How the Roots of a Polynomial Vary with its Coefficients: A Local Quantitative Result

Bernard Beauzamy

Abstract

A well-known result, due to Ostrowski, states that if $\|\mathrm{P}-\mathrm{Q}\|_{2}<\varepsilon$, then the roots $\left(\mathrm{x}_{\mathrm{j}}\right)$ of P and $\left(\mathrm{y}_{\mathrm{j}}\right)$ of Q satisfy $\left|x_{j}-y_{j}\right| \leq C n \varepsilon^{1 / n}$, wheren is the degree of P and Q. Though there are cases where this estimate is sharp, it can still be made more precise in general, in two ways: first by using Bombieri's norm instead of the classical I_{1} or I_{2} norms, and second by taking into account the multiplicity of each root. For instance, if x is a simple root of P , we show that $|\mathrm{x}-\mathrm{y}|<\mathrm{C} \varepsilon$ instead of $\varepsilon^{1 / n}$. The proof uses the properties of Bombieri's scalar product and Walsh Contraction Principle.

1 The General Theory

A well-known result due to Ostrowski [6], [7] can be stated as follows:
(1) Let $P=\sum_{0}^{n} a_{n-j} z^{j}, Q=\sum_{0}^{n} b_{n-j} z^{j}$, be two polynomials, satisfying $\mathrm{a}_{0}=\mathrm{b}_{0}=1$, and with respective roots $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$. Let

$$
\mathrm{T}=\max \left\{1,\left|a_{1}\right|,\left|b_{1}\right|, \ldots,\left|a_{k}\right|^{1 / k},\left|b_{k}\right|^{1 / k}, \ldots,\left|a_{n}\right|^{1 / n},\left|b_{n}\right|^{1 / n}\right\} .
$$

Then, if the y_{j} 's are suitably ordered, we have, for all j ,

$$
\left|x_{j}-y_{j}\right| \leq 4 n T \delta^{1 / n}
$$

with

$$
\delta=\left(\sum_{0}^{n}\left|a_{j}-b_{j}\right|^{2}\right)^{1 / 2} .
$$

(2) Let P, Q be as before; assume moreover that 0 is not a root of P . Assume that, for all j

$$
\left|\mathrm{a}_{\mathrm{j}}-\mathrm{b}_{\mathrm{j}}\right| \leq \tau\left|\mathrm{a}_{\mathrm{j}}\right|
$$

where τ is small enough, namely

$$
\tau \leq\left(\frac{1}{4 n}\right)^{n}
$$

Then the zeros y_{j} 's of Q can be ordered in such a way that

$$
\left|\frac{y_{j}}{x_{j}}-1\right|<8 n \tau^{1 / n}, \quad \text { for all } j .
$$

Received by the editors July 27, 1996; revised April 22, 1998.
In application of contract ETCA/CREA/20461/95, M inistry of Defense, France.
AM S subject classification: 30C10.
(C)Canadian M athematical Society 1999.

Here, we will make this result more precise, in two ways. First, in order to measure P - Q , we will use Bombieri's norm, and second, we will take into account the multiplicity of the roots, which, of course, may be different from one to the other: this is why we speak of a "local" result.

Let $\mathrm{P}=\sum_{0}^{n} \mathrm{a}_{\mathrm{z}} \mathrm{z}^{\mathrm{j}}$ be a polynomial with complex coefficients and degreen. Its Bombieri's norm is defined by

$$
\begin{equation*}
[P]=\left(\sum_{0}^{n} \frac{\left|a_{j}\right|^{2}}{\binom{n}{j}}\right)^{1 / 2} . \tag{1}
\end{equation*}
$$

This definition is better understood in its original frame, that of homogeneous manyvariable polynomials: see Beauzamy-Bombieri-Enflo-Montgomery [3] and BeauzamyDégot [4].

Let x_{1}, \ldots, x_{n} be the roots of P.
Let Q be another polynomial, with same degree, satisfying

$$
\begin{equation*}
[\mathrm{P}-\mathrm{Q}] \leq \varepsilon . \tag{2}
\end{equation*}
$$

Theorem 1 If x is any zero of P , there exists a zero y of Q , with

$$
\begin{equation*}
|x-y| \leq \frac{n\left(1+|x|^{2}\right)^{n / 2}}{\left|Q^{\prime}(x)\right|} \varepsilon . \tag{3}
\end{equation*}
$$

If ε is small enough, namely

$$
\begin{equation*}
\varepsilon \leq \frac{1}{2} \frac{\left|P^{\prime}(x)\right|}{n\left(1+|x|^{2}\right)^{\frac{n-1}{2}}} \tag{4}
\end{equation*}
$$

then (3) implies

$$
\begin{equation*}
|x-y| \leq \frac{2 n\left(1+|x|^{2}\right)^{n / 2}}{\left|P^{\prime}(x)\right|} \varepsilon . \tag{5}
\end{equation*}
$$

Before we turn to the proof, let us make some comments about these results.

- Estimates (3) and (5) are homogeneous (which is already an improvement upon Os trowski's result). Indeed, if all coefficients of P and Q are multiplied by λ, so is ε, and $\varepsilon /\left|\mathrm{Q}^{\prime}(\mathrm{x})\right|$ or $\varepsilon /\left|\mathrm{P}^{\prime}(\mathrm{x})\right|$ are not modified.
- Theorem 1 is empty if x is not a simple root, either for P or for Q (note that Q can have all roots simple, and P have only one root, as the example of z^{n} and $\mathrm{z}^{\mathrm{n}}+\alpha$ shows).
- The term $\left(1+|x|^{2}\right)^{1 / 2}$ can itself be bound by a quantity depending only on the coefficients of the polynomial, for instance by $\left(1+R^{2}\right)^{1 / 2}$, where R is the radius of the largest disk, centered at 0 , containing all the zeros. An estimate for R can befound in M arden [5]; others may be given, using for instance Mahler's measure of P. Here, we will give later (Theorem 4) a bound depending on Bombieri's norm [P].

Proof of Theorem 1 We need a few simple facts about Bombieri's norm, and the corresponding scalar product, which is just

$$
\begin{equation*}
[P, Q]=\sum_{j=0}^{n} \frac{a_{j} \bar{b}_{j}}{\binom{n}{j}}, \tag{6}
\end{equation*}
$$

if $P=\sum_{j=0}^{n} a_{j} z^{j}, Q=\sum_{j=0}^{n} b_{j} z^{j}$.
Lemma 2 (B. Reznick [8]) For any Z_{0},

$$
P\left(z_{0}\right)=\left[P,\left(z_{0} z+1\right)^{n}\right] .
$$

(See Reznick [8] or Beauzamy-Dégot [4] for a proof.)
As a consequence, we get

$$
\begin{equation*}
\left|\mathbb{P}\left(z_{0}\right)\right| \leq[\mathbb{P}]\left(1+\left|z_{0}\right|^{2}\right)^{n / 2} . \tag{7}
\end{equation*}
$$

Indeed

$$
\left|P\left(z_{0}\right)\right|=\left|\left[P,\left(z_{0} z+1\right)^{n}\right]\right| \leq[P]\left[\left(z_{0} z+1\right)^{n}\right],
$$

and an immediate computation shows that

$$
\left[(\alpha z+1)^{n}\right]=\left(1+|\alpha|^{2}\right)^{n / 2} .
$$

Another property of the scalar product is

$$
\begin{equation*}
\left[P^{\prime}, R\right]=n[P, z R] \tag{8}
\end{equation*}
$$

if $\operatorname{deg} P=n, \operatorname{deg} R=n-1$ (see[4] for a proof).
Lemma 3 If $f(z)=a z+b(a \neq 0)$ satisfies $\left|f\left(z_{0}\right)\right| \leq \varepsilon$, thereexists z_{1}, with $\left|z_{1}-z_{0}\right| \leq \varepsilon /|a|$, such that $f\left(z_{1}\right)=0$. M ore generally, if $f(z)=a\left(z-z_{1}\right) \cdots\left(z-z_{k}\right)$ satisfies $\left|f\left(z_{0}\right)\right| \leq \varepsilon$, one of the roots, say z_{1}, satisfies

$$
\left|z_{1}-z_{0}\right| \leq(\varepsilon /|a|)^{1 / k} .
$$

Proof of Lemma 3 This is obvious: if

$$
\left|z_{0}-z_{1}\right| \cdots\left|z_{0}-z_{k}\right| \leq \frac{\varepsilon}{|a|},
$$

one of the $\left|z_{0}-z_{j}\right|$ must be at most equal to $(\varepsilon /|a|)^{1 / k}$.
Let us now prove the theorem. Since x is a root of P, we have, by (7):

$$
\begin{equation*}
|Q(x)|=|(Q-P)(x)| \leq \varepsilon\left(1+|x|^{2}\right)^{n / 2} . \tag{9}
\end{equation*}
$$

Set

$$
\varepsilon^{\prime}=\varepsilon\left(1+|x|^{2}\right)^{n / 2}
$$

We know by Lemma 2 that

$$
\begin{equation*}
\mathrm{Q}(\mathrm{x})=\left[\mathrm{Q},(\mathrm{xz}+1)^{\mathrm{n}}\right] . \tag{10}
\end{equation*}
$$

Let us consider

$$
f(\zeta)=\left[Q,(x z+1)^{n-1}(\bar{\zeta} z+1)\right]
$$

which is an affinefunction of ζ, satisfying

$$
\begin{equation*}
|f(x)| \leq \varepsilon^{\prime} . \tag{11}
\end{equation*}
$$

By Lemma 3, there is a point $x^{\prime},\left|x^{\prime}-x\right| \leq \varepsilon^{\prime} /|a|$ (where a is the coefficient of ζ in f), such that $f\left(x^{\prime}\right)=0$. Let's computea. By definition:

$$
\begin{aligned}
a & =\left[Q,(x z+1)^{n-1} z\right] \\
& =\frac{1}{n}\left[Q^{\prime},(x z+1)^{n-1}\right] \quad \text { by }(8) \\
& =\frac{1}{n} Q^{\prime}(x),
\end{aligned}
$$

by Lemma 2. So we see that a zero x^{\prime} of f satisfies

$$
\begin{equation*}
\left|x^{\prime}-x\right| \leq \frac{n \varepsilon^{\prime}}{\left|Q^{\prime}(x)\right|} \tag{12}
\end{equation*}
$$

Let us now apply Walsh Contraction Principle (Walsh [9], see Beauzamy [1] for a detailed study and proof). Consider

$$
\begin{equation*}
\varphi\left(u_{1}, \ldots, u_{n}\right)=\left[Q,\left(u_{1} z+1\right) \cdots\left(u_{n} z+1\right)\right] . \tag{13}
\end{equation*}
$$

This is a symmetric function of u_{1}, \ldots, u_{n}, affine with respect to each of them. It satisfies $\varphi\left(x, \ldots, x, x^{\prime}\right)=0$. Therefore, in each disk containing both x and x^{\prime}, and in particular in the disk of diameter x^{\prime}, there is a point y such that

$$
\begin{equation*}
\varphi(\mathrm{y}, \ldots, \mathrm{y})=0 \tag{14}
\end{equation*}
$$

Coming back to the definition of φ, we get

$$
\varphi(\mathrm{y}, \ldots, \mathrm{y})=\left[\mathrm{Q},(\mathrm{yz}+1)^{\mathrm{n}}\right]=\mathrm{Q}(\mathrm{y})
$$

So y is a zero of Q. Since it is in the disk of diameter x^{\prime}, we have also by (12):

$$
|x-y| \leq \frac{n \varepsilon^{\prime}}{\left|Q^{\prime}(x)\right|}
$$

and the first part of Theorem 1 is proved. To get the second part, we write simply:

$$
\begin{aligned}
\left|P^{\prime}(x)-Q^{\prime}(x)\right| & =\left|\left[P^{\prime}-Q^{\prime},(x z+1)^{n-1}\right]\right| \\
& =n\left|\left[P-Q, z(x z+1)^{n-1}\right]\right| \\
& \leq n[P-Q]\left[z(x z+1)^{n-1}\right] \\
& \leq n \varepsilon\left(1+|x|^{2}\right)^{\frac{n-1}{2}} .
\end{aligned}
$$

So $\left|Q^{\prime}(x)\right| \geq\left|P^{\prime}(x)\right|-n \varepsilon\left(1+|x|^{2}\right)^{\frac{n-1}{2}}$. If ε is taken as indicated, we get $\left|Q^{\prime}(x)\right| \geq \frac{1}{2}\left|P^{\prime}(x)\right|$; the result follows.

Let us now give a more general version of Theorem 1 , valid if x has multiplicity k, empty if it has multiplicity $\mathrm{k}+1$:
Theorem 4 Let $k \geq 1$ be an integer, P and Q betwo polynomials of degreen, with $[P-Q] \leq$ ε. If x is any zero of P , there existsa zero y of Q , with

$$
\begin{equation*}
|x-y| \leq\left(\frac{n!}{(n-k)!} \frac{\left(1+|x|^{2}\right)^{n / 2}}{\left|Q^{(k)}(x)\right|}\right)^{1 / k} \varepsilon^{1 / k} \tag{15}
\end{equation*}
$$

If ε is small enough, namely

$$
\begin{equation*}
\varepsilon \leq \frac{(n-k)!}{2 n!} \frac{\left|P^{(k)}(x)\right|}{\left(1+|x|^{2}\right)^{\frac{n-k}{2}}} \tag{16}
\end{equation*}
$$

then (15) implies

$$
\begin{equation*}
|x-y| \leq\left(\frac{2 n!}{(n-k)!} \frac{\left(1+|x|^{2}\right)^{n / 2}}{\left|P^{(k)}(x)\right|}\right)^{1 / k} \varepsilon^{1 / k} . \tag{17}
\end{equation*}
$$

Proof of Theorem 4 It follows the same lines, so we only indicate the minor changes. We now set

$$
\begin{equation*}
f(\zeta)=\left[Q,(x z+1)^{n-k}(\bar{\zeta} z+1)^{k}\right] \tag{18}
\end{equation*}
$$

which is a polynomial in ζ of degree k, satisfying

$$
|\mathrm{f}(\mathrm{x})|=|\mathrm{Q}(\mathrm{x})| \leq \varepsilon^{\prime} .
$$

By Lemma 3, there is a point x^{\prime}, with $f\left(x^{\prime}\right)=0$, such that $\left|x^{\prime}-x\right| \leq\left(\varepsilon^{\prime} /|a|\right)^{1 / k}$, where a is the coefficient of ζ^{k} in (18), that is

$$
a=\left[Q,(x z+1)^{n-k z^{k}}\right]=\frac{(n-k)!}{n!} Q^{(k)}(x) .
$$

So we get

$$
\begin{equation*}
\left|x^{\prime}-x\right| \leq\left(\frac{n!}{(n-k)!} \frac{\varepsilon^{\prime}}{\left|Q^{(k)}(x)\right|}\right)^{1 / k} \tag{19}
\end{equation*}
$$

Let $\varphi\left(u_{1}, \ldots, u_{n}\right)$ be defined as before. We now get

$$
\varphi(\underbrace{x, \ldots, x}_{\text {n-ktimes }}, \underbrace{x^{\prime}, \ldots, x^{\prime}}_{\text {ktimes }})=0,
$$

so by Walsh's principle, there is a point y , with $\varphi(\mathrm{y}, \ldots, \mathrm{y})=0$, satisfying

$$
|x-y| \leq\left(\frac{n!}{(n-k)!} \frac{\varepsilon^{\prime}}{\left|Q^{(k)}(x)\right|}\right)^{1 / k} .
$$

This proves the first part of the Theorem. Now:

$$
\begin{aligned}
\left|P^{(k)}(x)-Q^{(k)}(x)\right| & =\left|\left[P^{(k)}-Q^{(k)},(x z+1)^{n-k}\right]\right| \\
& =\frac{n!}{(n-k)!}\left|\left[P-Q, z^{k}(x z+1)^{n-k}\right]\right| \\
& \leq \frac{n!}{(n-k)!} \varepsilon\left(1+|x|^{2}\right)^{\frac{n-k}{2}},
\end{aligned}
$$

and the second part follows.
How sharp is the coefficient of ε in estimates (3) or (5)? We do not know exactly, but the order of magnitude is almost best possible. Indeed take $P=z^{n}-1$, with $x=1$, and $\mathrm{Q}=\mathrm{z}^{\mathrm{n}}+\varepsilon \sqrt{\left(n_{n / 2}^{n}\right)} \mathrm{z}^{\mathrm{n} / 2}-1$ (for n even). Then $[\mathrm{P}-\mathrm{Q}]=\varepsilon$. The roots of Q are the $\mathrm{n} / 2$ roots of

$$
-\frac{\varepsilon}{2} \sqrt{\binom{n}{n / 2}} \pm \sqrt{1+\frac{\varepsilon^{2}}{4}\binom{n}{n / 2}}
$$

and if y is the real zero

$$
\left(\sqrt{1+\frac{\varepsilon^{2}}{4}\binom{n}{n / 2}}-\frac{\varepsilon}{2} \sqrt{\binom{n}{n / 2}}\right)^{2 / n} .
$$

We find

$$
|x-y| \sim \frac{\varepsilon}{n} \sqrt{\binom{n}{n / 2}} \sim \frac{\varepsilon}{n^{n}} 2^{n / 2}\left(\frac{2}{\pi n}\right)^{1 / 4},
$$

whereas estimates (3) gave $2^{n / 2}$.

2 A Bound for the Largest Zero

We now give an estimate for the largest root of P, in terms of Bombieri's norm. This estimate may be substituted in the term $1+|x|^{2}$, in Theorems 1 and 2 above. Of course, now, some normalization is necessary. We choose the usual one, that is $\mathrm{a}_{\mathrm{n}}=1$.
Theorem 5 If $\mathrm{P}=\sum_{0}^{n} \mathrm{a}_{\mathrm{j}} \mathrm{z}^{\mathrm{j}}$ is a polynomial with $\mathrm{a}_{\mathrm{n}}=1$, its roots $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ satisfy the estimate

$$
\begin{equation*}
\max _{j}\left|x_{j}\right| \leq \sqrt{n[P]^{2}-1} \tag{20}
\end{equation*}
$$

This estimate is best possible.

Proof Let us order the roots so that $\left|x_{1}\right| \geq\left|x_{2}\right| \geq \cdots \geq\left|x_{n}\right|$.
Applying Bombieri's inequality (see [2]) to the pair $z-x_{1},\left(z-x_{2}\right) \cdots\left(z-x_{n}\right)$ yields:

$$
\begin{aligned}
{[P] } & \geq \sqrt{\frac{1!(n-1)!}{n!}}\left[z-x_{1}\right]\left[\left(z-x_{2}\right) \cdots\left(z-x_{n}\right)\right] \\
& \geq \frac{1}{\sqrt{ } n}\left(1+\left|x_{1}\right|^{2}\right)^{1 / 2},
\end{aligned}
$$

which gives (20).
The estimate (20) is best possible in the sense that, for every n and every $\varepsilon>0$, there is a polynomial P which has a root satisfying

$$
\begin{equation*}
|x| \geq(1-\varepsilon) \sqrt{n[P]^{2}-1} . \tag{21}
\end{equation*}
$$

Indeed, with $x>0$, consider $P=(z-x)\left(z+\frac{1}{x}\right)^{n-1}$. Since the pair $z-x,\left(z+\frac{1}{x}\right)^{n-1}$ is extremal for the product (see Beauzamy [2]), we get

$$
[P]=\frac{1}{\sqrt{n}}[z-x]\left[z+\frac{1}{x}\right]^{n-1}=\frac{1}{\sqrt{n}}\left(1+x^{2}\right)^{1 / 2}\left(1+\frac{1}{x^{2}}\right)^{\frac{n-1}{2}},
$$

50

$$
n[P]^{2}-1=\left(1+x^{2}\right)\left(1+\frac{1}{x^{2}}\right)^{n-1}-1
$$

and the inequality

$$
x^{2} \geq(1-\varepsilon)^{2}\left(\left(1+x^{2}\right)\left(1+\frac{1}{x^{2}}\right)^{n-1}-1\right)
$$

is satisfied, for fixed n and ε, if x is large enough.

3 Blowing Up a Multiple Zero

Theorem 4 indicates that, if you start with a multiple zero x of P, of order k, and if you move P to Q with $[\mathrm{P}-\mathrm{Q}] \leq \varepsilon$, then x will be moved into y , with $|\mathrm{x}-\mathrm{y}| \leq \mathrm{C} \varepsilon^{1 / k}$. But when is such an estimate obtained? Are there cases where a better one holds? The answer is: if the multiple zero stays multiple, stronger estimates can be obtained; the worst case comes if the multiple zero "blows up" into single ones. We will describethis phenomenon in detail in the case of $P=(z-a)^{n}$.

- Case 1: Q has itself a multiple zero of order $\mathrm{n}, \mathrm{Q}=(\mathrm{z}-\mathrm{b})^{\mathrm{n}}$. Then the condition $[\mathrm{P}-\mathrm{Q}] \leq \varepsilon$ implies $|\mathrm{b}-\mathrm{a}| \leq \varepsilon$.

This is clear, from the formula $\left[P^{\prime}\right]_{(n-1)} \leq n[P]_{(n)}$, which itself is obtained by elementary manipulations of the binomial coefficients. Here we indicate by a suffix (n) or ($\mathrm{n}-1$) which norm is used, so as to avoid any confusion.

- Case 2: all roots of Q are simple (or we have no information on Q). Then (17), with $k=n$, gives for $Q=\left(z-b_{1}\right) \cdots\left(z-b_{n}\right)$:

$$
\begin{equation*}
\left|b_{j}-a\right| \leq 2^{1 / n}\left(1+|a|^{2}\right)^{1 / 2} \varepsilon^{1 / n} . \tag{22}
\end{equation*}
$$

This estimate is best possible in general: if $Q=(z-a)^{n}-\varepsilon$, then $[P-Q]=\varepsilon$, and $\left|b_{j}-a\right|=\varepsilon^{1 / n}$ for all j.

- Case 3: mixed case $Q=(z-b)^{k}\left(z-b_{1}\right) \cdots\left(z-b_{n-k}\right)$. Then, first, the estimate $|b-a| \leq \varepsilon^{1 / n}$ can be improved, and we get

$$
\begin{equation*}
|b-a| \leq \varepsilon^{1 / n-k+1} 2^{1 / n-k+1}\left(1+|a|^{2}\right)^{1 / 2} . \tag{23}
\end{equation*}
$$

Indeed, we consider $\mathrm{P}^{(\mathrm{k}-1)}$ and $\mathrm{Q}^{(\mathrm{k}-1)}$ (which both have a and b respectively as zeros) and apply (22).

Then, also, we can obtain an estimate of the same form for b_{1}, \ldots, b_{n-k}, namely

$$
\begin{equation*}
\left|b_{j}-a\right| \leq C(a, n) \varepsilon^{1 / n-k+1}, \quad j=1, \ldots, n-k \tag{24}
\end{equation*}
$$

In order to prove(24), we first assumea $=0$, that is

$$
\begin{equation*}
\left[z^{n}-(z-b)^{k}\left(z-b_{1}\right) \cdots\left(z-b_{n-k}\right)\right] \leq \varepsilon \tag{25}
\end{equation*}
$$

and we know by (23) that

$$
\begin{equation*}
|\mathrm{b}|=0\left(\varepsilon^{1 / \mathrm{n}-\mathrm{k}+1}\right) \tag{26}
\end{equation*}
$$

We write $\varepsilon^{\prime}=\varepsilon^{1 / n-k+1}$. Let's also write

$$
\begin{gathered}
z^{n}-(z-b)^{k}\left(z-b_{1}\right) \cdots\left(z-b_{n-k}\right)=c_{1} z^{n-1}+c_{2} z^{n-2}+\cdots+c_{n} \\
\left(z-b_{1}\right) \cdots\left(z-b_{n-k}\right)=c_{1}^{\prime} z^{n-k}+c_{2}^{\prime} z^{n-k-1}+\cdots+c_{n-k}^{\prime}
\end{gathered}
$$

Then:

$$
\left|c_{1}\right|=\left|k b+b_{1}+\cdots+b_{n-k}\right| \leq \sqrt{\binom{n}{1}} \varepsilon
$$

Also, we have:

$$
\begin{aligned}
\left|c_{j+1}\right| & =\left|\binom{k}{j+1} b^{j+1}+\binom{k}{j} b^{j} c_{1}^{\prime}+\cdots+\binom{k}{l} b^{\prime} c_{j-1+1}^{\prime}+\cdots+\binom{k}{1} b c_{j}^{\prime}+c_{j+1}^{\prime}\right| \\
& \leq \sqrt{\binom{n}{j+1}} \varepsilon
\end{aligned}
$$

If we assume $\left|c_{1}^{\prime}\right|=0\left(\varepsilon^{\prime \prime}\right), \mid=1, \ldots, j$, we deduce from this formula that $\left|c_{j+1}^{\prime}\right|=0\left(\varepsilon^{\prime j+1}\right)$, and so we have shown by induction that

$$
\begin{equation*}
\left|c_{j}^{\prime}\right|=0\left(\varepsilon^{\prime j}\right), \quad j=1, \ldots, n-k \tag{27}
\end{equation*}
$$

We need a lemma.
Lemma 6 Let $R=z^{m}+a_{m-1} z^{m-1}+\cdots+a_{0}$ be a polynomial where the coefficients a_{m-1}, \ldots, a_{0} depend on some parameter α and satisfy

$$
\left|a_{m-1}\right|=0(\alpha),\left|a_{m-1}\right|=0\left(\alpha^{2}\right), \ldots,\left|a_{m-k}\right|=0\left(\alpha^{k}\right), \ldots, a_{0}=0\left(\alpha^{m}\right)
$$

when $\alpha \rightarrow 0$. Then all zeros of R are $0(\alpha), \alpha \rightarrow 0$.

This lemma is well-known and follows from estimates found for instance in M arden [5]. Let's give a quick proof. We have $\left|\mathrm{a}_{\mathrm{m}-\mathrm{k}}\right| \leq \mathrm{C} \alpha^{k}, \mathrm{k}=1, \ldots, \mathrm{~m}$. Let z be a zero of R . Then:

$$
1=-\frac{a_{m-1}}{z} \cdots-\frac{a_{k}}{z^{m-k}} \cdots-\frac{a_{0}}{z^{m}},
$$

and so

$$
1 \leq C \sum_{1}^{\infty}\left(\frac{|\alpha|}{|z|}\right)^{k},
$$

which implies $|z| \leq(1+C)|\alpha|$. So the lemma is proved, and (24) follows from (27).
Let us now consider the general case, $a \neq 0$.
We define $\tau_{\mathrm{a}} \mathrm{P}=\mathrm{P}(\mathrm{z}-\mathrm{a})$. Our estimate will follow from the estimate in the case $\mathrm{a}=0$ and the following.
Lemma 7 For all P, Q, of degreen,

$$
\left[\tau_{\mathrm{a}} \mathrm{P}-\tau_{\mathrm{a}} \mathrm{Q}\right] \leq \mathrm{C}(\mathrm{a}, \mathrm{n})[\mathrm{P}-\mathrm{Q}],
$$

where

$$
C(a, n)=\max _{0 \leq \leq \leq n}\left\{\binom{n}{1}\left(1+|a|^{2}\right)^{\prime}\right\}^{1 / 2} .
$$

Proof of Lemma 7 We have

$$
\begin{aligned}
{\left[\tau_{a} P\right]^{2} } & =\sum_{k=0}^{n} \frac{1}{\binom{n}{k} k!^{2}}\left|\sum_{j=0}^{n-k} P^{(k+j)}(0) \frac{a^{j}}{j!}\right|^{2} \\
& \leq \sum_{k=0}^{n} \sum_{j=0}^{n-k} \frac{(n-k)!|a|^{2 j}}{n!k!j!^{2}}\left|P^{(k+j)}(0)\right|^{2} \\
& =\sum_{l=0}^{n} \sum_{j=0}^{1} \frac{(n-I+j)!!!|a|^{2 j}}{(1-j)!j!!^{2}(n-l)!} \frac{\left.P^{(1)}(0)\right|^{2}}{\left\lvert\,!!^{2}\binom{n}{1}\right.} \\
& \leq\left(\max _{0 \leq \leq \leq n} \sum_{j=0} \frac{(n-l+j)!!!|a|^{2 j}}{(I-j)!j!2(n-l)!}\right)[P]^{2} .
\end{aligned}
$$

But

$$
\begin{aligned}
\sum_{j=0}^{1} \frac{(n-I+j)!!!}{(I-j)!j!^{2}(n-l)!}|a|^{2 j} & =\sum_{j=0}^{1}\binom{n-I+j}{j}\binom{I}{j}|a|^{2 j} \\
& \leq\binom{ n}{I} \sum_{j=0}^{1}\binom{I}{j}|a|^{2 j} \\
& =\binom{n}{I}\left(1+|a|^{2}\right)^{1},
\end{aligned}
$$

and the lemma follows.
Remark We do not think that the above constant $\mathrm{C}(\mathrm{a}, \mathrm{n})$ is sharp. One might think that $\left(1+|a|^{2}\right)^{n / 2}$ is the right constant.

So we see that, starting with $P=(z-a)^{n}$ and moving it to Q with $[P-Q] \leq \varepsilon$, the estimate $|\mathrm{x}-\mathrm{y}| \leq \varepsilon^{1 / n}$ can always beimproved if one of the zeros of Q is multiple. The only case where it is sharp is the case where the multiple zero of P has blown up into n distinct simple zeros for Q .

As we already mentioned in [1], the combination of Bombieri's scalar product and Walsh Contraction Principle provides very efficient toolsfor thestudy of quantitative properties of polynomials: the proofs are simpler than the existing ones and the results are sharper. Other results on these lines will be published elsewhere.

References

[1] B. Beauzamy, Finding the roots of polynomial equations: an algorithm with linear command. To appear.
[2] _, Product of many-variable polynomials: pairs that are maximal in Bombieri's norm. J. Number Theory (1) 55(1995), 129-143.
[3] B. Beauzamy, E. Bombieri, P. Enflo, and H. M ontgomery, Products of polynomials in many variables. J. Number Theory (2) 36(1990), 219-245.
[4] B. Beauzamy and J. Dégot, Differential Identities. Trans. Amer. Math. Soc. (7) 347(1995), 2607-2619.
[5] M . M arden, Geometry of polynomials. M athematical Surveys, A.M .S., 1966.
[6] A. Ostrowski, Recherches sur la méthode de Graeffe. Acta M ath. 72, 1940.
[7] _Solutions of equations and systems of equations (Appendix B). Academic Press, New-York, 1960
[8] Bruce Reznick, An inequality for products of polynomials. Proc. Amer. M ath. Soc. (4) 117(1993), 1063-1073.
[9] J. L. Walsh, On the location of the roots of certain type of polynomials. Trans. Amer. Math. Soc. 12(1922) 163180.

Société de Calcul M athématique, S. A.
111, Faubourg Saint H onoré
75008 Paris
France

