} in latT(S),

$$
\Gamma\left(M_{1} \vee M_{2}\right)=\Gamma\left(M_{1}\right) \vee \Gamma\left(M_{2}\right)
$$

and

$$
\Gamma\left(M_{1} \cap M_{2}\right)=\Gamma\left(M_{1}\right) \cap \Gamma\left(M_{2}\right) .
$$

Clearly

$$
\Gamma\left(M_{1}\right)+\Gamma\left(M_{2}\right) \subset \Gamma\left(M_{1} \vee M_{2}\right),
$$

so

$$
\Gamma\left(M_{1}\right) \vee \Gamma\left(M_{2}\right) \subset \Gamma\left(M_{1} \vee M_{2}\right) .
$$

Alse

$$
\begin{aligned}
\left(\Gamma\left(M_{1}\right) \vee \Gamma\left(M_{2}\right)\right)^{\perp} & =\left(\Gamma\left(M_{1}\right)\right)^{\perp} \cap\left(\Gamma\left(M_{2}\right)\right)^{\perp} \\
& =\Gamma\left(M_{1}^{\perp}\right) \cap \Gamma\left(M_{2}\right) .
\end{aligned}
$$

But if $\sum_{n=0}^{\infty} \oplus S_{n} x_{n}$ is in $\Gamma\left(M_{1}^{1}\right) \cap \Gamma\left(M_{2}^{1}\right)$ then for all $n, S_{n} x_{n}$ is in $\left(S_{n}^{M_{1}^{\perp}}\right) \cap\left(S_{n}^{M_{2}^{\perp}}\right)$. By the invertivility of S_{n}, x_{n} is in $M_{1}^{\perp} \cap M_{2}^{\perp}$, $n=0,1, \ldots$. Thus

$$
\begin{aligned}
\left(\Gamma\left(M_{1}\right) \vee \Gamma\left(M_{2}\right)\right)^{\perp} \subset \Gamma\left(M_{1}^{\perp} \cap M_{2}^{\perp}\right) & =\Gamma\left(\left(M_{1} \vee M_{2}\right)\right)^{\perp} \\
& =\left(\Gamma\left(M_{1} \vee M_{2}\right)\right)^{\perp}
\end{aligned}
$$

and so $\Gamma\left(M_{1}\right) \vee \Gamma\left(M_{2}\right)=\Gamma\left(M_{1} \vee M_{2}\right)$. By repeatedly using the fact that $\Gamma\left(K^{\perp}\right)=(\Gamma(K))^{\perp}$ for K in $\operatorname{lat} T(S)$ and by replacing M_{1} and M_{2} by M_{1}^{\perp} and M_{2}^{\perp} respectively in the above calculation we see that
$\Gamma\left(M_{1} \cap M_{2}\right)=\Gamma\left(M_{1}\right) \cap \Gamma\left(M_{2}\right)$.
Finally, S is irreducible if and only if $\operatorname{lat} T(S)=\{0, H\}$. Since $T(S)$ is a weakly closed *algebra with identity, $\operatorname{lat} T(S)=\{0, H\}$ if and only if $T(S)=L(H)$.

REMARK. If $S \sim\left\langle A_{n}\right\rangle$ is in $I W Z_{2}(H)$ where each A_{n} is positive it follows that latT(S) equals the lat algebra generated by $\left\{A_{1}, A_{2}, \ldots\right\}$. But if M_{0} is invariant for $A_{n}, n=1,2, \ldots$ then $A_{n} M_{0}=M_{0}$ and so $S_{n} M_{0}=M_{0}$. Thus if each A_{n} is positive then relat $S=\left\{z_{2}\left(M_{0}\right): M_{0}\right.$ invariant for $\left.A_{n}, n=1,2, \ldots\right\}$.

We then have the following curious result.
THEOREM 3.8. Let $\left\{B_{n}\right\}_{n=1}^{\infty}$ be any sequence of operators on H and Let B be the weakly closed *algebra generated by $\left\{B_{n}\right\}_{n=1}^{\infty}$. Then there is an operator S in $I W Z_{2}(H)$ such that relatS is isomorphic to lat B.

Proof. By taking suitable scalar multiples of translations of the real and imaginary parts of each B_{n} we can find a sequence $\left\{A_{n}\right\}_{n=1}^{\infty}$ of positive invertible operators with $\left\|A_{n}\right\| \leq 1$ for all n which generate B. Then for $S \sim\left\langle A_{n}\right\rangle, T(S)=B$, hence latB and relatS are isomorphic.

A long but straightforward calculation shows that if $M=\sum_{n=0}^{\infty} \oplus S_{n} M_{0}$ reduces S then the restriction T of S to M is unitarily equivalent to an operator in $I W Z_{2}\left(M_{0}\right)$. It is reasonable then to ask under what conditions S can be decomposed into a direct sum of scalar weighted shifts, that is, when can $Z_{2}(H)$ be written as $\sum_{n=0}^{\infty} \oplus M_{n}$ in such a way
that each M_{n} reduces S and S restricted to M_{n} is unitarily equivalent to an operator in some $I W I_{2}\left(K_{n}\right)$ where K_{n} is one-dimensional. This question is also motivated by noting that U_{+}may be represented as the countable direct sum of the scalar weighted shift all of whose weights are 1 . For convenience we will say that an algebra B of operators is diagonalizable if there is an orthonormal basis for the underlying space such that each operator in B is diagonal with respect to this basis.

THEOREM 3.9. Let d be the dimension of H and assume $d \leq \aleph_{0}$. Let $S \sim\left(A_{n}\right\rangle$ be in $I W Z_{2}(H)$. Then S is a direct sum of scalar weighted shifts if and only if $T(S)$ is diagonalizable.

Proof. By Theorem 3.4 we may assume that each A_{n} is positive and hence that $T(S)$ is the weakly closed *algebra generated by $\left\{I, A_{1}, A_{2}, \ldots\right\}$. Since each A_{n} is positive $T(S)$ is diagonalizable if and only if the set of common eigenvectors of $\left\{A_{n}\right\}_{n=1}^{\infty}$ spans H. Suppose first that $\left\{x_{k}\right\}_{k=0}^{d}$ is an orthonormal basis for H consisting of common eigenvectors of $\left\{A_{n}\right\}$. Let $\left[x_{k}\right]$ denote the one-dimensional space spanned by x_{k}. Since $\left[x_{k}\right]$ is invariant for $T(S), Z_{2}\left(\left[x_{k}\right]\right)$ reduces S. Moreover since $H=\sum_{k=0}^{d} \oplus\left[x_{k}\right], \tau_{2}(H)=\sum_{k=0}^{d} \oplus \tau_{2}\left(\left[x_{k}\right]\right)$. Now the restriction of S to $\tau_{2}\left(\left[x_{k}\right]\right)$ is a shift and since $\left[x_{k}\right]$ is one-dimensional, this restriction is a scalar-weighted shift. Thus S is a direct sum of scalar weighted shifts.

Conversely suppose $V S V^{-1}=\sum_{k=0}^{m} \oplus T_{k}$ where V is unitary on $Z_{2}(H), m \leq \kappa_{0}$, and each T_{k} is a scalar weighted shift on some separable subspace M_{k} of $Z_{2}(H)$. Then $Z_{2}(H)=\sum_{k=0}^{m} \oplus V^{-1} M_{k}$ and the
restriction of S to $V^{-1} M_{k}$ is a scalar weighted shift. Let $N_{k}=V^{-1} M_{k}$. Since $\left\{N_{k}\right\}_{k=0}^{m}$ is a family of pairwise orthogonal reducing subspaces of $S,\left\{Q_{0} N_{k}\right\}_{k=0}^{m}$ is a family of pairwise orthogonal reducing subspaces of $T(S)$. (Here we have identified $Q_{0} N_{k}$ with the set of its first coordinates since all other coordinates of $Q_{0} N_{k}$ are 0 . We have also used Lemma 3.5 to say that $Q_{0} N_{k}$ is closed.) Moreover, since $\tau_{2}(H)=\sum_{k=0}^{m} \oplus N_{k}, H=Q_{0} Z_{2}(H)=\sum_{k=0}^{m} \oplus Q_{0} N_{k}$. Thus to show that $T(S)$ is diagonalizable it suffices to show that $Q_{0} N_{k}$ is one dimensional for $0 \leq k \leq m$. Fix k and let $\left\{f_{0}, f_{1}, \ldots\right\}$ be a basis for N_{k} shifted by S, say $S f_{j}=\alpha_{j+1} f_{j+1}$. (Note that $\alpha_{j+1} \neq 0$ for all j since S is kernel free.) For each j let $f_{j}=\sum_{n=0}^{\infty} \oplus g_{n, j}$ be the decomposition of f_{j} with respect to $Z_{2}(H)$. Then

$$
\begin{aligned}
S f_{j} & =\alpha_{j+1} f_{j+1} \\
& =\sum_{n=0}^{\infty} \oplus \alpha_{j+1} g_{n, j+1}
\end{aligned}
$$

However

$$
\begin{aligned}
S f_{j} & =S \sum_{n=0}^{\infty} \oplus g_{n, j} \\
& =0 \oplus \sum_{n=1}^{\infty} \oplus A_{n} g_{n-1, j},
\end{aligned}
$$

so that for all j and n

$$
\alpha_{j+1} g_{0, j+1}=0
$$

and

$$
\alpha_{j+1} g_{n+1, j+1}=A_{n+1} g_{n, j}
$$

Thus

$$
g_{n, j}=0 \quad \text { if } \quad n<j
$$

Now,

$$
\begin{aligned}
Q_{0} f_{j} & =Q_{0} \sum_{n=0}^{\infty} \oplus g_{n, j} \\
& =g_{0, j},
\end{aligned}
$$

hence $Q_{0} f_{j}=0$ unless $j=0$. Thus

$$
\begin{aligned}
Q_{0} N_{k} & =Q_{0} \bigvee_{j=0}^{\infty} f_{j} \\
& =\left[Q_{0} f_{0}\right],
\end{aligned}
$$

which is one-dimensional.
REMARKS. (l) Only slight modifications of the above proof lead to the following result. If S is in $I W l_{2}(H)$ then S is unitarily equivalent to an operator of the form $R \oplus T$ where R is a direct sum of scalar weighted shifts and no restriction of T to a reducing subspace is a scalar weighted shift. Here R acts on $\sum_{n=0}^{\infty} \oplus S_{n} M_{0}$ where M_{0} is the closed span of the common eigenvectors of all the operators in $T(S)$.
(2) If $T_{1}, T_{2}, \ldots, T_{n}$ are shifts on $Z_{2}\left(H_{1}\right), z_{2}\left(H_{2}\right), \ldots, Z_{2}\left(H_{n}\right)$ respectively $(n<\infty)$ then $T_{1} \oplus T_{2} \oplus \ldots \oplus T_{n}$ is unitarily equivalent to a shift on $Z_{2}\left(\sum_{k=0}^{n} \oplus H_{k}\right)$. This follows easily from the fact that the map from $\sum_{k=0}^{n} \oplus Z_{2}\left(H_{k}\right)$ to $z_{2}\left(\sum_{k=0}^{n} \oplus H_{k}\right)$ is a unitary isomorphism.

Shields and Wallen proved in [5] that the weakly closed algebra generated by the identity and an injective scalar weighted shift S is exactly the algebra of all bounded operators commuting with S. Although this no longer holds for operators in $I W Z_{2}(H)$, it seems plausible that the algebra $A^{\prime \prime}(S)$ of all operators commuting with every bounded operator commuting with S is the weakly closed algebra generated by I and S, S in $I W Z_{2}(H)$. We have not been able to prove this conjecture or find a
counterexample.

References

[1] P.A. Fillmore, Notes on operator theory (Van Nostrand Reinhold Math. Studies, No. 30. Van Nostrand Reinhold, New York, 1970).
[2] Paul R. Halmos, "Shifts on Hilbert spaces", J. reine angew. Math. 208 (1961), 102-112.
[3] Paul R. Halmos, A Hilbert space problem book (Van Nostrand, Princeton, New Jersey; Toronto, Ontario; London; 1967).
[4] Robert Lee Kelley, "Weighted shifts on Hilbert space", (doctoral thesis, University of Michigan, Ann Arbor, 1966).
[5] A.L. Shields and L.J. Wallen, "The commutant of certain Hilbert space operators", (to appear).

University of Kentucky,
Lexington,
Kentucky, USA.

