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Bernstein–Sato polynomial versus cohomology of the

Milnor fiber for generic hyperplane arrangements

Uli Walther

Abstract

Let Q ∈ C[x1, . . . , xn] be a homogeneous polynomial of degree k > 0. We establish a
connection between the Bernstein–Sato polynomial bQ(s) and the degrees of the generators
for the top cohomology of the associated Milnor fiber. In particular, the integer uQ =
max{i ∈ Z : bQ(−(i + n)/k) = 0} bounds the top degree (as differential form) of the
elements in Hn−1

DR (Q−1(1), C). The link is provided by the relative deRham complex and
D-module algorithms for computing integration functors.

As an application we determine the Bernstein–Sato polynomial bQ(s) of a generic
central arrangement Q =

∏k
i=1 Hi of hyperplanes. In turn, we obtain information about

the cohomology of the Milnor fiber of such arrangements related to results of Orlik and
Randell who investigated the monodromy.

We also introduce certain subschemes of the arrangement determined by the roots
of bQ(s). They appear to correspond to iterated singular loci.

1. Introduction

Let f be a non-constant polynomial in n variables. In the 1960s, Sato and co-workers introduced a-,
b- and c-functions associated with a prehomogeneous vector space [SKKO80, SS72]. The existence
of b-functions associated with all polynomials and germs of holomorphic functions was later
established in [Ber72, Bjö74].

The simplest interesting case of a b-function is the case of the quadratic form f(x1, . . . , xn) =∑n
i=1 x2

i . Let s be a new variable and denote by f s the germ of the complex power of f(x). One then
has an identity ( n∑

i=1

∂2

∂xi
2

)
• f s+1 = 4(s + 1)

(
s + n

2

)
f s.

The b-function to f(x) here is bf (s) = (s + 1)(s + n/2). One may use an equality of the type

P (s) • f s+1 = b(s)f s (1.1)

for general f to analytically continue f s, and it was this application that initially caused Bernstein
to consider bf (s). Today, the b-function of a polynomial is usually referred to as the ‘Bernstein–Sato
polynomial’ and denoted bf (s).

The Bernstein–Sato polynomial is always a multiple of (s+1), and equality holds if f is smooth.
The roots of bf (s) are always negative and rational [Kas77]. It was first pointed out in [Mal74, Mal75]
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that there is an intimate connection between the singularity structure of f−1(0) and its Bernstein–
Sato polynomial. The roots of bf (s) relate to a variety of algebro-geometric data such as the structure
of the embedded resolution of the pair (Cn,Var(f)), Newton polyhedra, Zeta functions, asymptotic
expansions of integrals, Picard–Lefschetz monodromy, polar invariants and multiplier ideals: see, for
example, [BS03, Ham77, Kat81, Lic83, Loe90, Var76]. Yano systematically worked out a number
of examples [Yan78] and some interesting computations are given in [BGMM89]. A satisfactory
interpretation of all roots of bf (s) for general f , however, remains outstanding. Indeed, until [Oak96]
there was not even an algorithm for the computation of bf (s) for an arbitrary polynomial f .

In this paper we investigate the Bernstein–Sato polynomial when f defines a generic central
hyperplane arrangement. By that we mean a reduced collection of k hyperplanes such that each
subset of min{k, n} of the hyperplanes cuts out the origin. The paper is organized as follows.
In this section we introduce the relevant notation. In the next section we find an upper bound for
the Bernstein–Sato polynomial of a central generic arrangement. We compute a polynomial b(s)
that satisfies an identity of the type (1.1), strongly using the fact that the arrangement is central
and generic. In § 3 we use some counting and Gröbner type arguments to obtain information
about generators for the top cohomology of the Milnor fiber of such arrangements. We prove parts
of a conjecture of Orlik and Randell on the cohomology of the Milnor fiber of a generic central
arrangement. In particular, we determine in exactly which degrees the top cohomology lives, and
we present a conjectured set of generators.

Malgrange [Mal83] demonstrated that the Bernstein–Sato polynomial is the minimal polynomial
of a certain operator on the sheaf of vanishing cycles. This states in essence that monodromy
eigenvalues are exponentials of roots of bf (s). In § 4 we prove roughly that for homogeneous f
the degrees of the top Milnor fiber cohomology are roots of bf (s). This can in some sense be seen
as a logarithmic lift of Malgrange’s results. For generic central arrangements this links our results
from §§ 2 and 3 and allows the determination of all roots of bf (s) and (almost) all multiplicities.
We close § 4 with an example of a non-generic arrangement, and finish in § 5 with some statements
and conjectures regarding the structure of the Dn-modules Rn[f−1] and Dn[s] • f s.
Notation 1.1. Throughout, we work over the field of complex numbers C. We should point out that
this is mostly for keeping things simple as the Bernstein–Sato polynomial is invariant under field
extensions.

In this paper, for elements {f1, . . . , fk} of any ring A, 〈f1, . . . , fk〉 denotes the left ideal generated
by {f1, . . . , fk}. If we mean a right ideal, we specify it by writing 〈f1, . . . , fk〉A.

By Rn we denote the ring of polynomials C[x1, . . . , xn] in n variables over C, and by Dn we mean
the ring of C-linear differential operators on Rn, the nth Weyl algebra. The ring Dn is generated by
the partial derivative operators ∂i = ∂/∂xi and the multiplication operators xi. One may consider
Rn as a subring of Dn as well as a quotient of Dn (by the left ideal 〈∂1, . . . , ∂n〉). We denote by • the
natural action of Dn on Rn via this quotient map, as well as induced actions of Dn on localizations
of Rn.

We will have occasion to consider Dt, Dx and Dx,t in some instances, where Dt is the Weyl algebra
in the variable t, Dx the Weyl algebra in x1, . . . , xn, and Dx,t is the Weyl algebra in x1, . . . , xn and t.

The module of global algebraic differential n-forms on Cn is denoted by Ω; it may be pictured
as the quotient Dn/〈∂1, . . . , ∂n〉Dn. The left Dn-Koszul complex on Dn induced by the commuting
vector fields ∂1, . . . , ∂n is denoted Ω•; it is a resolution for Ω as a right Dn-module.

We use multi-index notation in Rn: writing xα implies that α = (α1, . . . , αn) and stands for
xα = xα1

1 · · · xαn
n . The same applies to elements of Dn, both for the polynomial and the differential

components. If α is a multi-index, |α| denotes the sum of its components; if I is a set, then |I| is
its cardinality. Finally, if k, r ∈ N, then k | r signifies that k divides r while k � r indicates that this
is not the case.
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1.1 Bernstein–Sato polynomials
Definition 1.2. For f ∈ Rn we define J(f s) ⊆ Dn[s] to be the annihilator of f s via formal
differentiation, this is a left ideal. We set

M = Dn[s]/(J(f s) + 〈f〉) = Dn • f s/Dn • f s+1.

By definition, the Bernstein–Sato polynomial bf (s) of f is the minimal polynomial of s on M.
So bf (s) is the monic polynomial of smallest degree satisfying a functional equation of the type
(1.1) with P (s) ∈ Dn[s].

Let M̃ = Dn[s]/(J(f s) + 〈f〉 + Dn[s] · A) where A ⊆ Rn is the Jacobian ideal of f , A =∑n
i=1 Rn∂i • (f). Then M̃ is isomorphic to (s + 1)M and since (s + 1) divides bf (s), then the

minimal polynomial of s on M̃ is b̃f (s) = bf (s)/(s + 1).
Consider the module Dn • fa for a ∈ C and write J(fa) for the kernel of the map Dn → Dn • fa

induced by P �→ P •fa. There is a natural map Dn•fa+1 ↪→ Dn•fa induced by P •fa+1 �→ Pf •fa.
Some roots of the Bernstein–Sato polynomial detect the failure of this map to be an isomorphism
as follows.

Lemma 1.3. Let a ∈ Q be such that bf (a) = 0, but bf (a− i) �= 0 for all positive natural numbers i.
Then Dn • fa �= Dn • fa+1.

Proof. Suppose that a is as the hypotheses stipulate and, in addition, assume that Dn • fa =
Dn • fa+1. We exhibit a contradiction.

Since Dn • fa+1 → Dn • fa is an epimorphism, Dn = 〈f〉 + J(fa). By the choice of a and
Proposition 6.2 in [Kas77], J(fa) = Dn∩(J(f s)+Dn[s]·(s−a)). Hence, Dn[s] = J(f s)+〈f〉+〈s−a〉.
Multiplying by bf (s)/(s−a) we get 〈bf (s)/(s−a)〉 ⊆ J(f s)+〈f〉+〈bf (s)〉. Since bf (s) ∈ J(f s)+〈f〉,

bf (s)
s − a

∈ J(f s) + 〈f〉.

That, however, contradicts the definition of bf (s) as the minimal polynomial in s contained in the
sum on the right.

1.2 Isolated singularities
Suppose that f has an isolated singularity and assume for simplicity that the singularity is at the
origin. We give a short overview of what is known about the Bernstein–Sato polynomial in this case,
following [Kas03, Mal75, Yan78].

The module M̃ is supported only at the origin, so by [Kas77] the minimal polynomial of s on
Ω⊗Dn M̃ is b̃f (s). If f is now homogeneous of degree k, kf =

∑n
i=1 xi∂i • (f). Then J(f s) contains∑n

i=1 xi∂i − ks. The action of s on a homogeneous g ∈ Ω ⊗Dn M̃ ∼= Rn/A is easily seen to be
multiplication by (−n−deg(g))/k. Thus, the Bernstein–Sato polynomial of a homogeneous isolated
singularity encodes exactly the degrees of non-vanishing elements in Rn/A.

Consider now the relative deRham complex Ω•
f associated with the map f : Cn → C. We denote

the coordinate on C by t. The complex Ω•
f is the Koszul complex induced by left multiplication by

∂1, . . . , ∂n on the Dx,t-module N = Dx,t/Jn+1(f) where Jn+1(f) is the left ideal of Dx,t generated
by t−f and the expressions ∂i+∂i•(f)∂t for 1 � i � n. The complex Ω•

f = Ω•⊗DnN is a representa-
tive of the application of the deRham functor

∫
f associated with the map f to the structure sheaf on

Cn [Del70]. Its last non-zero cohomology module appears in degree n, Hn(Ω•
f ) = N/{∂1, . . . , ∂n}·N .

This module is, in a natural way, a left Dt-module. For any α ∈ C, the cohomology of the derived
tensor product of Ω•

f with Dt/〈t − α〉Dt is the deRham cohomology of the fiber at α. The identifi-
cation of N/{∂1, . . . , ∂n, t−α}Dx,t with Hn−1

DR (Var(f −α)) is explained in and before Lemma 4.11.
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So one has an isomorphism

Rn/A ∼= (Dt/〈t − α〉Dt) ⊗Dt Hn(Ω• ⊗Dn N ) ∼= Hn−1
DR (f−1(α), C)

and the roots of bf (s) in fact represent the degrees of the cohomology classes of the Milnor fiber
of f .

For general f , the Bernstein–Sato polynomial is more complex: see Example 4.17 and the
following remarks.

2. An upper bound for the Bernstein polynomial

Our goal is Theorem 2.13. We mimic some of the mechanism that makes the isolated singularity case
so easy. It is clear that a literal translation is not possible, because Rn/A generally has elements in
infinitely many different degrees. However, we now introduce certain ideals in Rn that are intimately
related to the Bernstein–Sato polynomial.

Definition 2.1. Let q(s) ∈ C[s]. For a fixed f ∈ Rn we define the ideal aq(s) ⊆ Rn as the set of
elements g ∈ Rn

[g ∈ aq(s)] ⇐⇒ [∃P (s) ∈ Dn[s] : P (s) • f s+1 = q(s)gf s].
We remark that aq(s) ⊆ aq(s)q′(s) and if q′(s)g ∈ aq(s) · Rn[s], then g ∈ aq(s)q′(s). The Jacobian ideal
A is contained in a(s+1), and f ∈ a(1).

The Bernstein–Sato polynomial of f is evidently the polynomial bf (s) of smallest degree such
that 1 ∈ abf (s).

Before we come to the computation of an estimate for bf (s) for generic arrangements we first
consider general homogeneous polynomials and then arrangements in the plane.

2.1 The homogeneous case
Assume now that Q ∈ Rn is homogeneous1. We denote by m the homogeneous maximal ideal of Rn.
If g ∈ aq(s), then by definition gQs ∈ M is annihilated by q(s). Since bQ(s) annihilates all of M,
finding g ∈ aq(s) is equivalent to finding eigenvectors of s on M to eigenvalues that are zeros of q(s).
In the isolated singularity case one only has to study the residues of aq(s) in Rn/A, and this goes
as follows. Let δQ = mink∈N{mk+1 ⊆ A}. Then the homogeneous polynomial g with 0 �= g ∈ Rn/A
is in aq(s) if and only if (s + 1)

∏δQ

i=deg(g)(s + (i + n)/deg(Q)) divides q(s); this is proved in [Yan78]
based on the results of Kashiwara.

For non-isolated homogeneous singularities Q, we have a weak version of this as follows.

Lemma 2.2. If Rn[s] · aq(s) contains mrg where g = g(s) ∈ Rn[s] is homogeneous in x1, . . . , xn, then

g ∈ Rn[s] · aq′(s) where q′(s) = q(s) ·∏r−1
i=0 (s + (i + n + deg(g))/k). In particular,

[mr ⊆ aq(s)] =⇒
[
bQ(s) | q(s) ·

r−1∏
i=0

(
s +

i + n

k

)]
.

Proof. Let m be a monomial of degree r − 1, so ximg ∈ Rn[s] · aq(s). Then
n∑

i=1

∂i • (ximgQs) = mg(∂1x1 + · · · + ∂nxn) • Qs + deg(mg)mgQs

= mg(ks + n + deg(mg))Qs.

1Throughout we use Q for an instance of a homogeneous polynomial while f is used if no homogeneity assumptions
are in force.
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As deg(m) = r − 1, (s + (r − 1 + n + deg(g))/k)mg ∈ aq(s). By decreasing induction on deg(m),
r∏

i=1

(
s +

n + deg(g) + r − i

k

)
g ∈ Rn[s] · aq(s).

The final claim follows from the definition of bQ(s).

Remark 2.3. Suppose thatf is w-quasi-homogeneous, i.e. there are non-negative numbers w1, . . . , wn

such that with ξ =
∑n

i=1 wixi∂i one has f = ξ • (f) and hence ξ − s ∈ J(f s). If n ⊆ aq(s) is a
w-homogeneous m-primary ideal then one can show, in the same manner, that bf (s) divides the
product of q(s) and the minimal polynomial of ξ on Rn/n evaluated at −s−∑n

i=1 wi. For example,
f = x3+y3+z2w is (1

3 , 1
3 , 1

3 , 1
3 )-homogeneous. One has a(s+1) = 〈x2, y2, z2, zw〉, which is of dimension

1, corresponding to the line of singularities (0, 0, 0, w). One can see that the trick of Lemma 2.2
can be used to show that a(s+1)(s+7/3) = 〈x2, xyz, y2, z2, zw〉 since xyz is in the socle of Rn/a(s+1).
Going one step further, a(s+1)(s+7/3)(s+2) = 〈x2, xz, y2, yz, z2, zw〉 and then z can be obtained in
a(s+1)(s+7/3)(s+2)(s+5/3) = 〈x2, y2, z〉. The new factors are always equal to s +

∑4
i=1(

1
3 ) plus the

degree of the new element in a.
Now, however, nothing is in the socle and our procedure stops. On the other hand, f is also

(1
3 , 1

3 , 1
2 , 0)-homogeneous and this can be used to show that

a(s+1)(s+7/3)(s+2)(s+5/3)(s+11/6) = 〈x, y, z〉,
a(s+1)(s+7/3)(s+2)(s+5/3)(s+11/6)(s+7/6) = Rn.

In fact, bf (s) = (s + 1)(s + 7
3)(s + 2)(s + 5

3)(s + 11
6 )(s + 7

6) and one can see again how the factors of
bf (s) enlarge (if taken in the correct order) the ideal a, by either saturating or dropping dimension.

The trick for bounding bf (s) is therefore to find q(s) such that aq(s) is zero-dimensional, and
then to get a good estimate on the exponent r of Lemma 2.2 if g = 1. The importance of the relation
k · Q −∑n

i=1 xi∂i in the annihilator of Qs for homogeneous Q of degree k justifies the following.

Definition 2.4. The Euler operator is E = x1∂1 + · · · + xn∂n.

2.2 Arrangements in the plane
One has the following folklore result.

Proposition 2.5. Let {ai}3�i�k be k− 2 pairwise distinct non-zero numbers. Then the Bernstein–
Sato polynomial of Q = xy(x + a3y) · · · (x + aky) divides

(s + 1)
2k−4∏
i=0

(
s +

i + 2
k

)
.

Proof. Consider the partial derivatives Qx and Qy of Q and the homogeneous forms xiyjQx and
xiyjQy where i + j = k − 2. We claim that these 2(k − 1) forms of degree 2k − 3 are linearly
independent (and hence that 〈Qx, Qy〉 contains all monomials of degree at least 2k − 3).

To see this, let M = {ma,b}0�a,b�2k−3 be the matrix whose (a, b)-coefficient is the coefficient of
x2k−3−byb in xk−2−ayaQy if a � k−2, and the coefficient of x2k−3−byb in x2k−3−aya−k+1Qx if a > k−2.
The determinant of M is the resultant of Qx(1, y/x) and Qy(1, y/x). These cannot have a common
root since 〈Qx(x, y), Qy(x, y)〉 is 〈x, y〉-primary. Hence, M is of full rank and mk−2〈Qx, Qy〉 = m2k−3.
Since Qx, Qy ∈ a(s+1), m2k−3 ⊆ a(s+1). Lemma 2.2 implies the claim.

Of course, a central arrangement Q of lines in the plane is an isolated singularity. The interesting
question was therefore the precise determination of δQ.
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2.3 Estimates in dimension n > 2
For the remainder of this section, Q is a generic central arrangement Q =

∏k
i=1 Hi. In order to

estimate bQ(s) for n > 2, k > n + 1 we consider a mix of the two main ideas for n = 2. Namely, we
had m2k−3 ⊆ a(s+1). The point is that admitting (s + 1) as a factor of bQ(s) allowed us to capture
(set-theoretically) the singular locus of the arrangement. This, in conjunction with Lemma 2.2, gave
a bound for the Bernstein–Sato polynomial.

The plan is to devise a mechanism that starts with 〈Q〉 ⊆ a1 and uses iterated multiplication with
(s+1) to enlarge aq(s). Progress is measured by the dimension of (the variety of) aq(s). This approach
works well for generic arrangements, while for non-generic arrangements or other singularities better
tricks seem to be required.

It is crucial to understand the difference between the Jacobian ideal of Q and the ideal generated
by all (n−1)-fold products of distinct elements in A, and more generally the difference between the
Jacobian ideal of the ideal generated by all (r + 1)-fold products of distinct elements of A and
the ideal of all r-fold products of distinct elements of A.

Definition 2.6. If A = {H1, . . . ,Hk} is a list of linear homogeneous polynomials and α ∈ Nk we
say that

∏k
i=1 Hi

αi is an A-monomial. If each αi is either 0 or 1, we call the A-monomial squarefree.

Definition 2.7. We define polynomials ∆J,I,N(Q) for a given central arrangement Q = H1 · · ·Hk.
To this end let N = {λ1, . . . , λn} ⊆ {1, . . . , k} be a set of indices serving as a coordinate system.
Let vλ1 , . . . , vλn be n appropriate C-linear combinations of ∂1, . . . , ∂n such that vλi

• (Hλj
) = δi,j.

Let I ⊆ {1, . . . , k} with |I| � k − n + 1. Set Ǐ = {1, . . . , k} \ (I ∪ N), Î = I ∩ N , HI =
∏

i∈I Hi.
Observe that |Î| = |I| − k + n + |Ǐ |.

Let ρN (I) := |Ǐ | + 1 � |Î| and pick J ⊆ Î with |J | = ρN (I). We define ∆J,I,N(Q) to be the
ρN (I) × ρN (I)-determinant

∆J,I,N(Q) = det

 vj1 • (Hι̌1) · · · vj1 • (Hι̌|Ǐ|) vj1 • (HI)
...

...
...

vj|J| • (Hι̌1) · · · vj|J| • (Hι̌|Ǐ|) vj|J| • (HI)

 (2.1)

where Ǐ = {ι̌1, . . . , ι̌|Ǐ|} and J = {j1, . . . , j|J |}. We interpret ∆J,I,N as a linear combination of
square-free A-monomials of degree |I| − 1. If Ǐ is empty, ∆J,I,N(Q) is just νj1 • (HI). We emphasize
that ∆J,I,N(Q) is only defined if |I| > k − n. For a given I, let ∆I(Q) be the set of all ∆J,I,N(Q),
varying over all possible N , and for each N over all J satisfying J ⊆ Î and |J | = ρN (I).

Finally, for r > k − n put

∆r(Q) = 〈∆J,I,N(Q) : |I| = r〉 + 〈HI : |I| = r〉
and for all r

Σr(Q) = 〈HI : |I| = r〉.
Remark 2.8. The ideal Σr−1(Q) set-theoretically describes the locus where simultaneously k− r +2
of the Hi vanish (for the case r < k − n + 2, see Lemma 2.9), while ∆r(Q) is the Jacobian ideal of
the variety to Σr(Q). It is clear that

Σr−1(Q) ⊇ ∆r(Q) = 〈{∆J,I,N (Q) : |I| = r}〉 + Σr(Q) ⊇ Σr(Q).

The following is easily checked (since Q is generic).

Lemma 2.9. If r � k − n + 1 then Σr(Q) = mr = ∆r(Q).

We can describe the ‘difference’ of ∆r(Q) and Σr−1(Q) as follows.
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Proposition 2.10. Let k � r � k − n + 1. Then

annRn

(
Σr−1(Q)
∆r(Q)

)
⊇ mk−n.

Proof. First let k = n so that n � r � 1. In this case A-monomials and monomials are the same
concepts. Then Σr−1(Q) is the ideal of all squarefree (A-)monomials of degree r − 1, and ∆r(Q)
is the ideal of all squarefree (A-)monomials of degree r as well as all partial derivatives of these
monomials. Clearly then, in this case, ∆r(Q) = Σr−1(Q).

We prove the claim by induction on k−n and we assume now that k > n. Let HI be a squarefree
A-monomial of degree r. We must show that mHI/Hi ∈ ∆r(Q) for all i ∈ I and all m ∈ mk−n.

Pick N ⊆ {1, . . . , k} with |N | = n and write m =
∑

j∈N mjHj , mj ∈ mk−n−1. Consider the
summands mjHjHI/Hi in mHI/Hi. If j = i or if j �∈ I, then certainly HjHI/Hi ∈ ∆r(Q). Thus we
are reduced to showing that if i �= j ∈ I then mjHjHI/Hi ∈ ∆r(Q).

Note that if k � r � k − n + 1 then k − 1 � r − 1 � k − 1 − n + 1. Since HI/Hj is a
squarefree A\{Hj}-monomial of degree (r−1) we may use the induction hypothesis on the (generic)
arrangement to Q/Hj with k− 1 � n factors. Hence, for i �= j ∈ I, there are qj ∈ ∆r−1(Q/Hj) such
that mjHI/HiHj = qj. Then mjHjHI/Hi = Hj

2qj so that it suffices to show that

[qj ∈ ∆r−1(Q/Hj)] =⇒ [Hj
2qj ∈ ∆r(Q)].

It is sufficient to check this for qj being equal to one of the two types of generators for ∆r−1

(Q/Hj), namely HI′ and the determinants ∆J ′,I′,N ′(Q/Hj), where as usual J ′, I ′, N ′ ⊆ {1, . . . , k} \
{j}, |N ′| = n and |I ′| = r − 1. If qj = HI′ , then Hj

2qj = HjHI′∪{j} ∈ ∆r(Q). So assume that
qj = ∆J ′,I′,N ′(Q/Hj).

Multiplication of ∆J ′,I′,N ′(Q/Hj) by Hj
2 can be achieved by multiplying the last column of the

defining matrix (2.1) of ∆J ′,I′,N ′(Q/Hj) by Hj
2. In that context, let jt ∈ N ′ and let v′jt

be
the corresponding derivation relative to N ′. Then

Hj
2v′jt

• (HI′) = Hjv
′
jt
• (HI′∪{j}) − HI′∪{j}v′jt

• (Hj).

Thus, Hj
2∆J ′,I′,N ′(Q/Hj) = Hj∆J ′,I′,N ′(Q) modulo 〈HI′∪{j}〉. As HI′∪{j} ∈ ∆r(Q), Hj

2∆r−1

(Q/Hj) ⊆ ∆r(Q). The proposition hence follows by induction.

Recall that ∆I(Q) is the collection of all ∆J,I,N(Q) for fixed I. We now relate the ideals Σr−1(Q)
and ∆r(Q) to ideals aq(s) and hence give the latter ideals geometric meaning.

Lemma 2.11. Fix integers r � k − n + 2 and t. Suppose mtHI ⊆ aq(s) for some I with |I| = r.
Then mt+1∆I(Q) ⊆ a(s+1)q(s). In particular,

[mtΣr(Q) ⊆ aq(s)] =⇒ [mt+1∆r(Q) ⊆ a(s+1)q(s)].

Proof. Pick a specific ∆J,I,N(Q) and a monomial m of degree t. In particular, this means that a
coordinate system Hλ1, . . . ,Hλn and derivations vλ1 , . . . , vλn have been chosen. Consider the effect
of vj on mHIQ

s for j ∈ J (⊆ I ∩ N):

vj • (mHIQ
s)

Qs
=

1
Q

(vj • (m)HIQ + mQvj • (HI) + smHIvj • (Q))

= vj • (m)HI + (s + 1)mvj • (HI) +
∑

i∈{1,...,k}\I
smHI

vj • (Hi)
Hi

.

The sum only has poles of order one. These poles occur exactly along all hyperplanes in Ǐ since
vj •(Hi) = 0 if i �= j, i ∈ N . (Note that j ∈ J ⊆ I is not an index of a summand.) The |Ǐ |+1 distinct
elements of J give rise to that many expressions of the type shown. Hence, there is a non-trivial
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C-linear combination of the vj • (mHIQ
s) without poles; by construction this linear combination is

in aq(s). It is easy to see that the desired expression results in (s + 1)m∆J,I,N (Q) + V (m)HI where
V (m) is a linear combination in the vj • (m). As xivj • (m)HI ∈ mtHI ⊆ aq(s), xim∆J,I,N(Q) ∈
a(s+1)q(s) for all i, J,N and so mt+1∆I(Q) ⊆ a(s+1)q(s).

To prove the final assertion, note that ∆r(Q) is generated by all ∆I(Q), |I| = r and all HI ,
|I| = r. One then only needs to observe that all HI with |I| = r are already in Σr(Q).

One can now conclude alternately from Proposition 2.10 and Lemma 2.11 that

Σk(Q) ⊆ a1,

m∆k(Q) ⊆ a(s+1),

mk−n+1Σk−1(Q) ⊆ a(s+1),

...

m(k−n+1)(n−2)+1∆k−n+2(Q) ⊆ a(s+1)n−1 ,

m(k−n+1)(n−1)Σk−n+1(Q) ⊆ a(s+1)n−1 ,

and since Σk−n+1(Q) = mk−n+1, m(k−n+1)n ⊆ a(s+1)n−1 . It is very intriguing how in the above
sequence of containments an extra factor of (s + 1) in q(s) allows each time a reduction in the
dimension of aq(s) and, in fact, an enlargement of aq(s) to an ideal with radical equal to the singular
locus of aq(s). One might compare this with the example in Remark 2.3.

The remainder of this section is devoted to decreasing substantially the exponent of m in the
final row of the display above.

Proposition 2.12. For all r ∈ N with k − n + 1 � r � k + 1,

m2k−n−1 ∩ Σr−1(Q) ⊆ a(s+1)k−r+1 .

Proof. We proceed by decreasing induction on r. We know that

m2k−n−1 ∩ Σk(Q) ⊆ Σk(Q) = 〈Q〉 ⊆ a(s+1)0 .

Assume then that k − n + 1 � r � k and that m2k−n−1 ∩ Σr(Q) ⊆ a(s+1)k−r . Since Σr(Q) ⊆ m is
generated by homogeneous forms of degree r, this implies that

m2k−n−1−r · Σr(Q) ⊆ a(s+1)k−r .

We need to show that m2k−n−1 ∩ Σr−1(Q) ⊆ a(s+1)k−r+1 in order to get the induction going.
For this, we consider ∆r(Q). Let ∆ be a generator of ∆r(Q). Either ∆ = HI and |I| = r, in which
case ∆ ∈ Σr(Q), or ∆ = ∆J,I,N(Q) with |I| = r. In that case, Lemma 2.11 together with m2k−n−1−r ·
Σr(Q) ⊆ a(s+1)k−r implies that m2k−n−r · ∆ ⊆ a(s+1)k−r+1 . Therefore, our hypotheses imply that

m2k−n−1 ∩ ∆r(Q) ⊆ a(s+1)k−r+1 .

However, then,

m2k−n−1 ∩ Σr−1(Q) = m2k−n−1−(r−1)Σr−1(Q)
(Σr−1(Q) is homogeneously generated in degree r − 1)

= mk−rmk−nΣr−1(Q)

⊆ mk−r(∆r(Q) ∩ mk−n+r−1) (by Proposition 2.10)

⊆ m2k−n−1 ∩ ∆r(Q)
⊆ a(s+1)k−r+1.
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This proposition states that sufficiently high degree parts of the ideal defining the higher iterated
singular loci of A are contained in certain aq(s). It quite directly gives a bound for the Bernstein–Sato
polynomial as follows.

Theorem 2.13. The Bernstein–Sato polynomial of the central generic arrangement Q = H1 · · ·Hk

divides

(s + 1)n−1
2k−n−2∏

i=0

(
s +

i + n

k

)
. (2.2)

Proof. The previous proposition shows (with r = k − n + 2) that m2k−n−1 ∩ Σk−n+1 ⊆ a(s+1)n−1 .
By Lemma 2.9, Σk−n+1(Q) = mk−n+1. Thus, m2k−n−1 ⊆ a(s+1)n−1 . We conclude now as in
Lemma 2.2.

In the next two sections we show that this estimate is, in essence, the correct answer.

3. Remarks on a conjecture by Orlik and Randell

Let Q : Cn → C be a homogeneous polynomial map, denote by Xα the preimage Q−1(α) for α ∈
C\{0} and let X be the fiber over zero. As Q is homogeneous the Xα are all isomorphic and smooth.
Let C̃× be the universal cover of C× = C \{0}, and X̃ the fiber product of C̃× and Cn \X over C×.
Then (α, x) → (α+2π, x) is a diffeomorphism of X̃ and therefore induces an isomorphism M on the
cohomology H∗(Xα, C), the Picard–Lefschetz monodromy [Bri70, Del70, Ham75]. If, in addition,
X has an isolated singularity, then Xα is homotopy equivalent to a bouquet of (n − 1)-spheres
[Mil68] and so the only (reduced) cohomology of the fiber is in degree n − 1. The roots of the
minimal polynomial aM(s) of M are in that case obtained from the roots of the Bernstein–Sato
polynomial of Q by λ → e2πiλ [Mal75]. The multiplicities remain mysterious, however. If X is not an
isolated singularity, the Xα have cohomology in degrees other than n − 1 and the monodromy acts
on all these cohomology groups. The monodromy is then not so nicely related to the Bernstein–Sato
polynomial and not well understood.

In [OR93] the monodromy action is discussed for generic hyperplane arrangements. There are
several other works that deal with understanding the eigenvalues and eigenspaces of monodromy,
and we only indicate a few. In [DL03, Lib02b], for example, the general case as well as reducible
divisors are investigated. In [Lib02a] arrangements are studied and bounds on the eigenvalues are
obtained. In [CO99, CS95] a systematic study of the relations between eigenvalues of the monodromy
and certain local systems of rank one on the complement of the arrangement is undertaken.

3.1 The conjecture
The natural projection Rn →→ Rn/〈Q − α〉 induces a map of differentials Ω → Ωα, which, in turn,
induces a surjective map of deRham complexes π : Ω• →→ Ω•

α where Ωα are the C-linear differentials
on Rn/〈Q − α〉 and Ω•

α is the deRham complex on Xα. It is an interesting and open question to
determine explicit formulae for generators of the cohomology of Ω•

α, i.e. forms on Cn that restrict
to generators of H i(Ω•

α), i � n − 1. If X has an isolated singularity then the Jacobian ideal A is
Artinian, the dimension of the vector space Rn/A equals dimC(Hn−1

DR (Xα, C)), and the elements
of Rn/A can be identified with the classes in Hn−1

DR (Xα, C). Namely, g ∈ Rn/A corresponds to gω
where

ω =
n∑

i=1

(−1)i−1xi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn (3.1)

and the hat indicates omission.
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For the remainder of this section let Q be a reduced polynomial describing a central generic
arrangement, Q = H1 · · ·Hk. As before we let A = {H1, . . . ,Hk}. In [OR93, Proposition 3.9] it is
proved that every cohomology class in Hn−1(Ω•

α) is of the form π(gω) for some g ∈ Rn, and that

dimC(Hn−1(Ω•
α)) =
(

k − 2
n − 2

)
+ k

(
k − 2
n − 1

)
.

The authors make a conjecture which roughly states that g may be chosen to be homogeneous and
that Milnor fibers of central generic arrangements have a cohomology description similar to the
isolated singularity case.

By (Rn)r we denote the homogeneous elements in Rn of degree r. The following vector space is
central to the ideas of Orlik and Randell.

Definition 3.1. We denote by µ a subset of A of cardinality n − 1. We then write Jµ(a) with
a ∈ Rn for the Jacobian determinant associated with Hµ1 , . . . ,Hµn−1 , a. We also denote by Qµ the
product of all Hi with i �∈ µ, and its degree is hence k − n + 1. In our previous notation, Qµ was
HI with I = A \ µ.

With this notation, let E be the vector space in Rn generated by all elements of the form

deg(a)a Jµ(Qµ) − kQµ Jµ(a), (3.2)

varying over all homogeneous a ∈ Rn. It is not an Rn-ideal.

Conjecture 3.2 (Orlik–Randell [OR93]). Consider the fiber X1 = Var(Q − 1). There is a finite-
dimensional homogeneous vector space U ⊂ Rn such that:

(1) Rn = E ⊕ (C[Q] ⊗ U);
(2) the map U → Hn−1(X1, C) given by g → π(gω) is an isomorphism and Ωn−1

α = π(Uω)⊕dΩn−2
α ;

(3) the dimensions ur of Ur, the graded pieces of U of degree r, are

ur =



(
r + n − 1

n − 1

)
for 0 � r � k − n,

(
k − 2
n − 1

)
for k − n + 1 � r � k − 1,

(
k − 2
n − 1

)
−
(

r − k + n − 1
n − 1

)
for k � r � 2k − n − 2.

In this section we will prove that if k does not divide r − k + n, then the dimension of (Rn/E)r
is bounded by

(
k−1
n−1

)
and that strict inequality holds if additionally r > k. In the next section we

see that (Rn)r = Er + 〈Q〉r for r � 2k−n− 1. This will imply that (Rn/(E + 〈Q− 1〉))r is non-zero
exactly if 0 � r � 2k−n−2, and that for k−n−1 � r � k its dimension is exactly as the conjecture
by Orlik and Randell predicts.

It is worth pointing out that the vector space E is too small if Q is an arrangement that is not
generic. For example, with Q = xyz(x+y)(x+z) as in Example 4.17 one obtains that the dimension
of (Rn/E + 〈Q〉)r is 2 whenever r � 5.

3.2 Generators for U

We now consider the question of finding generators for U . By Lemma 2.9, (Rn)k−n+1 is generated
by the set of all Qµ as a vector space. Then (Rn)r is, for r > k − n + 1, generated by mr−k+n−1 ·
Σk−n+1(Q). We claim that we may pick vector space generators G = {gi} for (Rn)r, r > k − n + 1,
such that:
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(a) each gi is an A-monomial;
(b) each gi is a multiple of some Qµ.

To see this, observe that (Rn)r = (mr−k+n−1)r−k+n−1 · (Σk−n+1(Q))k−n+1. Since A is essential,
Lemma 2.9 completes the argument. We call an element of Rn satisfying these two conditions a
standard product.

We now prove that there are no more than
(

k−2
n−1

)
standard products necessary to generate

(Rn/(E + 〈Q− 1〉))r. For k−n+1 � r < k this is exactly the number stipulated by Conjecture 3.2.
We do this by showing that the relations in E may be used to eliminate the majority of all summands
in a typical element of (Rn)r/Er. In order to do this, we need to study the nature of the relations
in E. To get started, note that

[Hj ∈ A \ µ] =⇒ [Jµ(Hj) �= 0].

We now show that every generator (3.2) of E induces a syzygy between k − n + 1 squarefree
A-monomials of degree k − n.

Lemma 3.3. Let a ∈ (Rn)r be an A-monomial of positive degree r such that k � r, and pick n − 1
distinct factors µ of Q. Consider the corresponding element

deg(a)aJµ(Qµ) − kQµJµ(a) (3.3)

of E. In this expression (using the product rule for computing the Jacobian) the first term contributes
k − n + 1 summands of the form deg(a)a(Qµ/Hi)Jµ(Hi) where Hi runs through the factors of Qµ.
Similarly the second term contributes deg(a) summands of the form kQµ(a/ai)Jµ(ai) with ai running
through the factors of a. We claim that all non-zero summands in the latter set (apart from constant
factors) appear as non-zero summands in the former set. Moreover, the coefficients are different for
each summand that is non-zero on both sides.

Proof. There are two main cases: ai ∈ µ and ai �∈ µ. If ai ∈ µ, then Jµ(ai) is a determinant with a
repeated column, and hence the summand Qµ(a/ai)Jµ(ai) is zero. On the other hand, Hi �∈ µ gives a
summand deg(a)a(Qµ/Hi)Jµ(Hi) �= 0. So the left term in (3.3) gives k−n+1 non-zero A-monomials
with non-zero coefficients. If ai �∈ µ, then ai = Hj (say), and (Qµ/Hj)a = Qµ(a/ai). Let t be the
multiplicity of Hj in a, a = a′ ·Hj

t. In (3.3) the first term contributes deg(a)Qµ(a/Hj)Jµ(Hj) while
the second yields t times −kQµ(a/Hj)Jµ(Hj) by the product rule. So the total number of copies of
(aQµ/Hj)Jµ(Hj) in (3.3) is deg(a) − kt.

As k is not a divisor of deg(a) = r, each generator of Er gives rise to a relation between exactly
k − n + 1 of our generators of (Rn)r, corresponding to the divisors of Qµ.

Remark 3.4. Suppose that in a linear combination of A-monomials the previous lemma is used to
eliminate Qµ(a/Hi)Jµ(Hi). Then the replacement A-monomials are of the form Qµ(a/Hj)Jµ(Hj)
where Hj �∈ µ.

We now show how to use Lemma 3.3 to limit the dimension of (Rn)r/Er.

Proposition 3.5. Let r ∈ N, k − n + 1 � r and k � (r − k + n). The (cosets of) A-monomials of
the form

Hi1 · · ·Hik−n−1
Hk−1Hk

r−k+n, i1 < · · · < ik−n−1 < k − 1 (3.4)

span (Rn/E)r and therefore generate (Hn−1
DR (Q−1(1), C))r .

Proof. Let P ∈ (Rn)r be a standard product. We prove that it may be replaced by a linear com-
bination of A-monomials of the stipulated form. Below we list three ways of modifying a linear
combination of A-monomials modulo E.
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(1) If P uses l > k − n + 1 distinct factors of A, we can write P = P ′Qµ for a suitable µ and
we can assume that Hk ∈ µ. That means that Hk � Qµ and the multiplicity of Hk in P ′ is of
course at most r − k + n − 1. Let i0 = min{i : Hi �∈ µ} and µ′ = µ ∪ {Hi0} \ {Hk}, so Qµ′ =
HkQµ/Hi0. Consider the element of E given by (r − k + n)P ′Hi0Jµ′(Qµ′) − kQµ′Jµ′(P ′Hi0).
It is a linear dependence modulo E between P ′Hi0Qµ′/Hk = P on one side and terms of the
form P ′Hi0Qµ′/Hi = P ′HkQµ/Hi for Hk �= Hi ∈ A\ µ′ on the other, with no coefficient equal
to zero. It follows that P = P ′Qµ may, modulo E, be replaced by a linear combination of
standard products with a higher power of Hk in each of them than in P and l or l− 1 distinct
factors. Note that each replacing A-monomial has multiplicity of Hk at most r − k + n.

(2) Suppose now that P has exactly k − n + 1 distinct factors, but that Hk is not one of them.
Let Qµ be the product of all distinct factors of P , and set P = P ′Qµ. Let i0 = min{i : Hi �∈ µ}
and set µ′ = µ∪{Hi0} \ {Hk}. The relation (r − k + n)Hi0P

′Jµ′(Qµ′)− kQµ′Jµ′(P ′Hi0) allows
one to replace P by a linear combination of standard products with k − n + 1 or k − n + 2
distinct factors (depending on the multiplicity of Hi0 in P ′) such that Hk divides each of the
new standard products.

(3) Now assume that P is a standard product with exactly k − n + 1 distinct factors and assume,
furthermore, that Hk divides P with multiplicity l < r−k+n. Let µ be such that Qµ divides P .
Since the arrangement is generic, the n− 1 elements of µ, together with Hk, span the maximal
ideal and thus if i0 = min{i : Hi

2 |P} then one factor Hi0 of P may be replaced by an
appropriate linear combination in Hk and the elements of µ. This creates a linear combination
of (n − 1) standard products with k − n + 2 distinct factors in each summand where Hk has
multiplicity l, and one A-monomial with k − n + 1 factors where the Hk-degree is l + 1.

Starting with any standard product of degree r, using these steps in appropriate order will
produce a linear combination of standard products with exactly k − n + 1 factors and multiplicity
r−k+n in Hk. This is because after every execution of steps 1 and 2, the degree in Hk goes up, and
after each execution of step 3 we may perform step 1 at least once on the n − 1 standard products
with k − n + 1 factors.

Now let P = Hi1 · · ·Hik−n
Hk

r−k+n with i1 < i2 < · · · < ik−n < k − 1. Let µ be such that
Qµ = Hi1 · · ·Hik−n

Hk−1, in particular Hk ∈ µ. Then

E � (r − k + n)Hk
r−k+nJµ(Qµ) − kQµJµ(Hk

r−k+n) = (r − k + n)Hk
r−k+nJµ(Qµ)

allows one to replace P by a sum of A-monomials each of which has k − n + 1 distinct A-factors,
and each of which is divisible by Hk−1Hk

r−k+n (note that the only term that might fail to have
Hk−1 in it disappears because Jµ(Hk

r−k+n) = 0 as Hk ∈ µ). Thus, modulo E, P is equivalent to a
linear combination of A-monomials of type (3.4).

The condition k � (r − k + n) is needed because otherwise Lemma 3.3 does not work.

Remark 3.6. Note that there are exactly
(

k−2
k−n−1

)
=
(

k−2
n−1

) A-monomials of type (3.4). It follows
that dim(Rn/E)r �

(
k−2
n−1

)
unless k divides r − k + n. Also, if r = k − n the conjecture states that(

k−2
n−1

)
generators for (Rn/E)r are not enough. So, in a sense this is an optimal estimate. In the

following section we see that (Rn)r = Er along Q−1(1) for r > 2k − n − 2. We finish this section
with a lemma that is used in the next section to prove that (Rn)r �= Er for k � r � 2k − n − 2.

Lemma 3.7. If r � k and k � (r − k + n), then dimC(Rn/E + 〈Q〉)r �
(

k−2
n−1

)− 1.

Proof. The proof of Proposition 3.5 contains a procedure to turn QHk
r−k into a sum of A-monomials

of the form (3.4). One may do so using only step 1 of that proof. In fact, if P = H1 · · ·Hk−n−1Hi1 · · ·
HijHk−1Hk

r−k+n−j for k − n − 1 < i1 < · · · < ij < k − 1, then the relation (3.3) induced by
Qµ = H1 · · ·Hk−n−1Hi1Hk and a = P/Qµ allows one to replace P by a sum of A-monomials each of
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which is divisible by Hk−1Hk
r−k+n+1−j, each of which has only Hk as repeated factor, and precisely

one of which is a non-zero multiple of H1 · · ·Hk−n−1. Therefore, rewriting QHk
r−k only using step 1

(and only Qµ = H1 · · ·Hk−n−1 · Hi1Hk with k − n � i1 < k) gives a relation modulo E between
the products of (3.4) where the coefficient for H1 · · ·Hk−n−1Hk−1Hk

r−k+n is non-zero. Hence, in
particular, (Rn/E + 〈Q〉)r has dimension at most

(
k−2
n−1

)− 1.

We have shown that filtering Rn/(E + 〈Q − 1〉) by degree, the rth graded piece has dimension
at most

(
k−2
n−1

)− 1 unless k divides r − k + n. Moreover, (Rn/E)r = (Rn)r for r � k − n.

4. Integration, restriction and Bernstein–Sato polynomials

If Q is radical and describes a generic arrangement then we have seen that:

• bQ(s) is a divisor of (s + 1)n−1
∏2k−n−2

i=0 (s + (i + n/k));

• dimC(Rn/E + 〈Q〉)r �
(

k−2
n−1

)
if k � (r − k + n);

• the inequality of the previous item is strict if, in addition, r < k − n or r � k.

Suppose now that Q is a homogeneous polynomial. We prove next that to each homogeneous non-
zero element of Hn−1

DR (Q−1(1), C), i.e. the top cohomology group of the associated Milnor fiber,
there is a corresponding root of bQ(s). This generalizes the classical case of homogeneous isolated
singularities.

4.1 Restriction and integration
A central part of this section is occupied by effective methods for D-modules. In fact, in an abstract
way we use algorithms that were pioneered by Oaku [Oak96] and have since become the centerpiece
of algorithmic D-module theory.

We first explain some basic facts about restriction and integration functors. Much more detailed
explanations may be found in [Oak96, OT99, OT01, Wal00]. In particular, we only consider the
situation of n + 1 variables x1, . . . , xn, t and explain restriction to t = 0 and integration along
∂1, . . . , ∂n.

Definition 4.1. Let Ω̃t = Dx,t/t · Dx,t and Ω∂ = Dx,t/{∂1, . . . , ∂n} · Dx,t.
The restriction of the Dx,t-complex A• to the subspace t = 0 is the complex ρt(A•) = Ω̃t⊗L

Dx,t
A•

considered as a complex in the category of Dx-modules.
The integration of A• along ∂1, . . . , ∂n is the complex DR(A•) = Ω∂ ⊗L

Dx,t
A• considered as a

complex in the category of Dt-modules.

In the following we describe tools that may be used to compute restriction and integration.

Definitions 4.2. On the ring Dx,t, the Vt-filtration F l
t (Dx,t) is the C-linear span of all operators

xα∂βta∂b
t for which a + l � b. More generally, on a free Dx,t-module A =

⊕r
j=1 Dx,t · ej we set

F l
t (A[m]) =

r∑
j=1

F
l−m(j)
t (Dx,t) · ej ,

where m is any element of Zr called the shift vector. A shift vector is tied to a fixed set of generators.
The Vt-degree of an operator P ∈ A[m] is the smallest l = degVt

(P [m]) such that P ∈ F l
t (A[m]).

If M is a quotient of the free Dx,t-module A =
⊕r

1 Dx,t · ej , M = A/I, we define the
Vt-filtration on M by F l

t (M [m]) = F l
t (A[m]) + I and for submodules N of A by the intersection:

F l
t (N [m]) = F l

t (A[m]) ∩ N .
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Definitions 4.3. A complex of free Dx,t-modules

· · · → Ai−1 φi−1

−→ Ai φi

−→ Ai+1 → · · ·
is said to be Vt-strict with respect to the shift vectors {mi} if

φi(F l
t (A

i[mi])) ⊆ F l
t (A

i+1[mi+1])

and also

im(φi−1) ∩ F l
t (A

i[mi]) = im(φi−1|F l
t (Ai−1[mi−1])

)

for all i, l.
Set θ = t∂t, the Euler operator for t. A Dx,t-module M [m] = A[m]/I is called specializable to

t = 0 if there is a polynomial b(s) in a single variable such that

b(θ + l) · F l
t (M [m]) ⊆ F l−1

t (M [m]) (4.1)

for all l (cf. [Kas78, OT99]). Holonomic modules are specializable. Introducing

grl
t(M [m]) = (F l

t (M [m]))/(F l−1
t (M [m])),

this can be written as

b(θ + l) · grl
t(M [m]) = 0.

The monic polynomial b(θ) of least degree satisfying an equation of the type (4.1) is called the
b-function for restriction of M [m] to t = 0.

By [OT01, Proposition 3.8] and [Wal00] every complex admits a V -strict resolution. In the
theorems to follow, the meaning of filtration on restriction and integration complexes is as in [Wal00,
Definition 5.6].

Theorem 4.4 [Oak96, OT01, Wal00]. Let (A•[m•], δ•) be a Vt-strict complex of free Dx,t-modules
with holonomic cohomology. The restriction ρt(A•[m•]) of A•[m•] to t = 0 can be computed as
follows:

(1) compute the b-function bA•[m•](s) for restriction of A•[m•] to t = 0;

(2) find an integer l1 with
[
bA•[m•](l) = 0, l ∈ Z

]⇒ [l � l1];

(3) ρt(A•[m•]) is quasi-isomorphic to the complex

· · · → F l1
t (Ω̃t ⊗Dx,t Ai[mi]) → F l1

t (Ω̃t ⊗Dx,t Ai+1[mi+1]) → · · · (4.2)

This is a complex of free finitely generated Dx-modules and a representative of ρt(A•[m•]). Moreover,
if a non-zero cohomology class in ρt(A•[m•]) has Vt-degree d, then d is a zero of bA•[m•](s).

In order to compute the integration along ∂1, . . . , ∂n, one defines a filtration by

F l
∂(Dx,t) = {xα∂βta∂b

t : |α| � |β| + l}.
With Ẽ = −∂1x1 − · · · − ∂nxn, the b-function for integration of the module M is the least degree
monic polynomial b̃(s) such that

b̃(Ẽ + l) · F l
∂(M) ⊆ F l−1

∂ (M).

Then the integration complex DR(M) of M is quasi-isomorphic to

· · · → F̃ l1
∂ (Ω∂ ⊗Dx,t Ai[mi]) → F̃ l1

∂ (Ω∂ ⊗Dx,t Ai+1[mi+1]) → · · · (4.3)

where A•[m•] is a V∂-strict resolution of M , and l1 is the largest integral root of b̃(s). Again,
cohomology generators have V∂-degree equal to a root of b̃(s).
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4.2 Bernstein–Sato polynomial and the relative deRham complex
Following Malgrange [Mal74], we consider for f ∈ Rn the symbol f s as generating a Dx,t-module
contained in the free Rn[f−1, s]-module Rn[f−1, s]f s via

t • g(s)
f j

f s =
g(s + 1)

f j−1
f s, ∂t • g(s)

f j
f s =

−sg(s − 1)
f j+1

f s.

Then the left ideal Jn+1(f) = 〈t−f, {∂i +∂i • (f)∂t}n
i=1〉 ⊆ Dx,t is easily seen to consist of operators

that annihilate f s. Moreover, −∂tt acts as multiplication by s. Since Jn+1(f) is maximal, it actually
contains all annihilators of f s. It turns out that Jn+1(f) describes the D-module direct image of Rn

under the embedding x → (x, f(x)).

Lemma 4.5. For all f ∈ Rn,

Dx,t/Jn+1(f) ∼= H1
t−f (Rx,t),

generated by 1/(t − f).

Proof. Consider τ = 1/(t − f) ∈ Rx,t[(t − f)−1]. It is obviously annihilated by {∂i + ∂i • (f)∂t}n
i=1.

Moreover, (t − f)/(t − f) ∈ Rx,t so that (t − f)(τ mod Rx,t) = 0 ∈ H1
t−f (Rx,t). Hence, Jn+1(f)

annihilates the coset of τ in H1
t−f (Rx,t).

The polynomial t − f is free of singularities and so its Bernstein–Sato polynomial is s + 1.
Hence, τ generates Rx,t[(t−f)−1]. Therefore, the coset of τ generates the local cohomology module.
Since this module is non-zero, the coset of τ cannot be zero. Hence, its annihilator cannot be Dx,t.
As Jn+1(f) is maximal we are done.

We now connect the ideas of Malgrange with algorithmic methods pioneered by Oaku and
Takayama to show that the ideal Jn+1(f) is intimately connected with the Bernstein–Sato poly-
nomial of f .

Theorem 4.6. Let Q be a homogeneous polynomial of degree k > 0 with Bernstein–Sato polynomial
bQ(s). Then bQ((−s−n)/k) is a multiple of the b-function for integration of Jn+1(Q) = 〈t−Q, {∂i +
∂i • (Q)∂t}n

i=1〉 along ∂1, . . . , ∂n.

Proof. It is well known that Jn+1(Q)∩Dx[s] = annDx[s](Qs). Hence, in particular, Jn+1(Q) contains
E − ks = E + k∂tt.

To be a Bernstein polynomial means that bQ(s) ∈ Jn+1(Q) ∩ Dx[s] + Dx[s] · Q. Write bQ(s) =
j + P (s)Q with j ∈ Jn+1(Q) ∩ Dx[s], P (s) ∈ Dx[s].

The ideal Jn+1(Q) is (1, k)-homogeneous if we set deg(xi) = 1, deg(∂i) = −1, deg(t) = k,
deg(∂t) = −k. Since bQ(s) is (1, k)-homogeneous of degree 0, we may assume that j (and hence
P (s)Q) is also (1, k)-homogeneous of degree 0. Writing P (s) =

∑l
i=0 Pis

i with Pi ∈ Dx, we see
that each Pi is of (1, k)-degree −k. This implies, as Pi ∈ Dx, that Pi ∈ F−k

∂ (Dx). Note that
as t − Q ∈ Jn+1(Q), bQ(s) = P (s)t modulo Jn+1(Q). So P (s)t = P (−∂tt)t ∈ F−k

∂ (Dx,t) and
bQ(−∂tt) ∈ Jn+1(Q) + F−k

∂ (Dx,t).
Also, bQ(−∂tt) is modulo Jn+1(Q) equivalent to bQ((−Ẽ − n)/k) because E + k∂tt ∈ Jn+1(Q).

Thus

bQ

(−Ẽ − n

k

)
∈ Jn+1(Q) + F−k

∂ (Dx,t),

proving that bQ(−(s + n)/k) is a multiple of the b-function for integration of Dx,t/Jn+1(Q) along
∂1, . . . , ∂n.

Combining Theorem 4.6 with Theorem 4.4 and its integration counterpart, one obtains the
following.
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Corollary 4.7. The only possible V∂-degrees for the generators of the cohomology of DR(Dx,t/
Jn+1(Q)) are those specified by the roots of bQ(−(s + n)/k).

4.3 Restriction to the fiber
Let Q be a homogeneous polynomial of positive degree. We now consider the effect of restriction
to t − 1 of the relative deRham complex DR(Dx,t/Jn+1(Q)). This is computed as the cohomology

of the tensor product over Dt of DR(Dx,t/Jn+1(Q)) with (Dx,t
(t−1)·−−−−→ Dx,t). We concentrate on the

highest cohomology group. It equals Dx,t/(Jn+1(Q) + {∂1, . . . , ∂n, t − 1}Dx,t).

Theorem 4.8. The quotient

U := Dx,t/(Jn+1(Q) + {∂1, . . . , ∂n, t − 1}Dx,t) (4.4)

is spanned by polynomials g ∈ Rn. One may choose a C-basis for U in such a way that:

(i) all basis elements are in Rn and homogeneous;

(ii) no basis element may be replaced by an element of smaller degree (homogeneous or not).

We call such a basis a homogeneous degree minimal basis.
The degree of any element g of a degree minimal basis satisfies

bQ(−(deg(g) + n)/k) = 0

and then the usual degree of g is the V∂-degree of the class of g.

Proof. Clearly U is spanned by the cosets of Rn[∂t]. Let g ∈ Rn be homogeneous of degree d. In U
we have gta∂b

t = gtb∂b
t = g
∏b−1

j=0(t∂t − j) for all a, b ∈ N. Now observe that E + k∂tt ∈ Jn+1(Q)
implies that in U

0 = ∂b
t g(E + k∂tt) = ∂b

t (E − d + k∂tt)g

= ∂b
t (−n − d + k∂tt)g

= ((−n − d + k(b + 1))∂b
t + k∂b+1

t )g.

By induction this shows that in U ,

∂b
t g = tb∂b

t g =
b∏

i=1

(
n + d

k
− i

)
g. (4.5)

Hence, U is spanned by the cosets of Rn. As ∂b
t g and

∏b
i=1((n+d)/k− i)g have the same V∂-degree,

minimal V∂-degree representatives for all u ∈ U can be chosen within Rn.
Now let u′ ∈ Rn be homogeneous and let 0 �= u ∈ Dx,t be a V∂-degree minimal representative of

the class of u′ in U . By the previous paragraph, without affecting V∂-degree, u can be assumed to
be in Rn. Then, obviously, the V∂-degree agrees with the usual degree.

Therefore, by definition, deg(u) = degV∂
(u) � degV∂

(u′) = deg(u′). Hence, for any u′ ∈ U we
have

min{deg(u) : u ∈ Rn, u = u′ ∈ U} = min{degV∂
(u) : u′ = u ∈ U}

and the equality can be realized by one and the same element u ∈ Rn on both sides. If this u is
non-zero in U , then clearly u ∈ Hn(DR(Dx,t/Jn+1(Q))) is also non-zero since this module surjects
onto U . The V∂-degree of u within Hn(DR(Dx,t/Jn+1(Q))) cannot be smaller than the V∂-degree
of u in the bigger coset when considered in U , and hence is just the usual degree of u. By Corollary
4.7, bQ(−(deg(u) + n)/k) = 0. This implies that U is finite dimensional. Hence, any C-basis for U
may be turned into a degree minimal one.
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It remains to show that the basis can be picked in a homogeneous minimal way. Note that
Jn+1(Q) + {∂1, . . . , ∂n, t − 1}Dx,t is Z/〈k〉-graded (by xi �→ 1, ∂i �→ −1 and t, ∂t �→ 0); so U is
Z/〈k〉-graded and U has a degree minimal Z/〈k〉-graded basis. If u is in a Z/〈k〉-graded minimal
degree basis but not homogeneous, the degrees of its graded components only differ by multiples
of k. Write u = ua+ua+1+· · ·+ub with a, b ∈ N and uj the component of u in degree jk. Then, since
t−Q is in Jn+1(f), we have in U the equality u =

∑b
j=a ujQ

b−j. The right-hand side is homogeneous
and both of usual and of V∂-degree deg(u). Hence, Z/〈k〉-graded minimal degree bases for U can
be changed into homogeneous minimal degree bases without changing the occurring degrees (all of
which we proved to be roots of bQ(−(s + n)/k)).

Remark 4.9. An important hidden ingredient of the above theorem is the fact that the b-function
for restriction to t − 1 of both Dx,t/Jn+1(f) and Hn DR(Dx,t/Jn+1(f)) is (t − 1)∂t whenever f is
w-homogeneous. Namely, if f =

∑n
i=1 wixi∂i•f then with ξ =

∑n
i=1 wixi∂i we have (∂tt+ξ)•f s = 0.

Consider then the equation

(t − 1)∂t = (t − 1)(∂tt + ξ)︸ ︷︷ ︸
A

− (t − 1)(∂t(t − 1) + ξ)︸ ︷︷ ︸
B

.

Obviously, A ∈ Jn+1(f) and B ∈ F−1
t−1(Dx,t)∩F−1

∂,t−1(Dx,t). These are the required conditions to be
a b-function for restriction to t − 1 of Dx,t/Jn+1(f) and Hn(DR(Dx,t/Jn+1(f))), respectively.

Corollary 4.10. Let Q = H1 · · ·Hk define a central generic arrangement. Then U has a homo-
geneous basis of polynomials of degree at most 2k − n − 2.

Proof. By Theorem 2.13, bQ(s) has its zero locus inside {−n/k, . . . , (−2k + 2)/k}. Then by
Theorem 4.8 the degrees of a minimal degree basis for U are bounded above by 2k − n − 2.

4.4 DeRham cohomology from D-module operations
For any f , the complex DR(Dx,t/Jn+1(f)) carries the deRham cohomology of the fibers of the map
Cn � x → f(x) ∈ C, since it is the result of applying the deRham functor to the composition of maps
x → (x, f(x)) and (x, y) → (y) (see [Del70]). The deRham functor for the embedding corresponds

to the functor that takes the Dx-module M to the Dx,t-complex M ⊗Dx (Dx,t
·(f−t)−→ Dx,t), while the

projection corresponds to the formation of the Koszul complex induced by left multiplication by
∂1, . . . , ∂n. The cohomology of the fiber Q−1(1) is obtained as the restriction to t − 1.

With the shifts in cohomological degree, U = Dx,t/(Jn+1(Q) + 〈∂1, . . . , ∂n, t − 1〉 · Dx,t) thus
encodes the top deRham cohomology of Q−1(1). For homogeneous Q the correspondence between
these two spaces is as follows. Write dX = dx1 ∧ · · · ∧ dxn and d̂Xi = dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn,
where the hat indicates omission. An element g in U determines the form g dX on Cn. Under
the embedding Q−1(1) ↪→ Cn, the form g dX restricts (D-module theoretically) to the form G,
which satisfies dQ ∧ G = g dX. Let us compute G. Since G is an (n − 1)-form, G =

∑n
i=1 gi d̂Xi.

Thus, dQ ∧ G =
∑n

i=1(−1)i∂i • (Q)gi dX. On the other hand, along Q−1(1), g dX = gQdX =
g
k

∑n
i=1 xi∂i • (Q) dX. Thus, by comparison, kgi = (−1)ixig. With ω as in (3.1), the (n − 1)-form

on Q−1(1) encoded by g ∈ U is G = gω/k. We show now that all forms in Hn−1
DR (Q−1(1), C) are

captured by U .

Lemma 4.11. If Q is homogeneous, then Hn−1
DR (Q−1(1), C) is generated by Rn · ω.

Proof. This is trivial for n = 1, so we assume that n > 1. Consider the map Rn → Hn−1
DR (Q−1(1), C)

given by g → gω. Suppose gω = 0. Then

gω = (Q − 1)h + d(G) + A ∧ dQ
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for h =
∑

(−1)i+1hi d̂Xi ∈ Ωn−1, G =
∑

gi,jdx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn ∈ Ωn−2, A ∈ Ωn−2.
Multiply by dQ to get

kQg dX =
( n∑

i=1

(Q − 1)∂i • (Q)hi +
n∑

i,j=1

∂i • (Q)∂j • (gi,j) − ∂j • (Q)∂i • (gi,j)
)

dX

in Ωn = Rn dX. Now look at this in U . Note that kQg = ktg = kg and (Q − 1)∂i • (Q)hi =
(t − 1)∂i • (Q)hi = 0 in U . So (in U)

kg =
n∑

i,j=1

∂i • (Q)∂j • (gi,j) − ∂j • (Q)∂i • (gi,j). (4.6)

We would like this to be zero in U ; in fact, it will turn out to vanish term by term.
We may assume that gi,j is homogeneous by looking at the graded pieces of (4.6). So to simplify

notation let h be a homogeneous polynomial in Rn. In the remainder of this proof we use a subscript
to denote derivatives: hi = ∂i • (h). Then in U we have

0 = −∂jthi + ∂ithj = thi,j + thj,i + (thi∂j + thj∂i)
= thiQj∂t − thjQi∂t

= (hiQj − hjQi)t∂t

= (hiQj − hjQi)
n + deg(h) − 2

k
by (4.5).

If deg(h) > 0, this implies the vanishing of hiQj −hjQi ∈ U . However, if deg(h) = 0 there is nothing
to prove in the first place. Therefore, the sum (4.6) is zero. Hence, if gω = 0 in Hn−1

DR (Q−1(1), C),
then kg = 0 in U . So Rn →→ U factors as Rn →→ Rnω →→ U = Hn−1

DR (Q−1(1), C).

Our considerations prove the following theorem in view of Corollary 4.10.

Theorem 4.12. Let Q ∈ Rn be a homogeneous polynomial of degree k. The deRham cohomology
group Hn−1

DR (Q−1(1), C) is isomorphic to U · ω. There is a homogeneous basis for U with degrees
bounded by

uQ = max{i ∈ Z : bQ(−(i + n)/k) = 0}.
If Q defines a generic arrangement of hyperplanes, uQ � 2k − n − 2.

4.5 Non-vanishing of Hn−1
DR (Q−1(1), C) and roots of bQ(s)

We now establish the existence of a non-vanishing g ∈ Hn−1
DR (Q−1(1), C) in all degrees 0 � deg(g) �

2k−n− 2 for generic central arrangements Q. This will certify each root of (2.2) as a root of bQ(s).
The primitive kth root ζk of unity acts on Cn by xi → ζkxi. This fixes Q and hence the ideal

Jn+1(Q). Therefore, it gives an automorphism of the deRham complex and hence the induced map
on cohomology separates Hn−1

DR (Q−1(1), C) into eigenspaces, U =
⊕

i∈Z/kZMi, which are classified
by their degree modulo k.

From [OR93] we know the monodromy of Q. In particular, Mi is a
(

k−2
n−1

)
-dimensional vec-

tor space unless i = k − n. Write Ui for the elements in U with (homogeneous) minimal degree
representative of degree precisely i. Since elements of U have degree at most 2k−n−2, we find that

dim(Ui) + dim(Ui+k) = dim(Ui + Ui+k) =
(

k − 2
n − 1

)
for 0 � i � k − n − 1;

Ui = Mi and dim(Ui) =
(

k − 2
n − 1

)
for k − n < i � k − 1.

Moreover, Uk−n = Mk−n = (Rn)k−n of dimension
(

k−1
n−1

)
.
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Since Rn/(E + 〈Q − 1〉) surjects onto U , Lemma 3.7 shows that neither Ui nor Ui+k is zero
dimensional for 0 � i � k − n − 1. So one has the following theorem.

Theorem 4.13. For a generic hyperplane arrangement Q the vector space

(Hn−1
DR (Q−1(1), C))r �= 0 for 0 � r � 2k − n − 2.

It is zero for all other i.

One can now use the non-vanishing property to certify roots of bQ(s) as follows.

Corollary 4.14. The Bernstein–Sato polynomial of a generic central arrangement Q =
∏

Hi∈A Hi

of degree k is

(s + 1)r
2k−n−2∏

i=0

(
s +

i + n

k

)
where r = n − 1 or r = n − 2.

Proof. By the previous theorem, Ui �= 0 for 0 � i � 2k − n− 2. A minimal degree basis for U must
therefore contain elements of all these degrees. By the last part of Theorem 4.8, bQ(s) is a multiple
of
∏2k−n−2

i=0 (s+(i+n)/k). On the other hand, Theorem 2.13 proves that bQ(s) divides the displayed
expression with r = n − 1. This proves everything apart from the multiplicity of (s + 1).

Let �x �= �0 be any point of the arrangement where precisely n − 1 planes meet. The Bernstein–
Sato polynomial of Q is a multiple of the local Bernstein–Sato polynomial at �x (which is defined by
the same type of equation as bQ(s), but where P (s) is in the localization of Dx[s] at the maximal
ideal defining �x). Since the local Bernstein–Sato polynomial at a normal crossing of n − 1 smooth
divisors is (s + 1)n−1, the theorem follows.

Remark 4.15. In [Sai04], Saito points out that Hodge theory can be used to conclude r = n−1 from
what we have determined. On the other hand, we believe that the elements g ∈ Rn whose cosets in

(s + 1)n−2
2k−n−2∏

i=0

(
s +

i + n

k

)
· Dn[s] • f s

Dn[s] • f s+1

are zero are precisely the elements of mk−n+1. (By Saito’s remark the set of such g ∈ Rn is not the
unit ideal.)

Conjecture 4.16. If k � r � 2k−n− 2 we believe that the space (Rn/(E + 〈Q− 1〉))r is spanned
by the expressions in (3.4) for which i1 < (n − 1) + (r − k). If k − n < r < k, the expressions in
Proposition 3.5 are known to span U . If r � k − n we believe that Ur = (Rn)r.

This is in accordance with [OR93] as there are exactly as many such expressions as Conjecture 3.2
predicts for the dimension of (Hn−1

DR (Q−1(1), C))r .

Example 4.17. Consider the non-generic arrangement given by Q = xyz(x + y)(x + z). With the
D-module package [LST] of Macaulay 2 [GS], one computes its Bernstein–Sato polynomial as

(s + 1)(s + 2
3)(s + 3

3)(s + 4
3)(s + 3

5)(s + 4
5)(s + 5

5 )(s + 6
5)(s + 7

5).

Therefore the b-function for integration of Jn+1 along ∂1, . . . , ∂n is a divisor of

(s − 2)(s − 1
3)(s − 2)(s − 11

3 )(s − 0)(s − 1)(s − 2)(s − 3)(s − 4).

This indicates that the degrees of the top cohomology of the Milnor fiber Q−1(1) are at most 4.
It also shows that in this case these degrees do not suffice to determine the roots of bQ(s). In fact,
the degrees of no class in any H i

DR(Q−1(1), C) will explain the roots −2
3 and −4

3 in bQ(s).
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However, consider a point P �= 0 on the line x = y = 0. This line is the intersection of three
participating hyperplanes, x, y and x + y. In P the variety of Q has a homogeneous structure as
well, so the local Bernstein–Sato polynomial of Q at P is a multiple of the minimal polynomial
of the local Euler operator on the cohomology of the Milnor fiber of Q at P . In fact, at P the
variety of Q is a generic arrangement in the plane, times the affine line. Without difficulty one
verifies then that the Milnor fiber has top cohomology in degrees 0, 1 and 2, and that bQ,P (s) =
(s + 2

3)(s + 1)2(s + 4
3).

The global Bernstein–Sato polynomial of Q is the least common multiple of all local Bernstein–
Sato polynomials bQ,P (s). Hence, bQ(s) must be a multiple of (s + 2

3)(s + 1)2(s + 4
3) and so all roots

of bQ(s) come in one way or another from cohomology degrees on Milnor fibers. This prompts the
following problem.

Problem 4.18. Let Q be a locally quasi-homogeneous polynomial in Rn (for example, a hyper-
plane arrangement). Is it true that every root of bQ(s) arises through the action of an Euler
operator on the top deRham cohomology of the Milnor fiber of Q at some point of the divisor
of Q?

This is of course true for isolated quasi-homogeneous singularities. If Q is an arrangement, then
by the local-to-global principle one may restrict to central arrangements. We have proved here that
the question has an affirmative answer for generic arrangements.

One more remark is in order. The cohomology we have used to describe the Bernstein–Sato
polynomial is the one with coefficients in the constant sheaf C, which may be viewed as the sheaf
of solutions of the Dn-ideal 〈∂1, . . . , ∂n〉 describing Rn on Cn. Relating holonomic Dn-modules
to locally constant sheaves on Cn is the point of view of the Riemann–Hilbert correspondence,
[BGKHME87]. There are, however, other natural locally constant sheaves on Cn \ Q−1(0) induced
by Dn-modules than just the constant sheaf. For example, for every a ∈ C the Dn-ideal annDn(fa)
induces such a sheaf as the sheaf of its local solutions. For most exponents a this is of course a
sheaf without global sections on Q �= 0, and more generally without any cohomology in degrees
different from n (Kohno’s Theorem, see [CS95, Theorem 2.1], for a reference). For suitable ex-
ponents, however, this is different. Perhaps one can characterize the Bernstein–Sato polynomial
as the polynomial of smallest degree such that s = −∂tt annihilates the V∂-degree of every co-
homology class in H i(Ω ⊗L

Dn

∫
ι P) for every Dn-module P defining a locally constant system on

Cn \ Q−1(0)
ι

↪→ Cn+1. Another possibility is given by the cyclic covers introduced by Cohen and
Orlik [CO99].

5. Miscellaneous results

In this section we collect some results and conjectures concerning the structure of the module Dn•Qs

associated with central arrangements.

5.1 Arbitrary arrangements

We begin with a fact pointed out to us by A. Leykin.

Theorem 5.1 (Leykin). The only integral root of the Bernstein–Sato polynomial of any arrange-
ment A is −1.

Proof. By Lemma 1.3 it will be sufficient to show that if Q =
∏

Hi∈A Hi, then Rn[Q−1] is generated
by 1/Q since this implies that Dn • (Q−1) = Dn • (Q−r) for all r ∈ N.
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Since the Bernstein–Sato polynomial is the least common multiple of the local Bernstein–Sato
polynomials, we may assume that A is central. We may also assume that A ⊆ Cn is essential.

The claim is true for a normal crossing arrangement. We proceed by induction on the
difference k − n > 0 where k = deg(Q). Since the local cohomology module Hk

m(Rn) vanishes,
Rn[Q−1] =

∑k
i=1 Rn[(Q/Hi)−1]. Moreover, by induction Rn[(Q/Hi)−1] is generated by Hi/Q as a

Dn-module. Since, obviously, Hi/Q is in the Dn-module generated by 1/Q, the theorem follows.

Remark 5.2. Note that the same argument proves the following. Let g1, . . . , gk ∈ Rn and set G =∏k
i=1 gi. If Rn[(G/gi)−1] is generated by (gi/G)m for i = 1, . . . , k and Hk

〈g1,...,gk〉(Rn) = 0, then
Rn[G−1] is generated by 1/Gm. That is to say, if the smallest integral root of bG/gi

(s) is at least −m

and if Hk
〈g1,...,gk〉(Rn) = 0, then the smallest integral root of bG(s) is at least −m. By Grothendieck’s

vanishing theorem this last condition is always satisfied if k > n.

We now give some combinatorial results on the localization module Rn[Q−1]. The following is a
general fact about finite length modules.

Proposition 5.3. Let M =
∑k

i=1 Mi be a holonomic Dn-module. Then the holonomic length
satisfies

�(M) =
k∑

i=1

(−1)i+1
∑
|I|=i

�(MI)

where MI =
⋂

j∈I Mj .

Proof. We have that � is additive in short exact sequences. Hence, �(M) = �(M1) + �(M/M1).
In order to start the induction, one needs to look at the case k = 2 which is the second isomorphism
theorem.

Also, by induction,

�(M) − �(M1) = �(M/M1) = �

(∑
i>1

(Mj + M1)/M1

)

=
k−1∑
i=1

(−1)i+1
∑

|I|⊆{2,...,k}
�

( ⋂
1<j∈I

(Mj + M1)/M1

)

=
k−1∑
i=1

(−1)i+1
∑

|I|⊆{2,...,k}
�(MI/(M1 ∩ MI))

=
k−1∑
i=1

(−1)i+1
∑

|I|⊆{2,...,k}
[�(MI) − �(MI∪{1})].

The terms �(MI) in the last sum are all the summands in the sum of the theorem without the index
1. The terms �(MI∪{1}) together with �(M1) make up all those who do use the index 1.

Proposition 5.4. In the context of Theorem 5.1, let MI = Rn[
∏

j �∈I Hj
−1]. The length of M =

Rn[Q−1] is determined recursively as follows, where H i
A(−) is local cohomology with supports in

the ideal 〈H1, . . . ,Hk〉.
(i) If Hk

A(Rn) = 0 then �(M) =
∑

(−1)i
∑

|I|=i �(MI).

(ii) If Hk
A(Rn) �= 0 then �(M) =

∑
(−1)i
∑

|I|=i �(MI) + 1.

This information can be obtained from the intersection lattice.
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Proof. In the first case the Čech complex shows that M =
∑k

i=1 Mi and hence all that needs to be
shown is that the two usages of the symbol MI here and in Proposition 5.3 agree. In other words,
we must show that

Rn

[ ∏
j∈{1,...,k}\I

Hj
−1

]
∩ Rn

[ ∏
j′∈{1,...,k}\I′

Hj′
−1

]
= Rn

[ ∏
j∈{1,...,k}\(I∪I′)

Hj
−1

]
for all index sets I, I ′. This, however, is clear.

If Hk
A(Rn) �= 0, then the Hi form a regular sequence and hence we know that this local cohomol-

ogy module is of length one, a suitable generator being annihilated by all Hi. The formula follows
by considering

∑
|I|=1 MI and 0 →∑|I|=1 MI → M → Hk

A(Rn) → 0.

Remark 5.5. There are substantially more general results by Àlvarez Montaner et al. In fact, Propo-
sitions 5.3 and 5.4 can be modified to apply to the characteristic cycle of Rn[Q−1]. This idea is
discussed in [AGZ03] and then used to express the lengths of the modules Hr

A(Rn) in terms of Betti
numbers obtained from the intersection lattice (even for subspace arrangements).

5.2 Some conjectures
We now close with conjectures on the generators of J(Qs) and annDn(Q−1).

Definition 5.6. For a central arrangement A = {H1, . . . ,Hk} and Q = H1 · · ·Hk we define the
ideals I(Q) and Is(Q) as follows. Let H1, . . . ,Hn be linearly independent. Choose vector fields vi

with constant coefficients such that vi • (Hj) = δi,j for all 1 � i, j � n and write ∇ = (v1, . . . , vn).
Factor Q = Q′Q′′, allowing for Q′′ = Q. Let σ ∈ (Rn)n be a syzygy on {v1(Q′′), . . . , vn(Q′′)},

hence σ · ∇ • (Q′′) =
∑n

i=1 σivi • (Q′′) = 0. Then set PQ′′,σ = σ · ∇ =
∑n

i=1 σivi.
Let

I(Q) =
〈{

PQ′′,σ · Q′ : Q′Q′′ = Q,σ · ∇ • (Q′′) = 0
}〉 ⊆ Dn

and
Is(Q) = 〈{Q′s+1

PQ′′,σQ′−s : Q = Q′Q′′, σ · ∇ • (Q′′) = 0}〉 ⊆ Dn[s].
It is apparent that Is(Q) kills Qs and I(Q) kills 1/Q.

Conjecture 5.7. For any central arrangement Q:

(1) the annihilator annDn(Q−1) is I(Q) + 〈E + k〉;
(2) the annihilator annDn[s](Qs) is Is(Q) + 〈E − ks〉.

There is certainly a considerable amount of redundancy in these generators. Particularly for
generic arrangements much smaller sets can be taken. The importance of the conjecture lies perhaps
more in the fact that all operators shown are order one. We make some remarks about this now.

Torrelli [Tor03] has proved that ann(Q−1) is generated in order one for the union of a generic
arrangement with a hyperbolic arrangement. A divisor div(f) on Cn is called free if the module of
logarithmic derivations der(log f) = {δ ∈ der(Rn) : δ(f) ∈ 〈f〉} is a locally free Rn-module. It is
called Koszul-free if one can choose a basis for the logarithmic derivations such that their top order
parts form a regular sequence in gr(0,1)(Dn). Koszul-freeness is a special case of the more general
Spencer property of a divisor [Cal99]. The complex of logarithmic differentials Ω•(log f) consists
(in the algebraic case) of those differential forms ω ∈ Ω•(Rn[f−1]) for which both fω and fdω are
regular forms on Cn. It is a subcomplex of Ω•(Rn[f−1]) and (algebraic) logarithmic comparison is
said to hold if the inclusion is a quasi-isomorphism.

Let Ĩ log f be the subideal of ann(1/f) generated by the order one operators investigated in
[CU02] and put I log f = Dn · der(log f). Castro and Ucha [CU02, CU01], using results and ideas
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of Caldéron-Moreno [Cal99], proved that if f is Spencer, then Ĩ log f and I log f are holonomically
dual. Moreover, the map from Ω•(log f) to the (holomorphic) solution complex of the (holonomic)
module M log f = Dn/I log f is a quasi-isomorphism.

Hence, if f is Spencer then M̃ log f = Rn[f−1] implies the (holomorphic) Logarithmic Comparison
Theorem, while if one knows that M̃ log f is regular holonomic then (holomorphic) LCT implies
M̃ log f = Rn[f−1]. In his paper [Tor03], Torrelli conjectures that if f is reduced (but not necessarily
Koszul-free) then (holomorphic) logarithmic comparison holds for f if and only if ann(1/f) = Ĩ log f .

Terao conjectured in [Ter78] that (algebraic) logarithmic comparison holds for any central
arrangement (and more) and there is a proof in the analytic case for free quasi-homogeneous divisors
in [CNM96]. This can, via Torrelli’s conjecture, be seen as counterpart to our conjecture. Wiens
and Yuzvinsky have proved Terao’s conjecture for arrangements in C�4 and all tame arrangements
in [WY97].
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