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Background. Hepatocellular carcinoma (HCC) presents signifcant challenges in diagnosis and treatment. Understanding the role
of PANoptosis-related molecules in HCC is crucial for advancing therapeutic strategies.Methods. We conducted a comprehensive
analysis using public data from the Cancer Genome Atlas, Human Protein Atlas, Tumor Immune Single Cell Hub, and STRING
databases. Techniques included Kaplan–Meier survival curves, Cox regression, LASSO analysis, and various computational
methods for understanding the tumor microenvironment. We also employed ClueGO, gene set enrichment analysis, and other
algorithms for biological enrichment analysis. Results. CASP8 emerged as a signifcant molecule in HCC, correlated with poor
survival outcomes. Its expression was predominant in the nucleoplasm and cytosol and varied across diferent cancer types.
Biological enrichment analysis revealed CASP8’s association with critical cellular activities and immune responses. In the tumor
microenvironment, CASP8 showed correlations with various immune cell types. A nomogram plot was developed for better
clinical prognostication. Mutation analysis indicated a higher frequency of TP53 mutations in patients with elevated CASP8
expression. In addition, CASP8 was found to regulate YEATS2 in HCC, highlighting a potential pathway in tumor progression.
Conclusions. Our study underscores the multifaceted role of CASP8 in HCC, emphasizing its prognostic and therapeutic sig-
nifcance.Te regulatory relationship between CASP8 and YEATS2 opens new avenues for understanding HCC pathogenesis and
treatment strategies.

1. Introduction

Liver cancer, particularly hepatocellular carcinoma (HCC),
represents one of the most lethal malignancies worldwide,
posing a signifcant public health challenge [1]. Te in-
cidence and mortality rates of this cancer are on a contin-
uous rise globally, with a pronounced prevalence in Asia and
Africa [2]. Te high incidence of liver cancer is closely as-
sociated with factors such as hepatitis virus infection, alcohol
consumption, obesity, and environmental contributors [3].
Te prognosis for patients with liver cancer is generally poor,
primarily due to the advanced stage of the disease at di-
agnosis and the cancer’s poor response to traditional che-
motherapy and radiotherapy [4]. Tese challenges have
spurred extensive research into more efective treatment
modalities for liver cancer, particularly in the realm of

molecular targeted therapy [5]. Signifcant advancements
have been made in molecular targeted therapies in recent
years. Tis therapeutic approach is predicated on a deep
understanding of the biological characteristics of tumor cells
and aims to develop drugs that target specifc molecular
markers [6]. For instance, targeted therapies developed
against common signaling pathway aberrations in liver
cancer cells, such as the PI3K/AKT/mTOR and RAS/RAF/
MEK/ERK pathways, have shown promising therapeutic
potential [7, 8]. In addition, immunotherapy, especially the
use of immune checkpoint inhibitors, has demonstrated
unprecedented potential in the treatment of liver cancer [9].
However, further research is needed to determine which
patients will beneft from these therapies and how to
combine these treatments to enhance efcacy. Consequently,
research on liver cancer is focusing on improving early
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diagnostic methods, understanding the molecular biological
mechanisms of the tumor, and developing more efective
personalized treatment strategies.

PANoptosis represents a comprehensive concept
encompassing various forms of programmed cell death,
including but not limited to classical apoptosis, necroptosis,
ferroptosis, and pyroptosis [10]. Tis notion is crucial for
understanding the diversity and complexity of cell death,
especially in disease states. In the feld of oncology, research
into PANoptosis ofers novel insights into the mechanisms
of survival and death of tumor cells, with particular em-
phasis on HCC [11]. HCC, a highly aggressive tumor, often
exhibits dysregulation in its cell death pathways, which are
intricately linked to the tumor’s development, progression,
and resistance to treatment [12]. Current research in HCC
focuses on exploring how tumor cells evade programmed
cell death and utilizing this knowledge to develop novel
therapeutic strategies. For instance, studies have shown that
HCC cells evade apoptosis by altering specifc apoptotic
signaling pathways, such as the expression of Bcl-2 family
proteins, thus afecting tumor growth and spread [13].
Targeted therapies against these pathways could ofer new
avenues for HCC treatment. In addition, understanding the
unique mechanisms of PANoptosis in HCC is vital for
predicting treatment responses and developing personalized
treatment plans. Given the central role of PANoptosis in the
pathogenesis of HCC, in-depth research in this area is
crucial for the development of new diagnostic biomarkers
and therapeutic targets [14]. Tis will not only help elucidate
the pathophysiological mechanisms of HCC but may also
lead to more efective treatment modalities, thereby im-
proving clinical outcomes for patients.

Our study conducted a thorough investigation of CASP8 in
HCC. We identifed CASP8 as a crucial molecule through
analyses of PANoptosis-related molecules, ClueGO, and
protein-protein interaction networks. High CASP8 expression
was linked to poor patient survival, suggesting its prognostic
importance. Immunofuorescence images confrmed CASP8’s
presence in the nucleoplasm and cytosol. A pan-cancer analysis
and single-cell techniques revealed its varied expression and
distribution across diferent cancer types and cell types, re-
spectively. Biological enrichment analysis showed CASP8’s
associationwith various biological pathways, and its correlation
with diverse immune cell types indicated a signifcant role in
the HCC immune landscape. In addition, we developed
a nomogram for better clinical prognosis, analyzed CASP8’s
infuence on immunotherapy and chemotherapy, and in-
vestigated its relationship with TP53 mutations. Te study also
explored CASP8’s regulatory efect on YEATS2, further un-
derstanding its biological signifcance in HCC. Tis research
underscores the potential of CASP8 as a key prognostic marker
and therapeutic target in HCC.

2. Methods

2.1. Downloading and Preprocessing Public Data for HCC.
Initially, the clinical data, expression profles, and mutation
data were acquired fromTe Cancer Genome Atlas (TCGA)
database [15]. Te format of the expression profles was

STAR-Counts, which was subsequently converted into the
TPM format using the author’s R code.Te clinical data were
formatted in bcr-xml. Prior to data analysis, the expression
profle data underwent preprocessing, including normali-
zation, to ensure data quality and reproducibility. Repre-
sentative cell fuorescence images were sourced from the
Human Protein Atlas (HPA) database [16]. In addition,
single-cell data were downloaded from the Tumor Immune
Single Cell Hub (TISCH) project [17], a comprehensive
database that provides detailed single-cell expression profles
to facilitate the study of tumor immunology and the tumor
microenvironment across various cancer types [18–23]. Te
data of protein interaction were obtained from the STRING
database.

2.2. Prognosis Analysis. Te prognosis analysis of our study
focuses on evaluating the survival outcomes of patients using
Kaplan–Meier (KM) survival curves and univariate Cox
regression analysis. Te KM survival curves are employed to
graphically represent the survival probability over time,
allowing us to visually compare the survival experiences of
diferent patient cohorts. Tis method is instrumental in
estimating survival functions and median survival times. On
the other hand, univariate Cox regression analysis is used to
assess the impact of individual variables on survival. To
further improve the clinical potential of CASP8 in HCC, we
develop a nomogram.Tis graphical tool integrates multiple
prognostic variables, identifed as signifcant in the Cox
regression analysis, into a single model. LASSO regression
analysis is a penalized regression method efective in han-
dling high-dimensional data and in selecting the most
relevant prognostic factors while controlling for overftting.

2.3. Biological Enrichment Analysis. We employ both
ClueGO and gene set enrichment analysis (GSEA) to elu-
cidate the biological contexts and pathways [24]. ClueGO,
a Cytoscape plugin, is utilized for deciphering functionally
grouped gene ontology and pathway annotation networks
[25]. In addition, GSEA is performed to identify whether
a predefned set of genes shows statistically signifcant,
concordant diferences between two biological states. It
helps in understanding gene expression data at the level of
gene sets, based on their distribution within ranked gene
lists, thereby ofering a more comprehensive view of the
biological pathways and processes involved.

2.4. Tumor Microenvironment and Immune Function
Analysis. Our study integrates a suite of sophisticated
computational methods to characterize the cellular com-
position and immune landscape within the tumor milieu.
We utilize CIBERSORT, an algorithm that applies
a deconvolution method to estimate the cell type pro-
portions in bulk tissue gene expression data, providing
insights into the immune cell composition [26]. EPIC is
employed for quantifying the abundance of stromal and
immune cells in tumor samples [27]. MCPcounter is used for
the robust quantifcation of the presence of specifc immune
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and stromal cell populations [28]. QUANTISEQ, an algo-
rithm designed for immune profling, is applied to dissect
the tumor immune contexture [29]. TIMER, another critical
tool in our analysis, is utilized for the systematic evaluation
of tumor-infltrating immune cells and their clinical im-
plications [30]. xCell, a gene signature-based method, aids in
the comprehensive profling of the tumor microenviron-
ment, encompassing a wide variety of immune and stromal
cell types [31]. Te immune function status was quantifed
using the single-sample GSEA (ssGSEA) algorithm [32].

2.5. Statistical Analysis. We apply a rigorous and systematic
approach, ensuring the validity and reliability of our fnd-
ings, with all statistical analyses and graph creation con-
ducted using the R programming language. Initially, we
assess the normality of data using the Shapiro–Wilk test. For
data that follow a normal distribution, parametric tests such
as the Student’s t-test (for two-group comparisons) or one-
way ANOVA (for comparing multiple groups) are used.
Conversely, for nonnormally distributed data, we employ
nonparametric tests such as the Mann–Whitney U test (for
two groups) or the Kruskal–Wallis test (for more than two
groups). All statistical tests are two-sided, and a signifcance
threshold is set at a p value of less than 0.05.

3. Results

3.1. Identifcation of PANoptosis-Related Molecule CASP8 in
HCC. In our study, we began by compiling a compre-
hensive list of molecules associated with PANoptosis,
guided by extensive previous research in this feld
(Figure 1(a)). To further explore their biological signif-
cance, we employed ClueGO analysis, revealing that these
molecules predominantly contribute to various biological
processes. Tese include the positive regulation of
interleukin-1 beta production, enhancement of cysteine-
type endopeptidase activity, and the promotion of
interleukin-1 production. In addition, they are involved in
pyroptosis and the activation of cysteine-type endopepti-
dase activity in apoptotic processes (Figure 1(b)). To un-
derstand the intricate interactions among these molecules,
we constructed a protein-protein interaction (PPI) net-
work. Tis network highlighted the complex interplay and
revealed the top ten central nodes as TNF, RIPK3, CASP8,
CASP1, RIPK1, CASP9, CASP2, FADD,MLKL, and CASP3
(Figures 1(c)–1(d)). Following this, we applied univariate
Cox regression analysis to discern the prognostic signif-
cance of these molecules in HCC (Figure 1(e)). Tis
analysis identifed several molecules as potential risk fac-
tors, including CASP2, GSDMC, CASP8, NLRC4, and
others, while NLRP6 emerged as a protective factor. Our
focused attention then shifted to CASP8, which is singled
out for its prominent role in the PPI network and its
statistical signifcance in the Cox regression analysis. We
discovered that high expression levels of CASP8 in HCC
patients correlated with poorer survival outcomes, as
depicted in the KM survival curve (Figure 1(f )). In addi-
tion, our observations suggested a potential link between

elevated CASP8 levels and worsened histological grades,
although no signifcant correlation with clinical staging was
observed (Figures 1(g)–1(h)).

3.2. Expression Pattern of CASP8 in HCC. Utilizing repre-
sentative immunofuorescence images from the HPA da-
tabase, our investigation revealed the cellular localization of
CASP8. Te images clearly showed that CASP8 is primarily
located in the nucleoplasm and cytosol, which suggests
a signifcant role for CASP8 in these specifc cellular regions
(Figure 2(a)). Delving further into the expression profle of
CASP8, we extended our research to a pan-cancer analysis.
Tis comprehensive examination indicated that CASP8
exhibits varied expression levels across multiple cancer
types, highlighting its potential importance in the patho-
genesis of a diverse range of cancers (Figure 2(b)). To gain
a more detailed understanding of CASP8 distribution, we
employed single-cell analysis techniques. Te results of this
intricate examination revealed that CASP8 is extensively
distributed across a wide array of cell types (Figures 2(c)–
2(f )). Tis widespread presence emphasizes the versatility of
CASP8 in cellular processes, potentially afecting various
aspects of cancer biology.

3.3. Biological Enrichment Analysis. GSEA provided sig-
nifcant insights into the biological pathways and processes
associated with CASP8. We found that CASP8 expression
positively correlates with several key cellular activities. Tese
include the E2F target activity, processes related to the
mitotic spindle and G2M checkpoint, infammatory re-
sponses, spermatogenesis, Hedgehog signaling pathways,
apical junction mechanisms, and the epithelial-
mesenchymal transition (EMT). Conversely, CASP8
showed a negative correlation with activities such as myo-
genesis, MYC target processes, DNA repair, xenobiotic
metabolism, adipogenesis, oxidative phosphorylation, and
fatty acid metabolism (Figure 3(a)). In terms of Gene On-
tology (GO) terms, our GSEA revealed that patients with
high CASP8 expression demonstrated increased activity in
several biological processes. Notably, there was heightened
activity in the T cell receptor complex, female meiotic nu-
clear division, and regulation of transposition. On the other
hand, these patients exhibited reduced activity in areas such
as ribosomal subunits, cytosolic ribosomes, and ribosomes
in general (Figures 3(b)–3(c)). For Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways, GSEA further
highlighted that high CASP8 expression in patients was
linked to increased activity in axon guidance, extracellular
matrix (ECM) receptor interactions, and pathways relevant
to small cell lung cancer. In contrast, there was a notable
decrease in activities related to the ribosome, oxidative
phosphorylation, and pathways associated with Parkinson’s
disease (Figures 3(d)–3(e)).

3.4. Immune Microenvironment Analysis. Delving into the
infuence of CASP8 on the tumor microenvironment of
HCC, our research uncovered signifcant correlations with
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Figure 1: Identifcation of the PANoptosis-related molecule CASP8 in HCC. (a) List of the molecules of PANoptosis collected from the
previous studies; (b) ClueGO analysis of these PANoptosis-related molecules; (c) PPI network of these PANoptosis-related molecules; (d)
key nodes of these PANoptosis-related molecules; (e) univariate Cox regression analysis of these PANoptosis-related molecules; (f ) KM
survival curves of CASP8 in HCC; (g–h) the expression level of CASP8 in patients with diferent clinical stages.
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Figure 2: Expression level of CASP8 in HCC. (a): subcellular localization of CASP8 in the cell line obtained from the HPA database; (b) the
expression level of CASP8 in pan-cancer; (c–f): the expression pattern of CASP8 in the HCC microenvironment at the single-cell level.
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Figure 3: Continued.
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various immune cell types. CASP8 exhibited a positive re-
lationship with memory activated CD4+ Tcells, Tregulatory
cells (Tregs), neutrophils, populations of CD4+ and CD8+
T cells, natural killer (NK) cells, B cells, endothelial cells,
mast cells, and naive B cells. In contrast, a negative corre-
lation was observed with M2 macrophages, CD4+ T1
T cells, and naive CD8+ T cells (Figures 4(a) and 4(b)). In
addition, the analysis indicated that patients with high
CASP8 expression might have elevated levels of major
histocompatibility complex class I (MHC class I), juxtaposed
with lower cytolytic activity (Figure 4(c)). Tis suggests
a complex interaction between CASP8 expression and the
immune response within the TME of HCC.

3.5. NomogramPlot, Drug Sensitivity, andMutationAnalysis.
To enhance the clinical prognostic capabilities associated
with CASP8, a nomogram plot was developed based on the
expression values of CASP8 (Figure 5(a)). Calibration
graphs further validated the accuracy of this nomogram,
demonstrating a strong correlation between the predicted
survival outcomes and the actual observed survival rates
(Figure 5(b)). With the increasing relevance of immuno-
therapy in treating liver cancer, we focused on assessing the
impact of CASP8 on the efcacy of such treatments. Our
fndings revealed that various immune checkpoints
exhibited diferent expression patterns in patients with
varying levels of CASP8 expression (Figure 5(c)). Tis
suggests a potential role for CASP8 in modulating the re-
sponse to immunotherapeutic approaches. Drug sensitivity
analysis provided additional insights, indicating that pa-
tients with a higher CASP8 expression might exhibit
increased sensitivity to certain chemotherapeutic agents,
specifcally vorinostat and doxorubicin (Figure 5(d)). We
also explored the gene mutation landscape of CASP8 in
HCC patients (Figures 6(a) and 6(b)). While there was no
signifcant correlation found between CASP8 expression and
tumormutational burden (TMB) or microsatellite instability
(MSI) scores (Figures 6(c) and 6(d)), an interesting pattern
emerged regarding TP53 mutations. Patients with elevated
CASP8 expression tended to have a higher frequency of

TP53 mutations (Figure 6(e)). Tis observation might
provide a new perspective on the genetic alterations asso-
ciated with CASP8 expression in liver cancer.

3.6. CASP8 Can Regulate the YEATS2 in HCC. Our analysis
has taken initial steps to uncover the potential role of CASP8
in HCC. A key focus was to identify downstream regulatory
genes of CASP8. To this end, we frst pinpointed the top 200
molecules that showed signifcant correlation with CASP8
expression (Figure 7(a)). Following this, univariate Cox
regression analysis was utilized to determine which of these
molecules had a signifcant correlation with patient survival
(Supplementary fle 1). Subsequently, we employed LASSO
regression analysis to refne our data and optimize the
variables for further study (Figures 7(b) and 7(c)). Tis was
an essential step in ensuring the robustness of our fndings.
Te subsequent multivariate Cox regression analysis high-
lighted YEATS2 as the only molecule signifcantly and in-
dependently correlated with patient survival (Figure 7(d)).
Interestingly, a substantial positive correlation between
CASP8 and YEATS2 in HCC tissue was observed
(Figure 7(e), R� 0.683 and P< 0.001). Tis fnding indicates
a potential interaction or pathway involving these two
molecules that could be pivotal in the progression of HCC.
Furthermore, our analysis suggested that patients with high
CASP8 expression might have a poorer survival outcome
compared to those with lower expression levels (Figure 7(f )).

3.7. Biological Enrichment andExpressionPattern ofCASP8 in
HCC. Delving into the biological role of YEATS2 in HCC,
GSEA was conducted. Te results indicated that patients
with high expression of YEATS2 tended to exhibit enhanced
activity in several critical biological processes. Notably, there
was an increase in activities related to EMT, early estrogen
response, TNF-α signaling via the NFKB pathway, E2F
targets, andmitotic spindle functions. Conversely, a decrease
in activities related to cholesterol homeostasis, heme
metabolism, the reactive oxygen species pathway, oxidative
phosphorylation, xenobiotic metabolism, and adipogenesis
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Figure 3: Biological enrichment of CASP8. (a) GSEA of CASP8 in HCC based on the hallmark gene set; (b) the top three upregulated GO
terms of CASP8 based on GSEA; (c) the top three downregulated GO terms of CASP8 based on GSEA; (d) the top three upregulated KEGG
terms of CASP8 based on GSEA; (e) the top three downregulated KEGG terms of CASP8 based on GSEA.

Genetics Research 7

https://doi.org/10.1155/2023/2406193 Published online by Cambridge University Press

https://doi.org/10.1155/2023/2406193


was observed (Figure 7(g)). In addition to the GSEA, single-
cell expression analysis was employed to examine the dis-
tribution of YEATS2 in HCC. Tis analysis revealed that
YEATS2 is widely distributed across various cell types within
HCC, indicating its pervasive infuence and potential role in
multiple aspects of tumor biology and microenvironment
interactions (Figures 8(a)–8(f)). Te whole fowchart is
shown in Figure S1.

4. Discussion

Liver cancer, one of the most common malignant tumors
globally, is witnessing an increasing trend in both incidence
and mortality rates [33]. Tis malignancy is mainly classifed
into primary and secondary types, with HCC being the most
prevalent form of primary liver cancer. Te development of
liver cancer is linked to a variety of factors, including chronic

viral hepatitis, alcoholic liver disease, nonalcoholic fatty liver
disease, and a range of environmental and genetic con-
tributors [34]. Among the various treatment options, such as
surgical resection, radiotherapy, and chemotherapy, targeted
therapy emerges as a particularly promising approach [35].
It ofers a more precise treatment modality by specifcally
targeting cancer cells while sparing normal tissues, thereby
potentially reducing side efects and improving treatment
outcomes. However, the often asymptomatic early stages of
liver cancer lead to late diagnoses, challenging the efec-
tiveness of these treatments [36]. Tus, a pivotal focus of
future research lies in advancing early detection methods
and prevention strategies, alongside enhancing the efcacy
and scope of targeted therapies in liver cancer management.

Our study presents a comprehensive analysis of the role
of CASP8 in HCC. Initially, we compiled an extensive list of
PANoptosis-relatedmolecules and identifed CASP8 as a key
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Figure 4: Immune analysis of CASP8. (a–b) Correlation between CASP8 and the cell components in HCC quantifed bymultiple algorithms
and (c) diference of immune terms quantifed by ssGSEA algorithms in patients with high and low CASP8 expression.
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Figure 5: Nomogram plot and drug sensitivity. (a) Nomogram plot of CASP8 combined with clinical features; (b) calibration plots of the
constructed nomogram; (c) the expression level of immune checkpoint genes in patients with high and low CASP8 expression; (d) IC50 of
specifc drugs in patients with high and low CASP8 expression.
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Figure 7: Identifcation of the CASP8/YEATS2 axis. (a) Top 200 molecules signifcantly correlated with CASP8; (b–c) LASSO regression
analysis based on the molecules signifcantly correlated with patients survival; (d) multivariate Cox regression analysis of the molecules
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player through various analyses, including ClueGO and PPI
networks. We discovered that high CASP8 expression in
HCC patients correlates with poor survival, highlighting its
prognostic signifcance. Furthermore, immunofuorescence
images from the HPA database demonstrated CASP8’s
cellular localization in the nucleoplasm and cytosol,

indicating its pivotal role in these regions. Our research
extended to a pan-cancer analysis, revealing CASP8’s varied
expression across diferent cancer types, and single-cell
analysis techniques highlighted its extensive distribution
across various cell types. Te GSEA provided insights into
the biological pathways associated with CASP8, revealing
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Figure 8: Single-cell analysis of YEATS2 in the HCCmicroenvironment. (a–f) Expression level of YEATS2 in the HCC microenvironment
at the single-cell level.
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positive correlations with processes such as E2F target ac-
tivity and infammatory responses and negative correlations
with processes such as myogenesis. In examining the tumor
microenvironment, CASP8 showed signifcant correlations
with various immune cell types, suggesting its infuence on
the immune landscape in HCC. Furthermore, we developed
a nomogram plot for better clinical prognostication and
investigated CASP8’s impact on the efcacy of immuno-
therapy and chemotherapeutic agents. Mutation analysis
revealed a pattern in TP53 mutations among patients with
high CASP8 expression. Te study also explored the regu-
latory role of CASP8 on YEATS2 in HCC, fnding a strong
positive correlation between these molecules. GSEA and
single-cell expression analysis of YEATS2 further elucidated
its biological role and widespread infuence in HCC. Overall,
our study provides a detailed insight into the multifaceted
role of CASP8 in HCC, emphasizing its potential as
a prognostic marker and therapeutic target.

CASP8 is a crucial protein in the human body, playing
a pivotal role in the process of apoptosis or programmed cell
death [37]. Tis protein is especially signifcant as it aids in
maintaining the normal life cycle of cells and is vital in
eliminating damaged or abnormal cells. In various diseases,
the functionality of CASP8 becomes particularly important
[38]. For instance, in cancer, aberrant expression or mal-
function of CASP8 can lead to tumor cells evading apoptosis,
thereby afecting the development and spread of cancer [39].
In addition, CASP8 has shown its signifcance in certain
autoimmune diseases and neurodegenerative disorders,
where it may be involved in regulating infammatory re-
sponses or afecting the survival of neuronal cells. Terefore,
CASP8 is not only a key element in cellular biology but also
a critical target in disease research and potential therapeutic
strategies.

YEATS2 is increasingly recognized for its critical role in
cellular processes such as gene expression regulation and
chromatin structure maintenance [40]. Tis protein’s
function is the key in understanding various disease
mechanisms, particularly in oncology. For instance, in
cancer, dysregulation or mutations of YEATS2 can lead to
aberrant gene expression and chromatin modifcations,
contributing to the oncogenic processes [41]. Tis in-
volvement in cancer progression underscores the impor-
tance of YEATS2 as a potential biomarker for cancer
prognosis and a target for therapeutic intervention. Fox
example, Zeng et al. indicated that YEATS2 is an underlying
biological target for pancreatic cancer and could signif-
cantly promote the proliferation and migration ability of
cancer cells [42]. Mi et al. found that the YEATS2 is a marker
of tumorigenesis for nonsmall cell lung cancer (NSCLC)
[43]. Also, YEATS2 is found to be a target for certain drugs.
Lan et al. noticed that cinobufacini could delay progression
of pancreatic adenocarcinoma by targeting the YEATS2/
TAK1/NF-κB axis [44].

An essential aspect of this study involves the data
sourced from TCGA patients. It is crucial to acknowledge
that a signifcant proportion of these patients are of Cau-
casian descent. Tis demographic skew has potential
implications for our fndings, as the results may not be

wholly representative of diverse populations. Terefore, the
conclusions drawn must be cautiously generalized, keeping
in mind the racial homogeneity of our primary data source.
In addition, the utilization of bioinformatics algorithms in
our study warrants careful consideration. While these
computational tools are useful in deciphering complex bi-
ological data, they are not infallible in capturing the full
spectrum of biological signifcance. Te algorithms
employed ofer an interpretation based onmathematical and
statistical principles, which might not always align perfectly
with the underlying biological phenomena. Hence, the in-
sights provided by these bioinformatics analyses should be
regarded as indicative rather than defnitive. Tey serve as
a valuable reference point, guiding further empirical re-
search rather than conclusively delineating biological
realities. In summary, while our study ofers signifcant
insights, the potential racial bias due to the predominance of
Caucasian data in TCGA and the inherent limitations of
bioinformatics algorithms as interpretative tools must be
considered when applying our fndings to broader contexts.
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