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Abstract

As a natural generalisation of g-Schur algebras associated with the Hecke algebra H,.g (of the symmetric
group), we introduce the queer g-Schur superalgebra associated with the Hecke—Clifford superalgebra
"Hr‘fR, which, by definition, is the endomorphism algebra of the induced WﬁR—module from certain g-
permutation modules over H,.z. We will describe certain integral bases for these superalgebras in terms
of matrices and will establish the base-change property for them. We will also identify the queer g-Schur
superalgebras with the quantum queer Schur superalgebras investigated in the context of quantum queer
supergroups and provide a constructible classification of their simple polynomial representations over a
certain extension of the field C(v) of complex rational functions.
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1. Introduction

In the determination of the polynomial representations of the complex general linear
group GL,(C), Issai Schur introduced certain finite-dimensional algebras to describe
the homogeneous components of these representations and to set up a correspondence
between the representations of GL,(C) of a fixed homogeneous degree r and the
representations of the symmetric group S, on r letters. This correspondence forms
part of the well-known Schur—Weyl duality. Green publicised this algebraic approach
in his 1980 monograph [18] and presented the theory ‘in some ways very much
in keeping with the present-day ideas on representations of algebraic groups’. In
particular, he used the term Schur algebras for these finite-dimensional algebras and
provided some standard combinatorial treatment for the structure and representations
of Schur algebras.

Since the introduction of quantum groups in the mid 1980s, the family of Schur
algebras has been enlarged to include g-Schur algebras, affine g-Schur algebras and
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their various superanalogs. See, for example, [5, 6, 8, 13] and the references therein.
Thus, the treatment in [18] has also been ‘quantised’ in various forms which provide
applications to both structure and representations of the associated quantum linear
groups, finite general linear groups, general linear p-adic groups, general linear
supergroups and so on. In this paper, we will further generalise Green’s standard
treatment to a new class of Schur superalgebras, the queer g-Schur superalgebra.

Originally arising from the -classification of complex simple (associative)
superalgebras, there are two types of g-Schur superalgebras. The ‘type M’ g-Schur
superalgebra links representations of quantum linear supergroups with those of Hecke
algebras of type A, while the ‘type Q' g-Schur superalgebra, or simply the queer
g-Schur superalgebra, links the quantum queer supergroup with the Hecke—Clifford
superalgebra. It is known that the former has various structures shared with the g-
Schur algebra; see [10, 13, 15, 23], while the latter has been introduced in [14, 25]
in the context of Schur—Weyl-Sergeev duality and investigated in [14] in terms of a
Drinfeld-Jimbo-type presentation (cf. [15]).

In this paper, we will explore the algebraic properties of the queer g-Schur
superalgebra. Thus, like the g-Schur algebra, we first introduce a queer g-Schur
superalgebra as the endomorphism algebra of a direct sum of certain ‘g-permutation
supermodules’ for the Hecke—Clifford superalgebra. We then construct its standard
basis arising from analysing double cosets in the symmetric group. In particular, we
use matrices to label the basis elements. In this way, we establish the base-change
property for the queer g-Schur superalgebra. We then identify them in the generic case
with the quotients of the quantum queer supergroups and classify their irreducible
representations in this case.

Here is the layout of the paper. In Section 2, we review the definition of the Hecke—
Clifford superalgebra H7, over a commutative ring R and its standard basis. We
then introduce certain (induced) g-permutation supermodules and define the queer g-
Schur superalgebra Q,(n, r; R). In Section 3, we study the properties of g-permutation
supermodules and investigate some new bases. In Section 4, we introduce some
special elements in the Clifford superalgebras, which is the key to a basis for the
endomorphism algebra of the induced g-trivial representation. An integral basis and
the base-change property for the queer g-Schur superalgebra are given in Section 5.
We then identify the queer g-Schur superalgebras as quotients of the quantum queer
supergroup in Section 6. Using the identification together with a work by Jones and
Nazarov [20], a complete set of irreducible polynomial (super)representations of the
quantum queer supergroup is constructed in the last section.

Throughout the paper, let Z, = {0, 1}. We will use a twofold meaning for Z,. We
will regard Z, as an abelian group when we use it to describe a superspace. However,
for a matrix or an n-tuple with entries in Z,, we will regard it as a subset of Z.

Let A =Z[q] and let R be a commutative ring which is also an A-module by
mapping ¢ to ¢ € R. We assume that the characteristic of R is not equal to 2. If Q
denotes an A-algebra or an A-module, then Qr = Q ® 4 R denotes the object obtained
by base change to R. From Section 6 onwards, we will use the ring Z = Z[v,v™'] of

Laurent polynomials in indeterminate v, where g = v>.
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2. Hecke-Clifford superalgebras and queer g-Schur superalgebras

We first introduce an endomorphism algebra of an induced module from certain
‘g-permutation modules’ over the Hecke—Clifford superalgebra. We will prove in
Section 6 that it is isomorphic to the quantum queer Schur superalgebra defined
in [14] by studying the tensor space of the natural representation of the quantum queer
supergroup U, (ay,).

Let R be a commutative ring of characteristic not equal to 2 and let g € R. Let C,
denote the Clifford superalgebra over R generated by odd elements cy, .. ., ¢, subject
to the relations

01‘2:_1’ CiCjZ—CjCl‘, ISl#:]SV (21)

The Hecke—Clifford superalgebra H °R is the associative superalgebra over the ring R
with the even generators 771, ..., 7,-; and the odd generators c, . .., ¢, subject to (2.1)
and the following additional relations: for 1 <i,i’ <r—-1land1 < j <rwith|i—i[>1
and j#i,i+1,

Ti—q)Ti+1)=0, T;Ty=TyT;, TTinT;=TiTTis1,

2.2
Tici=c;Ti, Tici=cinTi, Ticiy1 =¢iTi — (g — 1)(c; = cir1). 2.2

Note that if ¢ is invertible then T Iexists and the last relation is obtained by taking the
inverses of the last second relation.

For notational simplicity, if R = A := Z[q], the integral polynomial ring in g, then
we write HY = HF .

Let S, be the symmetric group on {1,2,...,r} which is generated by the simple
transpositions s = (k,k + 1) for 1 <k <r — 1. The subalgebra H,  of H, generated
by Ty,...,T,— is the (Iwahori—)Hecke algebra associated with S,.

Remark. Jones and Nazarov [20] introduced the notion of an affine Hecke—Clifford
superalgebra which is generated by T,...,T,-1,¢1,...,¢r, X1,...,X, subject to the
relations (2.1), (2.2) and certain additional explicit relations which are not mentioned
here. It is known from [20, Proposition 3.5] (see also [2, Remark 4.2]) that 7—(°
can naturally be viewed as a quotient superalgebra of the affine Hecke—Chfford
superalgebra by the two-sided ideal generated by Xj.

We also note that the generator 7; used in [2] is equal to V71T here, where v? = q
for some v € R. Moreover, we choose c? = —11in (2.1), following [22, 25, 26], whereas

in [22, 25, 26] the authors take C? = 1. Thus, assuming that V-1 € R, we have
= V—lCi.

Like the Hecke algebra H, g, the symmetry of ﬂER can be seen from the following
(anti-)automorphisms of order 2.

Lemma 2.1. The R-algebra ‘HER admits the following algebra involutions ¢,y and anti-
involutions T, defined by:

D o:Tim-Ti+(@-1), cjPcr1-j;
2) ¢ :Ti—cTiciv1, cjcyy
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B) :Tim-Ti+(g-1), cjcj
4 :Ti=>Ti—(g-Dcicivr, cjc;

foralll1<i,j<randi#r.

Proor. Note that the correspondence T; — —T; + (g — 1) in (3), denoted by ( )* in [8],
defines an automorphism of the subalgebra H, . So (3) follows easily. (If ¢! € R,
then (3) is seen easily by the fact that —T; + (¢ — 1) = —¢T;'.) By directly checking
the relations (2.1) and (2.2), there is an anti-involution

Y:Tir—>T, i ¢jro Cr1j.

Thus, compositing y and 7 gives (1).

Let 7; = ¢;T;cis1. Then T, ¢ ; generate ?(ER and satisfy all the relations (2.1) and
(2.2) above with T; replaced by 7;. Hence, ¢ in (2) is an automorphism of order 2.
Finally, the map ¢ in (4) is the map ¢ followed by the map 7 defined relative to the
generators T:,c » since, by the last relation in (2.2),

T =T; - (g — Deiciv1 = —ciTiciv1 + (g = 1).
(Of course, by noting Remark 1, assertion (4) follows also from [2, (2.31)].) O

LetT,, =T;and T, = T, ---Ts ,wherew =s; ---5; €S, is a reduced expression.
Let < be the Bruhat order of S,, that is, 7 < w if 7 is a subexpression of some
reduced expression for w. For & = (ay,...,a,) € Z), set ¢® = ¢{" --- ¢}". Observe that
the symmetric group S, acts naturally on C, by permutating the generators cy, ..., c;.
We shall denote this action by z +— w -z for z € C,,w € S,. Then

(073 — +Caf-w’l

w-c=c) T Cny = E )

w(l)

where @ - w = (), - . -, (), fOor @ € Z), w € S, is the place permutation action.
Moreover, by (2.2),

(473 Oé/m (473 d/m _ (7 S BN /SN 78 |
¢ ot Ts, = Ty ¢ o6, + (g — D(c, Co1 S - 2.3)

Thus, by induction on the length £(w) of w, one proves the following formula: for any
a€Zyandwe S,

Ty =Tyw™ )+ Y dTE = 4T+ Y a4

n<w,BEZ; T<w,BEL)

for some a ) ¥ € R. Then, by the results [20, Proposition 2.1] and [2, Theorem 3.6] over
fields, it is easy to deduce that the following holds.

LemMmaA 2.2. The superalgebra 7—(°R is a free R-module. Moreover, both the sets % =
{Twc" |we S, aeZ}and {c®T, |we S,,a € Z} form basesfor?—(c
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Proor. By (2.4), it suffices to prove that 28 forms a basis. First, the set spans H' °R by
(2.4). Suppose next that R = A. By base change to the fraction field of A and [2,
Theorem 3.6], we see that £ is linearly independent and, hence, forms an A-
basis for H°. For a general R, specialisation to R by sending ¢ to g gives a basis
{Twe*®1|we S, aeZ) for HF ®x R. Now the presentation of 7{°R gives an R-
algebra epimorphism f : H, — H ®4 R, sending T;,c;to T; ® 1,¢; ® 1, respectively,
and sending % to a basis. ThlS forces that A itself must be a basis (and that f is an
isomorphism). O

CoroLLARY 2.3. Let R be a commutative ring which is an A-module via the map
A—->R, g q.

(1) There is an algebra isomorphism HS, = H; @7 R.
(2) As a module over the subalgebra 7—(,R, HEC RS H, r-free with basis {c* | a € Z}}.

An [-tuple (4, ..., 4;) of nonnegative integers A; € N is called a composition of r
if Zle A; = r. For a composition 4 = (4;,...,4;) of r, denote by S, = Sy, X --- X G,
the standard Young subgroup of &, and let D, be the set of minimal length right
coset representatives of S, in S,. Let H, z and ‘H/‘{’R be the associated subalgebras
of H, g and HFC’R, respectively. Then clearly 7{5, z = Hir ® C, as R-supermodules and
moreover we have algebra isomorphisms

7‘(,1,13 = WA],R ®:---® WA,,R, 7{/(13R = /Cl:],R ®---® W;;,R' (2.5)

We remind the reader that, for two superalgebras S and 7~ over R, the (super)tensor
product S ® 7 is naturally a superalgebra, with multiplication defined by

(s’ &)= (1) (ss)® (1) foralls,s' €S,t,f €T,

where f, s’ are homogeneous. Here we used the notation @ = 0 if a is even and @ = 1
otherwise for a homogeneous element a in a superspace.
Denote by A(n, r) € N" the set of compositions of r with n parts. Given A € A(n, r),

set
x) = Z Ty, Ya= Z(—q")“w)TW, (2.6)

wes, wes)
where £(w) is the length of w. As a superanalog of the g-Schur algebra (cf. [8,

Section 2.9]) or a quantum analog of the Schur superalgebra of type Q (cf. [2]), we
introduce the queer q-Schur superalgebra

Q.73 R) = Endye ( €D xitH). 27
" e
In particular, we write
Qu(n,r):=Qy(n,r; A) and Qy(n,r) :=Qyn,r; 2), (2.8)

where ¢ = v2.
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Note that @ AeAGr) X, H.g is a direct sum of g-permutation modules, which
is known as the tensor space used in defining g-Schur algebras. Since x,H, =
XiHrg @, Hep as HPp-supermodules, which will be called a g-permutation
supermodule, it is clear we have an 7—(2R—module isomorphism

@ x/l?{ER = ( @ XAW,,R) ®7"(:-,R W}SR’ (29)

AeA(n,r) AeN(n,r)

which is an induced H?,-module from the tensor space. We will see in Section 6 that
this module itself can be regarded as a tensor product of a free R-supermodule.

Given a right HC,-supermodule M, we can twist the action with ¢ given in
Lemma 2.1 to get a new WER—supermodule M¢¥. Thus, as an R-module M¥ = M, the
new H?-action is defined by

m-h=mp(h) forallheHp,me M.

Clearly, H,  is stable under the involution ¢. If M is a H, g-module, we can define M¥
similarly. It is known that

(XaHg)? = yaeHrg = yaHrr

(see [8, (2.1)] or [6, Lemma 7.39]), where A° = (4}, 4;_1,..., A1) if A =(44,...,4).
This implies that (x;H° TR = yﬂ—lc due to the facts that xﬂ-(CR = x;H,r ®Hm 7-(°
and Y, H7p = yiHrg @1, Hip- Hence, we obtain a superanalog of [8, Theorem 2. 24(1)
and (ii)]

Q,(n,r;R) = Endng( @ yAWER).

AeA(n,r)

Remark. We may also use the anti-involution 7 in Lemma 2.1(3) to turn a left H7,
supermodule to a right H? ,-supermodule or vice versa. More precisely, if M is a ﬁmte—
dimensional left H -supermodule then we define a right H p-supermodule M" by
setting M = M as an R-module and making an 7{ Cp-action through T

m-h=1(hym, VheH,meM.
In particular, if M = 7{r° 2V, then
(Hgy)" = 1(Hpya) = TO)H R = xaHo, (2.10)
by [8, (2.1)] again.

3. g-Permutation supermodules for 7{° R

T,

The g-permutation supermodules x;H CR share certain nice properties with g-
permutation modules x, 7,  of the Hecke algebra H, g, as we will see below.

Recall, for a composition A of r, that D, is the set of minimal length right coset
representatives of S, in S,.
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Lemma 3.1. Let A be a composition of r. Then:
(1) the right H} p-supermodule x,Hy, (respectively, yaH? ) is R-free with basis
{(XaTac® |d e Dy, a € Z)}  (respectively, {yTqc” | d € Dy, a € Z}});

(2) xHip={he Hp | T h=qh Vs € Syl
() wH=the 7-(°R | Tskh =—h, Vs, € S,

Similar statements hold for the left Hy ,-supermodules H pxa and H py,.

Proor. Part (1) is clear. We now prove part (2). Since T, x; = gx, for all s, € S,, we
obtain xﬂfﬁR Cthe ﬂf’R | Ty h=qgh,¥s; € S} =:&E.
Conversely, given h = Zweghagzg hyoTywc® € & with hy,, € R, write

ho= > huaTuc” = 3 huaTo e
wes, wes,

Then h, € H,gc® and h can be written as h = Zaezg hq. Assume that T h = gh for all
s € S,. Then

D (Tyho = gha) =0

a€Zy
for s, € S,. Observe that Tyh, — gh, € H.gc® for each a € Z). Then, by
Corollary 2.3(2), one may deduce that T h, = gh, for all s, € S, and « € Z}. This
implies that T, (X e, hw.aTw) = (X yee, hw.aTyw) for all s, € S, since ¢ is invertible.
Then, using the classical result for H,. g, we obtain 3 ,,cc .07\ € XaH, . This means
that h, € x;H7, for @ € Z),. Therefore, part (2) is proved. The proof of part (3) is

similar.
Applying the anti-involution 7 in Lemma 2.1(3) to (1)—(3) gives the last
assertion. O

Lemma 3.2. The following isomorphism of R-modules holds for any composition A,

of r:

Homyye, (x, Hpg, xaHop) = XaHip 0 HE g,
Proor. The proof is standard with the required isomorphism given by the map
Homge, (x, Hegs aHeR) — H e N H gy, f— f(x). m]

We will prove that the R-modules x,H;, N H ¥ are free for the special case
A=p=(r) in Section 4 and for the general case in Section 5. We need some
preparation. In the following, we will display a new basis for 7—(2R and xﬂ-(;f . We
start with recalling several facts for Hecke algebras H, z.

Given two compositions A, of r, let Dy, = D N D', where D' = {d™' | d € Dy}
is the set of minimal length left coset representatives of &, in &,.

Lemma 3.3 ([3], [7, Lemma 1.6]). Suppose that A, u are compositions of r.

(1)  The set D, is a system of S,—S,, double coset representatives in G,.
(2) The element d € D, is the unique element of minimal length in S,dS,,.
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(3) Ifd € D,y, there exists a composition v(d) of r such that S, = d'S,dn S
(4) Each element w € S,dS, can be written uniquely as w = udo with u € S, and
o € Dyay N S,.. Moreover, £(w) = £(u) + £(d) + £(0).

Suppose that A, u are compositions of r. Observe that D, , = D, N D;l = Z);L is

a system of S,-&, double coset representatives in S, and hence ch:?,la"1 NG, is a
standard Young subgroup of S, for each d € D,, by Lemma 3.3(3). Thus, v(d™!) is
well defined via S,;-1, = dS,d™' N &, and moreover S,(4-1, = dS,yd .

CoroLLary 3.4. Suppose that A,y are compositions of r and d € D, .

(1) For each u € S,, the element ud can be written uniquely as ud = u'dt with u’ €

Z);(ij,l) N S, and T € S,(y). Moreover, {(ud) = {(u) + {(d) = €(u’') + {(d) + £(7).

(2) The coset S d ={u'dr|u € Z);(ld_l) NGy, 7e Syl

(3) Each element w € ©,dS,, can be written uniquely as w = u'dn with u’ € Z);(ld,l) N
Syandn € S,

(4) Ford\,d, € D,y and u; € D;(ii;‘) NG u € D;(ldgl) N Sy, if uy # up or di # do,
then u;d, 6# N uzdgeﬂ =0.

CoroLLary 3.5. Suppose that A,y are compositions of r and d € D, . Then

x,le = ( Z Tuf)Td Xv(d)-

u’GD’t] neG,
vd=')
It is known that H,.r has the basis {T), | w € &,} satisfying the following:

T, T, = {TWS‘. if £(ws;) = €(w) + 1,

(g = DTy +qTs, i COvs;) = (W) — 1. -1

Recall that < is the Bruhat order of &,. Then by (3.1) one can deduce that, for any
vy, w € S,, there is an element y * w € S, such that £(y = w) < £(y) + £{(w) and

T,Tw= Y fT. (3.2)

ZSyEw
for some £ € R with £,y # 0 (see, for example, [6, Proposition 4.30]).

Lemma 3.6. Suppose that A, u € A(n,r). Letu € Sy,d € Dy, and w € S, Then

T,T,T, = Z f;‘d’WTy Sfor some f;‘d’w €R.

y<udw

In particular, £(y) < €(u) + £(d) + €(w) whenever fyud,w £0.

Proor. Clearly, from Lemma 3.3(3) and (3.3), we have T,,T; = T,,4. Then the lemma
follows from (3.2). O
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Lemma 3.7. For any given A,u € A(n,r), the set
B ={T,Tyc"T, |uecS,de D/LH’O- € Dv(d) N SH,af € Z;}
forms an R-basis for H,.

Proor. Let M be the R-submodule of 7, spanned by the set %’ Take an arbitrary
w € S, and @ € Z]. We now prove that every T,,c* € M by induction on £(w). Clearly,
if £(w) =0, then T,, = 1 and ¢®* € M. Assume now that £(w) > 1. By Lemma 3.3(1)
and (4), there exist unique d € D, , and u € S,,0 € D, N S, such that w = udo and
{(w) = €(u) + £(d) + £(o). Then by (3.1) we obtain T\, = T,,T4T,,. Hence, by (2.4) and
Lemma 3.6,

T, = T,Ty(Tyc%) = w_LTqu(c‘“’_chr - Z ag"g"’” ,,cﬂ)

"
n<o,BEZ]

= T, Ty T, F Z a5 T T T Trc?
n<0,BEZ]
o1 — ao o ud,m
= 2T, 0™ T, % Y ay? " Y ful T, (3.3)
n<0PBEZ] w <udxmBEL)
where u’ satisfies €(u’) < €(u) + €(d) + €(r). Since 7 < o, we have £(u’) < €(u) + £(d) +
{(rr) < €(u) + £(d) + £(o) = £(w). Then, by induction on £(w), each term T,,c® on the
right-hand side of (3.3) belongs to M and so does T\,c* by (3.3). Hence, M = H¢, or,

equivalently, 7, is spanned by the set %’ by Lemma 2.2. Finally, |%| = | %] forces
that the set is linearly independent. O

For A, € A(n,r), let X3 = (Ugep,, {d} X (Dya) N Sp))) X Z5.

CoroLLarY 3.8. For given A,y € A(n, r), we may decompose HCy into a direct sum of
left H gr-modules or right 7{}3 r-modules:

(]’{SR = @ ?{A’RTdCQTO— = @ @ Tqu?{IiR.

(d.o,@)eXy, deDy, ueD;(fr])ﬁG/{
In particular, the set
{02 Tac Ty | (d, 0, @) € X}
. —1 ~
(respectively, {T,Tyc"x, |d € D, u € Dv(d‘l) NSy, a € Zy})

forms a basis for x;H’, (respectively, HCx,).

Proor. Clearly, H, gT4c*T, is spanned by {T,,T4c*T,, | u € S,}. Since

(T Tac"To lue Sy (d o) e Xad = | ] AT Tuc" Ty lue Sy
(do,@)eXy,

is a disjoint union, the assertion follows from Lemma 3.7 and Corollary 3.4. O
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4. The elements c; ;
Forr>1land1<i<j<r, weset

- i ) .
Coij=q i+ @™ e+t qei ey =it qei o+ g e (A1)

L . _ ;o
For simplicity, we write ¢, = ¢4,1,, and ¢, = Calr

Lemma 4.1. Let r 2 1. The following holds in H -
’ ’
X()Cqr = Cq Xy aAnd Y Cy,r = Cqr¥(r)-

Proor. We only prove the first formula. The proof of the second one is similar. We
apply induction on r. It is known that

xpn =xe-nA+ Ty + T, Tr o+ +Tpy -+ Th) 4.2)

since {1, Sy—1, Sp—1Sr-2, ..., Sp—1 -+~ 5281} = D—1.1). Using (2.2), a direct calculation
showsforl <k<r—-land1<I<r,

cT,—1---Ty ifl<l<k-1,
Toy - Teci =3¢ Ty - Tk if =k,
cl—lTr—l"'Tk_(q_ 1)T1_2"'Tk(ck—Cr)T_l-"Tl ifk+1 SIS}",

where we use the convention 7,_; ---T; = 1 if [ = r and the formula in the last case is
due to the following computation:

Troy--Teer=Try T~ (-1 Ty — (g — D(ei-r —¢)) - Tia -+ T
1Ty TiT 1 Tip -+ T = (g = )Ty -+ T))

(cror=cp) (T2 Ti)
1Ty Te = (g — D(crmy —¢p) - (Tpy - T1) - (Ty2 -+ T)
1Ty Te = (g — D(crmr —¢r) - (Ti—p - Ty) - (Ty—y - - T))
1Ty Te=(q—D(T12- -+ - Ti) - ek = ¢) - (Tror -+ - T1).

This implies that the following holds for 1 <k<r—-1land 1 </<r:

X-1yTr-1 -+~ Tiey

X1y Tr—1 -+ T ifl<i<k-1,

= )C(r_l)chr_l e Tk lfl = k,
X-yCr-1Tro1 -+ T = ¢ g = Dxgoy(ek =)oy -+ Ty ifk+1<1<r,
where the formula in the last case is due to the fact that x,_Tj—2 - T¢ = ql‘k‘lx(,_l).
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Hence,
—k+1 -k
X0y Tro1 - Ticqr = X0y Tr1 -+ Tilg" ™ cqh-1 + §" " Ch + Cqpr1r)

—k+1 —k
= x¢-1(q@ " cqir-1+q T+ cgpr )T 1 T

-
- Z ¢ 7'q™ g~ Dxpi(ck — )Ty -+ T
I=k+1
(noting that T, ---Tl =1ifl=r)

= X(— 1)(q egint + ¢ er + copr)Tror -+ Ti

- Z (@ - Dg ™ xpony(cx — )Ty T = (g = D™ xo1y(cx = ¢).
I=k+1
This together with (4.2) gives rise to

X(nCqr = (X(r n+ Z X(r— 1)T — -T )qu

r—1
ket —k
= X-1)Cqr + Z X-1)(@ " eqrir + 4 e + Cqpr- )T - T
k=1
-1
k-1
(q—Dq ™ 'xp_1y(ce — e)Tyor -+ T

15k+1

‘

r—

~
—_ =

- > (gD xp_y(er =) (4.3)
=1
Combining the first term and the last sum in (4.3) yields

r—1

X(r-1)Cqr = Z Xe-1(q = Dg" ™ ew =)
k=1

r r—1 r—1
_ x(r_l)(z 7 e - Z(qr—k — ¢ Ve + Z(qr—k _ qr—k—l)cr)
=1 =1 =1

=Xo-(@ Pe1 + ¢ P+ o+ 47 e) = xpon(Cprm1 + 47 ).
Also, the second (double) sum in (4.3) can be rewritten as
=1 1-1

Yoo IZ;(;((J A CE) Y

= X(r-1) Z((CIHIH — ¢ Degri-1 =@ = ¢ Ne)Troy -+ T

=~

Hence, substituting into (4.3) yields
r—1

X Cqr = -x(rfl)(cq,l,rfl + qr_lcr)(l + Troy-- Tk) 4.4)
k=1
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Here the following calculation has been used for2 <k <r - 1:
T i 4 e+ cqrr1) = (@ = ¢ egiier = (@ =4 ey

r—k r—1 _r r—1 r—1
=q Cgli-1 + Cqk,r—1 +q ¢ = Cyq1,r-1 +q ¢ = Cqr-1 +q ¢

(g

which is also the first (k = 1) term of the first sum in (4.3). By induction on r,
X(r=1)Cq,1r-1 = Cg oy X(r-1)
and, hence, one can deduce that
Xo-1y(€q1 -1 +q ) = (G g e)xpony = CorX(r—1)-
Thus, by (4.4) and (4.2),
X(1)Cqr = C;Jx(r_l)(l +T, 4+ +T_1---T) = c:”x(,).
This proves the lemma. o

ProposiTion 4.2. For r 2 1, the intersection xH?, N HCpx( is a free R-module with
basis {x(), X(rCq,r}. A similar result holds with x replaced by y(,) and cq, by cy ,.

Proor. By Lemma 4.1, the set {x(;), x(;cg,} is contained in the intersection x()HC, N
H{ X and clearly it is linearly independent. It remains to show that x¢yH?, N HEpx(r)
is spanned by {x(,), xcq.-}. Take an arbitrary z € xyHSp N HE x(). Since z € x()HCp,
by Lemma 3.1(1), we can write z as 7 = Zaez; Jaxgc?®, with f, € R. Moreover, since
7€ H; Xy, by Lemma 3.1(2), 2T, =gz, Y1<k<r-1.

Fora = (ay,...,a,)and 1 <k <r—1,by (2.2) and (2.3),

C(;stk = Tskcl;j for j# k,k+1,

X+ 1 — (7381 (473 — Xk (475 473
Cont T = T ¢/ Ty, = Ty +(g = D' = ¢,
Xk Qk+1 _ Xk Qg+ _ At Qe Xk Qkr)
et T = Ty 6 + (g = Diey C1Ce )

Then, by the fact that x,y T, = gx¢y for 1 <k <r-1,

Xnc Ty, = X Ty €)' - Gl e 6 6l -6
g = D e T = B
=] G el
P = DR G
This together with zT'5, = gz implies that
q Z fax(r)ca = ZTSk = Z f{tx(r)CC]y] T Cgf]l CZLCZHICZEZZ T c(rlr
€] €]
£ 3@ D] g
a€Z)
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for all 1 <k <r— 1. Then by using Lemma 3.1(1) and by equating the coefficients of
x»c® on both sides for each @ € Z,

Afiar a1 00020 = fiar i 000,
+ (q - 1)(ﬁal,...,ak_1,l,l,ak+2 ..... {lr) + ﬁdl,...,ﬁk_l,o,o,dk+2 ..... (lr))’

G ti11.0.0k52,mr) = S@r i 1.0.0 002 0)

where the relation (2.1) is used in the first and last equalities. Hence, since the
characteristic of R is not equal to 2, (4.5) implies that
ﬁal’-~-sak—lvl’0’wk+l ,,,,, @) = CIf(!l],mﬂk-l,0,1,0k+1,~~,(¥z~)’ ﬁal,-.-ﬂk—l,l,lﬂkn ,,,,, a) = 0 (4.6)

for all @; € Z, and 1 < k < r — 1. Then one can deduce that

Jfo = q* fo forl<k<r,
fa=0 forae € Z)\0and a # ,1 <k <,

where ¢ = (0,...,0,1,0,...,0) with 1 in the kth position. This means that

Hence, z lies in the R-module spanned by {x(,, x;5c,} and the proposition is
verified. ]

Given A = (Ay,...,Ay) € AN, r) andanlz\' with N> 1and a; < Ay for1 <k <N,
welet Ay = A; +--- + A for 1 <k < N and introduce the following elements in C,:

C;ly = (cq,l,}] )al (Cq,ﬁl +1,Zz )02 o (Cq,iN,l +1»IN )QN’

a/: / ~l]| /~ ~(12‘.. /~ _ ozN‘
(CA) (cq,l,/l]) (Cq,ﬂl‘i-l,/lz) (Cq,/lN_1+1,/lN)

4.7

For notational simplicity, we define for A, u € NV
A<u & A;<pyjforalli=1,2,...,N.

CoroLLARY 4.3. Suppose that A = (14, ...,Ay) € AN, r). Then xﬂ-(iR N (ch’Rxl isa
free R-module with basis {xac§ = (¢}) xa|a € 7N, < A). A similar result holds for
the y, version.

Proor. Clearly, by Lemma 4.1 and (2.1), we have x;c{ = (c{)'x, for @ € ZZQV and
the set is linearly independent. We now modify the proof of Proposition 4.2 to
prove the assertion. Without loss of generality, we may assume that all 4; # 0.
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For z = Yoez foxac® € uH] p N HJ px,, (4.6) continues to hold for all k such that

/l, 1+1<k< /l for all i (assummg that 1y = 0). Then we first observe that if there
exist /l, 1+1<k<l</l for some 1 <i < N such that ¢y = a; =1, then f, =0.
Now it remains to consider those f, for @ = 0 or for @ € Z) havmg the form a =
€, T+ €&, t -t &, for some 1<t<N, where there exist 1 <i; < <--<ii<N such
thatzi,_l +1<k < /l,,, /l,z 1+ 1<k < /l,z,... /l,t 1+ 1<k < /ll, In the latter case,
by (4.6), one can deduce that

A=k A, —k A, —k
f(l =q " lq ERE q " tff]l_ +e}i +-..+E;i .
1 2 1

Hence,
N
= fOX,l + E g fe;l_l +e;l_2+...+s;’_r X/lcq’;{-"l’l-'—l’jil qu’_rlﬂjiz cee Cq’;l_ﬁlﬂjil,
t=1 1<ij<--<i;<N

proving the spanning condition. O

Remark. (1) By (2.5), 7-{/‘13,1? = ﬂjl R® ® ?{EN’R, where the isomorphism maps x, to
X, ® -+ ® x4, Hence, as free R-modules,

X H g = Xy HY g @ - @ X HY g Higka = HY g ® - @ HY rXiay)-
The corollary above implies the following isomorphism of free R-modules:
X HY g O HE pxa = (apHE g VHE, gX) @ -+ ® (X H, g O HT, g¥)-

(2) The elements c,; ; have also been introduced in [24, Lemma 6.7]. They play an
important role in (5.4) below for the construction of an integral basis. However, such
a role was not mentioned in [24]. Instead, they play a key role in the classification
of simple modules via the superalgebra I'j (which is actually isomorphic to the
endomorphism superalgebra Endge (xaH7 ) = xaH;, N Hpxa by Corollary 4.3)
defined in [24, Definition 6.8] (see [24 Theorems 6.14 and 6.32)).

5. Integral bases and the base-change property

We are now ready to prove, by constructing a basis, that the module x/ﬂ{r‘fR N ?{ERxﬂ
occurring in Lemma 3.2 is R-free. This will provide an integral R-basis for Q,(n, r; R).
Let M,,(N) be the set of n X n matrices M = (m;;) and let

M,(N), = {M € M,(N) ' Z m;; = r}.

Given M € M,(N), define

ro(M) = (Z mij, .. .,Zm,,j), co(M) = (Z mji, .. .,ij,,).
J J J J
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Then ro(M),co(M) € A(n,r) for any M € M,,(N),. Given a composition A € A(n, r) and
1 < k < n, define the subsets Rg c{l,...,r} as follows:

Rl={i + L +2,. i + 4 (=0,4=2 +--+ 4,1 <i<n).

It is well known that double cosets of the symmetric group can be described in terms
of matrices as follows. There is a bijection

J: Mn(N)r — Sn(r) = {(/19 d’ﬂ) | /luu € A(I’l, r)9d € 1)/1,/[}

5.D)
M +— (ro(M), dy;, co(M)),

co) =
J

n with M = (m;;). Moreover, the composition v(dy,) (respectively v(d;j)), defined in
Lemma 3.3(3), is obtained by reading the entries in M along columns (respectively
rows), that is,

where dy € D, is the permutation satisfying |er.°(M) Ndy(R myjfor1 <i,j<

v(dM) = (mlls--~smnl’m12$"'9mn2"'"mln""$mnn)$

V(d;/ll) = (m119 e MY, MY oo s My o s My, e ,mnn)-

For the subset Z, = {0, 1} of N, let M,,(Z,) be the set of n X n matrices B = (b;;) with
b,’j € 7Z,. Set

(5.2)

M, (N|Z>) :={(AIB) | A € M,(N), B € M,,(Z,)},
M,(N|Z2), :={(A|B) € M;,(N|Z2) | A + B € M,,(N),}.

Given (A|B) € M,,(N|Z,), with A = (a,'j),B = (bij)a let m;j = a;j + b,’j for 1 <i,j<n
and then we have A + B = (m;;) € M,(N),. Hence, by (5.1), we have the permutation
da+p € D,y with A =r10o(A + B), u = co(A + B) and, moreover,

vap = V(da+p) = (M1t .. My, My, .o Wy, o My, .. Py,

Letag = (bi1,...,bu1s.. .. b1ny ..., bpy) € Zgz. Then by (4.7) we are ready to introduce
the following elements:

CAB = C‘:jg € Cr, (53)
TA\B = x,leA+BcA|B Z To-. (54)

O-GDVA\BOSF
Given A, € A(n,r)and d € D, ,,, let
M, (N, = {A € M,(N) | ro(A) = A, co(A) = ),
M, (N|Z3),y = {(AIB) € M,(N|Z5) | ro(A + B) = A, co(A + B) = p},
M,(N|Z,){,, := {(AIB) € My(N|Zo)ay | dpss = d}.

Note that, by sending A to (A|0), we may regard M, (N), , as a subset of M,,(N|Z,),,,.
Note also that

M,NIZo)au = ) MyNIZo)],, (5.5)
dED/LM
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Lemma 5.1. For A, pu € A(n, 1), the set {Tup | (AlB) € M,(N|Z3),,} is a linearly
independent subset of x,H7p N H px,.

Proor. We first prove that Typ € xﬂ{zR N ?{rfoﬂ for each (A|B) € M,(N|Z),,.
Clearly, T4z € xﬂ-{f:R by (5.4). Let d = da,p. Then, by (5.2),

V(d) = (mlla ey My, M2y e oo s My o oo, My, ... 7mm'l)’
where A + B = (m;;). Hence, by Corollary 4.3 and (5.3), x,@aycap = cngxV(d), where
C;x| 5= (cf,'jB)’. On the other hand, the partition

6ﬂ = U 6v(d)0— (56)

(TEDV(J) al ‘S/_,

implies that X, = Xy@) Zpep,,ne, T Hence, by (5.4) and Corollary 3.5, one can
deduce that

Tap = Z Ty Tyxya)caB Z T,

re)-1 < S
wep'! NS, T€D)NEy
— § Y § _ E ’
= Tur Tch|va(d) TO- = Tu’ TdC(AlB)x#,
reqy-1 S €Dya)NG reD! S
u EDV(d—l)ﬁW TeDya) Vo, u ei)y(d_l)m )

proving that a5 € H px,,.
We now prove that the set is linearly independent. Suppose that

Z JaBTap = 0.

(AIB)eM,,(N|Z2)1,u

By the new basis %’ on Lemma 3.7 and (5.5), we have, for every d € Dy

Z JasTap = 0. (5.7)

(AIB)EM, (NIZ2)!,,

Let wg be the longest element in the Young subgroup S,. By (5.6) and the fact that
t(wo) = {(w) + L(o) for w € S,y and o € Dy N S, there exists a unique longest
element oy in D, N S, such that wg = w(v)( 270 Suppose that (A|B) € Mn(lez)iﬂ.
Then, by (2.6), Lemma 3.6, and (2.4),

Tap = T\oTacapT s, + Z T, TycapT s
ue@,,0eD,, NS,
u<w or o<og
= T\wTacapT s, + laps
where 45 is an R-linear combination of the elements T, cs 3T, With u € Gy, 0 €
Dyay N S, and L(udo) < {’(wng'O) = f(wg) + {(d) + €(0p). This together with (5.7)

gives rise to

Z JasT\0acaBT o, + Z Japlap = 0.

(AIB)eM,(NIZ2)], (AIB)EM,(NIZ2)],
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By Lemma 3.7, one can deduce that

Z JaT04ca8T s, = 0. (5.8)

(AIB)EM,(NIZ)e,,

Recall the bijection j in (5.1). Let M9 = (md ) € M,(N) be the unique matrix such
that (M%) = (A, d, u). Then A + B = M? for all (AIB) e M (NIZg)d’H and we have a
bijection between the sets Mn(lez)iﬂ and {B € M,(Z,) | ag < v(d)}, where v(d) =

(mn, .. ST ‘lin, .. ,mﬁfn) and ap as defined in (5.3). Now it is easy to see that
the set {cap = cv( D | Be M, (Z,), ap < v(d)} is linearly independent in C,. Therefore,
by (5.8) and Lemma 3.7 again, we have fyz = 0 for all (A|B) € M,,(NIZQ);"#. O

d
., m

ProposiTION 5.2. Suppose that A, € A(n, r). Then the intersection X Hy, N HZpx, is
a free R-module with basis

{Ta | (AIB) € My,(N|Z2),}-
Proor. By Lemma 5.1, it suffices to show that the set spans x;HC, N HC,x,,. Take an
arbitrary z € x;H’, N H;,x,. By Corollary 3.8, we may write
7= Z agoaXiTacT, for some agqq € R.
(d,o,@)eX)
This together with Corollary 3.5 gives rise to

= Z( Z T,/)Td Z adﬂ,axy(d)c“T(T.

weD™! | NS, T
wd™h)

For each d € D, ,, write

2= Z dgavay ¢ To € Hp. (5.9)

(TG.DV(d)ﬂEM,(IEZE

= > D TuTew (5.10)

dEDiu weD! neS,

Then

wd=1y
Since z € H?px,, by Lemma 3.1, we have 7T, = gz for s € €, and, hence,

Z Z TywTa(zaTs, = qza) = 0

deDyyuwen ' nE,
vd=")

Since z4, 24T, € 7—( g Dy (5.9) for 5, € S, one can deduce that
Tu’ Td(Zdek - CIZd) € Tu’ Td(]-{liR'

By the second direct sum decomposition in Corollary 3.8, we obtain T, Ty(z4Ts, — qz4)
= 0. Writing z4T’s, — qzq as a linear combination of 7',c* with w € S, a € ZJ, linear
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independence of T, T;T,,c* (Lemma 2.2) implies that z,T, — gz4 = 0 for 5; € S, and
d € Dy, By Lemma 3.1 again, we have z4 € H;px, N q{;iR = Wﬁ,Rxﬂ. Thus, we can
write z4 for each d € D, , as

w= ) [ w= ) [ Y, To
BeZ, BeZ, €Dya)NS,,
for some fﬁd € R by (5.6). Hence, by (5.9),
2. el Te=2= ) fidna ), T
(TEDV(,])QSM ,QEZ; ﬁEZ; (TEDV(d)ﬁgﬂ

This means that

Z (Z ad,a,axv(d)c” - Z ]%lcﬂxv(d))T(, =0.

(J'EDV(d)ﬁgu (ZEZS ﬁEZ;

But the left-hand side belongs to ﬂﬁ,R = @aez)ywms,, ‘7—(5( a1 forcing that every

summand is 0. Consequently,
d
Z g Xva)C” — Z Is Pxvay=0
a€Zl BEZ;,
for each o € D,y N S,,. Therefore,
Z ad,a-,aXy(d)C(y = Z f;cﬂxv(d) € Xy(a) 5(d),R N Wﬁ(d),RxV(d) (5.11)
aeZ; BeEZ,

foreachd € D, , and o € D, N S,.
On the other hand, since d € D, ,, there exists a unique M = (mfj) € M,(N) such

that J(M?) = (A, d, u) with v(d) = (m‘lil, omé ...,mfn, ...,m?). (Recall that v(d) is

nl?
defined by S,y = d'S,dn ©,.) Then, by (5.11) and Corollary 4.3,
Z Ad,oaXva)C” = Z 8?;Xv(d)cffd) (5.12)
€l BeM,(Z,),B<M?

for some g% € R, where B = (b;;) € M,(Z>) < M? means that b;; <m¢. for 1 <i, j<n

7 =)
and @g = (bi1s- -, bty Diny - buy) €Z2.
For each B € M,(Z,) with B < M“, we let A(d, B) = M? — B € M,(Z,) and then
d = dsap+p and (A(d, B)|B) € M,,(NlZz)‘j#. Then, by (5.3) and (5.12),

a _ d
Z Ad,oaXvd)C = Z 8BXv(d)CA(d.B)B
acz] BeM,(Zy),B<M¢

and hence, by (5.9),

24 = Z Z g%xv(d)cA(d,B)lBTa-

T€Dya)NSy BEM,(Zy),B<M?
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Therefore, by (5.10), one can deduce that

7= Z Z T,Ty Z Z gdng(d)cA(d,B)lBTcr

deDy, M'ED;(L,,)WSA 0€DyayNS, BeEM,(Z,),B<M?
= d TuT T,
= 8B w L dXv(d)CA(d,B)|B o
deDy, BeEM,(Z,),B<M? M/ED_(IFI)“GA 0€Dya)NE,
vid
= 4y T, T,
= 8pXalaCaw,p)\B o
deD, . BeM,(Z,),B<M! TE€Dy@)NSy

Z Z 85Ta@p1

deD,, BeM,(Z,),B<M4
since d = da(a,p)+p- This proves the proposition. |
For (A|B) € M,,(N|Zz)r, define ¢(A|B) € Qq(l’l, r, R) = End(Hf,R(@yeA(n,r)

dB) (X h) = 6y coarnyTaih (5.13)

o\
xuH7R) via

for ue A(n,r)and h € ‘HER.

THEOREM 5.3. Let R be a commutative ring of characteristic not equal to 2. Then the
algebra Q,(n,r; R) is a free R-module with a basis given by the set

{¢uip) | (AIB) € M,(N|Zy),}.
Proor. By (2.7), one can deduce that
Q,(n,r;R) = @ HomwSR(xﬂWER, X H ).
ApueN(nT)
Then, by Lemma 3.2 and Proposition 5.2, the set
{dap) | T0O(A + B) = A,co(A + B) = u}

is an R-basis for Hom(HVcR(xﬂﬂfR, xH?,) for each pair A,y € A(n, r). Therefore, the
set 7 ’ ’
{¢s) | (AIB) € M,(N|Zy),}
forms an R-basis for Q,(n, r; R). O
By Theorem 5.3, we have the following base-change property for Q,(n, r; R).

CoROLLARY 5.4. Maintain the assumption on R as above. Suppose that R is an A-
algebra via q — q. Then

Q,(n,1;R) = Qy(n,r)g := Qy(n,r) ®# R.

6. Identification with the quotients of the quantum queer supergroup

In this section, we shall show that the queer g-Schur superalgebra Q,(n, r) coincides
with the quantum queer Schur superalgebra constructed in [14]. In particular, they are
homomorphic images of the quantum queer supergroup U, (qy,).
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Let g = v? for some v € R. Let V(nln)z = Vo ® V, be a free R-supermodule with
basis ey,...,e, for Vy and basis e_q,...,e_, for V;. With the fixed ordered basis
{er,....en,e_1,...,e_,}, we often identify the R-algebra Endg(V(n|n)g) of all R-
linear maps on V(n|n)g with the 2n X 2n matrix algebra M;,(R) over R and, hence,
EndR(V(nIn)ﬁ’) with M5, (R)®".

Let

I(nn) ={1,2,...,n,—-1,-2,...,-n},
I(nn,r)y ={i=(>1,....ip) ik €lnn),1 <k <r}.
Then S, acts on I(n|n, r) by the place permutation
ISk = ([0, ooy Bk 1o Bt 10 B B4 25 - - -5 D)

Fori=(i,...,i,) € I(nln,r), sete; = ¢;, ® e;, ®--- @ ¢; ; then the set {¢; | i € I(n|n, r)}
forms a basis for V(nln)}".

Denote by E; ; for i, j € I(n|n) the standard elementary matrix with the (i, j)th entry
being 1 and O elsewhere. Then {E; ; | i, j € I(n|n)} can be viewed as the standard basis
for Endg(V(nln)g), that is, E; j(ex) = 0;re;. Following [25], we set

Q= Z (E—a,a - Ea,—a)a

1<a<n
T= Y (-VE;®Ej ©.1)
i,jel(n|n)
S=v > 8:j®E;€Endg(Vnin)),
i<jel(nln)

where 7:?3} =0if j>0 and’j\:?j =1if j<0,and S; fori < j are defined as follows:

Sa,a =1+ (V - 1)(Ea,a + E—a,—a), 1<a<n,

S—a,—a =1+ (V_l - 1)(Ea,a + E—a,—a)s l<a<n,

Spa=@=v")Esp+Eqp), 1<b<as<n,
S pa=—O0=-VvNEp+E4yp), 1<a<bs<n,
S—ba=-0=V")E_qp+Ess). l1<absn

To endomorphisms A € Endg(V(n|n)g) and Z = 3, X, ® ¥; € Endg(V(nn)g)®* =
Endg(V(nln)8%), we associate the following elements in Endg(V(nln)"):
AP =id®** Ve A®id®" P, 1<k<r
Z00 =N xYP, 1<jtk<r
2

Let S = TS. It follows from [25, Theorems 5.2 and 5.3] that there exists a left ﬂf’R—
supermodule structure on V(nln)}" given by

¥, : HEx — Endp(V(nln)g"), T;+— S0, ¢;— QY (6.2)
forall1 <i<r-1,1<j<r. Hereweremark that the even generators 71, ...,T,_; for
H?, are related to the even generators t,...,7_y in [25] viaT; =vt;for 1 <i<r—1.

This above action has been explicitly worked out in [27, Lemma 3.1] via (6.1).
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Lemma 6.1. The WﬁR—supermodule structure on V(nln)y" is given by the following
Sformulas: fori=(iy,...,iy)el(nn,r)and 1 <k<r-1,1<j<r,

_ &j +ote;,
cj-e = (=D Ve, ®--Qe, Qe ®e, @ -Be,

Vejg + (v = De;- Ifig =i 21,
4 ifix = Qg1 < -1,
€is, ifix=—lks1 2 1,
Ve, + (v — e ifix = —ige1 < -1,

Ti- €= vey, + (7 = De + (2 = Dep if lii] < liger] and iger > 1,
(—1)kvess, B if ligl < ligs1] and i < -1,
veis, + (=11 (v = De;- if lixs1l < ligl and iy > 1,
(=D + (= 1)e; if ligsl <lixl and i < -1,

where i, = (i1, ..., 51, =ik, —lks1s bkt2s - - Ir)-
For each i € I(n|n, r), define wt(i) = A = (4y,...,4,) € A(n,r) by setting
Aa=lkla=li,1<k<r), Yl<a<n.

For each 4 € A(n, r), define i, by

Recall from (2.6) the elements y,.
CoroLLary 6.2. The following holds as left H(; ,-supermodules:
V(nln)g" = @ Heya.
AeA(n,r)

Proor. For each A € A(n, r), let (V(nln)}"), be the R-submodule of V(n|n)" spanned
by the elements e; with i € I(n|n, r) and wt(i) = A. Then, by Lemma 6.1, (V(nln)}‘?’)ﬂ is
stable under the action of 7{2 » and, moreover, V(nln)%’ can be decomposed as

Vg = @ (Vang),. (6.3)

AeAN(n,r)

Clearly, ¢; € (V(n|n)§’)1. For each w € &,, we have i,w = (i), .. - » iw()), Where we
write i, = (i1, ..., i,). Then we can easily deduce that

{eiliel(nn,r),wt() =, < -1, 1<k<r}={e|we S} ={ealde Dyl

Moreover, by Lemma 6.1, one can deduce that 7—(,,Re& = R—span{ehd | d € D,}.
Meanwhile, by Frobenius reciprocity, there exists an H¢,-homomorphism

ﬂr?R ®("(r,k 7’[,,’1{65 - WﬁReh = (V(I’l|l’l)%r),1, *® eid " - €id (6.4)
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which is bijective due to the fact that {c" -¢;q|d € Dy, a € Z}} is a basis for
(V(nln)%’) 1. Observe that the tensor product V(OIn)?’ of the odd R-submodule V(0|n)g
of V(nln)r admits a basis {e; | i € I(n|n,r),ix < —1,1 < k < r}, which can be identified
with EB/EA(M) ?{’sReLr Then, by Lemma 6.1 and [9, Lemma 2.1], there is an H,.z-
module isomorphism

7-{r,ReL{ = 7—[r,Ry/l- (65)
Taking a direct sum over A(n, ) and induction to 7—(2R and noting (6.3) and (6.4) gives
the required isomorphism. O

Recall the anti-involution 7 defined in Lemma 2.1(3) and the twist functor in
Remark in Section 2. In particular, (V(nln)}‘?’)’ affords a right HER—supermodule. By
(2.10), we immediately have the following result.

CoroLLARY 6.3. There is an isomorphism of right WﬁR-supermodules:

Vg = ) uH,

AeA(n,r)

which induces an algebra isomorphism

Endge, (V(nln)§') = Endgee, (V(nln)§)") = End(Hrc_R( & xng) = Qa(n, 73 R).
AeA(n,r)

Hence, if R = Z = Z[v,v"'], the endomorphism superalgebra EndﬁfR(V(nln)}‘?’) is
the quantum queer Schur superalgebra Q,(n, r) considered in [14]. We remark that in
[14], we used the indeterminate ¢ instead of v and the notation Qg(n, r) denotes the
queer g-Schur superalgebra over the rational function field C(g). The isomorphism
above shows that our notation is consistent as, by (2.8), we used the same notation to
denote the right-hand side Q,2(n, r; 2Z); see (2.8).

Olshanski [25] introduced the quantum deformation U,(q,) over C(v) of the
universal enveloping algebra of the queer Lie superalgebra g(n) and defined a
superalgebra homomorphism

D, : Uy(qy) — EndC(V)(V(nM)ng))’

We refer the reader to [25] for the details of the definitions of U,(q(n)) and ®,. The
following result is known as the double centraliser property and forms the first part
of the quantum analog of Schur—Weyl-Sergeev duality for U,(q,) and 7’{;:,@@)’ which
can be regarded a super analog of the duality established by Jimbo in [19] for Hecke
algebra associated with symmetric groups. Recall also the algebra homomorphism ¥,

defined in (6.2).

ProrosiTioN 6.4 [25, Theorem 5.3]. The algebras ®,.(U,(q,)) and ‘I’,(?—(EC(V)) form
mutual centralisers in Endcy(V(n|n)
epimorphism

gv))' In particulary, ®, induces an algebra

®, : Uy(a,) — Endgee (Viln)Z,) = Q. rcg).
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Thus, by [14, Theorem 9.2], the queer g-Schur superalgebra Q,(n, r)c() has a
presentation with even generators Kl.il, E;, F; and odd generators K3, Ej-, F 7 for 1<
i<nand 1 < j<n-1,subject to the relations (QQ1)—-(QQ9) given in [14].

Remark. It would be natural to expect that one may use the integral basis {¢p)}4B)
given in Theorem 5.3 to describe the images of the generators Kl.il, E;, F;, K, E; F;
and, thus, to obtain a realisation of U, (q,) similar to the ones given in [1, 10].

7. Irreducible Q,(n, r)-supermodules

In this section, we shall give a construction of all irreducible @Q,(n,r)g-
supermodules over a certain field extension K of Z = Z[v,v~!]. But we first look at
a few general facts for the superalgebra Q,(n, r) over A = Z[q].

Let w = (17). In the case n > r, we can view w as an element in A(n, r) and define

ew = @, B, € Qqn, 1),

where A, = diag(1,...,1,0,...,0) and B, = 0. Then, by (5.4) and (5.13),
~————

ew(xh) = 8, 4x0h, ei =e, (7.1)
for e A(n,r),h e HE.
Recall from [8, Theorem 2.24] that the g-Schur algebra Sy(n, r) is defined as
Sy(n,r) = Ende,( D xﬂ-(,).
AeN(n,r)

Let
Tnr= P uH, and T°mrn= F aH.

AeA(n,r) AeA(n,r)

Since 7 %(n, r) = T (n,r) @, HE (see (2.9)), there is a natural algebra embedding
€:8,(n,r) — Qun,r), fr— 1

Equivalently, the g-Schur algebra S,(n, r) can be identified as a subalgebra of Q,(n, r)
via the following way:

Sq(n,r) ={¢p € Qn,r) | §(xz) € H,, YA € A(n, r)}. (1.2)
On the other hand, if n > r, the evaluation map gives algebra isomorphisms
ewQq(n,r)e, = HS and e,S,(n, re, = H..

We will identify them in the sequel. In particular, Qq(n,r)e, is a Qq(n, r)-H;-
bisupermodule.
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Lemma 7.1. If n > r, then there is a Qq(n, r)-H;-bisupermodule isomorphism
Qq(n,r)e, = T(n,r).
Moreover, restriction gives an Sy(n, r)-H; -bisupermodule isomorphism
Qy(n,r)e, = Sy(n, re, @, H;.

Proor. By (7.1) and (7.2), e, € S4(n,r) and x,, = 1. Hence, the evaluation map gives
an S, (n, r)-H,-bimodule isomorphism

Sy(n, e, = Homg (x,H,, T (n,r)) =T (n,r)
and a Qq(n, r)-Hy-bisupermodule isomorphism
Qy(n, e, = Homge (x, HE, TE(n, 1)) = T(n, r).
Thus, the restriction gives an S,(n, r)-HF-bisupermodule isomorphism
Qq(n,r)e, =T (n,1r) @y, Hy = Sy(n, r)e, @4, Hy.

This proves the lemma. O

Assume that F is a field which is a Z-algebra such that the image of ¢ is not a root
of unity. Thus, both H,rz and Sy(n, r)r = Sy4(n,r) ®z F are semisimple F-algebras.
The following result generalises the category equivalence between Sy(n, r)r-mod and
H, z-mod in the case n > r and the proof is somewhat standard; see, for example, [5,
Theorem 4.1.3].

ProposiTiON 7.2. Assume that n > r. The superalgebras Qq(n, r)r and HS, are Morita
equivalent.

Proor. We consider the two functors generally defined in [18, Section 6.2]. Firstly, the
Qy(n, r)F—erF—bisupennodule T °(n, r)r induces a functor

F ?{EF—smod — Qy(n,r)p-smod, L+ TC(n, r)g ®gc, L. (7.3)
Secondly, there exists the functor
G : Q,(n,r)z-smod — Hp-smod, M+ e, M.

It is clear (cf. [18, (6.2d)]) that G o F = id(HfJF—smod- So, it suffices to prove that

FoG= id(l,,(n,r)p—smod-
It is known from the case for the g-Schur algebra that, for any S,(n, r)z-module M,
there is a left S, (n, r)z-module isomorphism

Y Sq(n, rigey, ®4,, eoM = M

defined by ¢(x ® m) = xm for x € Sy(n, r)re, and m € e, M. This together with
Lemma 7.1 gives rise to a left Sy(n, r)r-module isomorphism

VY Qy(n, r)re, ®c, €M = Sq(n, r)re, @, ewM = M.
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We now claim that ¥ is a Q,(n, r)s-supermodule isomorphism. Indeed, considering
the basis {¢(A|B) | (A|B) € M,,(NlZQ)} for Qq(n, rF,

Qq(n, r)re,, = Homgye, (%7‘{2}:, EB x H; F) = @ bawi0H g
AeA(n,r) AeA(n,r)
where A(w, 1) = (a7") with @' = 1if 4+ + g + 1S jS A+ + iy + 4
and a;j.’ﬂ = 0 otherwise. Clearly, @u(w,00)(Xw) = X1 € H,p for 2 € A(n, r). Therefore,
¢(A(w,/l)|0) € Sq(l’l, Eey by (7.2). This 1mphes that

Y(duaw.ninh ® m) = Y(duw.0 ® hm) = uw.nohm
for any h € ?(EF, m € e, M. Hence, ¥ (x ® m) = xm for x € Qy(n, r)re,, m € e, M. This
means that ¥ is a Q,(n, r)s-supermodule homomorphism. O

We are now ready to look at the classification of irreducible representations of the
superalgebra Q,(n, r)g, where

K := Co)WI2I, VI3 - ... VIrD)

is the field extension of C(v) with [k] = (¢ — ¢7%)/(q — ¢”") for k e N (g = v?). Tt is
known from [20, Proposition 2.2] (cf. [21]) that ?{2@@) is a semisimple superalgebra.
Thus, Q,(n, )¢ is semisimple. The following result will imply that K is a splitting
field of Q,(n, r)cg)-

A partition £ of r is said to be strict if its nonzero parts are distinct. Denote by SP(r)
the set of strict partitions & of r. For £ € SP(r), denote by /() the length of £ and let

_JO if [(¢) is even,
5(5)‘{1 if (&) is odd.

An irreducible supermodule X over an F-superalgebra .7 is called split irreducible
if X ®g E is irreducible over o = </ ®g E for any field extension E 2 F.

Prorosrrion 7.3 [20, Corollary 6.8]. For each & € SP(r), there exists a left simple ‘Hf,K—

supermodule U such that {U¢ | € € SP(r)} forms a complete set of nonisomorphic
irreducible left WEK-supermodules. Moreover, every U¢ is split irreducible and U is
of type M (respectively, Q) if 6(&) = 0 (respectively, 6(&) = 1).

If we take F =K in (7.3), then Propositions 7.2 and 7.3 imply the following
immediately.

CoROLLARY 7.4. If n > r, then the set {T °(n, r)x e, U¢ | € € SP(r)} is a complete set
of nonisomorphic irreducible Q,(n, r)x-supermodules.

For positive integers n, r, let
SPn,r) = (¢ € SP(r) | T°(n, g @, U #0).
Clearly, we have from the above that SP(n, r) = SP(r) for all n > r.
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Recall from the last section that there is a commuting action of U, (q,)x and ?{gK
on V(n|n)¥'. For £ € SP(r), let

V(€) = Homgye (U, V(nIn)¥).
This is a U,(q,)x-module. If V(&) # 0, then U? is a direct summand of V(nln)%. Hence,
it is a simple @, (n, r)g-supermodule and, hence, a simple U, (q,)x-supermodule.
Lemma 7.5. Let & € SP(r). If n < r and I(¢) > n, then V(&) = 0. In particular,
SPn,r) ={£ € SP(r) | I(§) < n}.
Proor. By (6.3) and (6.5), we have that V(n|n % is isomorphic to a direct sum of

Wny/] with A € A(n, r). By [4, Lemma 3.50], there exist some nonnegative integers

ke, with ke g # 0 such that (Though the result there is for the specialisation ()¢ of
H?® at g = 1. However, by the category equivalence between the module categories,
the proof there carries over.)

'HEKy,l = @ kg,AUg,
£eSP(r),E2

where > is the dominance order. Since & > A implies that [(£) < /(1) = n, it follows that
V(&) =0 if I(€) > n, proving the first assertion. To prove the last assertion, we write
Ué = WEKE for some idempotent €. Then, as a left @, (n, r)g-module,

V() = eVnng = (Vg ) e = T°0n, N ®xe, U*.

The last assertion follows from the fact that k¢ # 0. O

We now use Green’s theorem [18, (6.2g)] to get the following classification
theorem.

THEOREM 7.6. For positive integers n, r, the set
(T°0, g ®pe, US = V(E) | & € SP(n, 1))
forms a complete set of nonisomorphic irreducible Q,(n, r)x-supermodules.

Proor. The case for n > r is seen above. We now assume that n < r. Consider the
natural embedding

A, r) = A(r,r), A A=(1,...,1,,0,...,0).
For A € A(n, r), let D(1) = diag(4;, A2, ..., 4,,0,...,0) € M (N) and set

e= Z bwo)-

AeA(n,r)

Then
Qun, e = Endyee, | ) 0t = eBndye (D mHc)e = Qi nze. 74)

AeA(n,r) MEA(r,r)
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Meanwhile,

e(T°(r, e ®yec, U?) = eT°(r,r)x ®c, U = e( @ xﬂﬁiK) ®7, U¢
UEA(r,r)

= ( EB X fK) ®(}-{2K Ut = TC(n, r)x ®7{§K U?.
AeA(n,r)

Since {7°(r, Nk e, U | ¢ € SP,} is a complete set of nonisomorphic simple
Q,(r, k- supermodules (7.4) together with [18, (6.2g)] implies that the set

(T, ) ®pe, US| € € SPINO) = {T°(n, 1) ®pc, U* | € € SP(n, 1))
is a complete set of nonisomorphic simple Q,(n, r)x-supermodules. O

Remark. (1) By regarding the category @rzo Q,(n, r)x—smod as a full subcategory
of the category of finite-dimensional U, (q,)-supermodules, we recover the category
Ofn? of tensor modules (the counterpart of polynomial representations studied by
Green [18]) investigated in [17].

(2) We remark that, for the g-Schur superalgebras S,(m|n, r)p of type M with
m + n > r, their irreducible representations at (odd) roots of unity have been classified
in [11], while a nonconstructible classification of irreducible Q,(n, r)s-supermodules
is obtained in [24, Theorem 6.32] by a generalised cellular structure [12, 16]. We
remark that Green’s codeterminant basis was a first such basis for the Schur algebra.
Moreover, unlike the situation in [11], the link between representations of Q,(n, r)g
and the quantum queer supergroup has not yet been established, since we do not know
if the surjective map @, given in Theorem 6.4 can be extended to the roots of unity
case.
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Appendix A. Comparison with Mori’s basis

In [24, Proposition 6.10], Mori also obtained a basis for xy‘H NH °Rx,1 for A, u e
A(n,r), using a different approach via the combinatorics of circled tableaux. In terms of
our notation, we may describe Mori’s basis as follows. First, denote the basis elements
given in Corollary 3.8 by mr, where T runs over all circled row-standard tableaux.
Then use a combinatorial relation between a circled row-semistandard tableau S and
certain circled row-standard tableaux T to define mg as a linear combination of those
m involved. We will see below that, if S gives the matrix pair (A|B) € M, (N|Z>), 4,
then mg = T4 p. In other words, Mori’s definition is simply to write the element Tz
defined in (5.4) as a linear combination of the basis given in Corollary 3.8 for ?{sz/].
We now establish the above-described relationship.
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A Young diagram of a composition A is defined by Y(1) = {(@, ))li > 1,1 < j < 4;}.
A tableau of shape A is a function T : Y(1) — {1,2,...}. The weight of a tableau T is a
composition y = (41, 4, . . .) whose ith component is y; = IT~1(i)]. The tableau T is said
to be row-semistandard if the entries in each row of T are weakly increasing. We denote
by Tab,,, the set of row-semistandard tableaux of shape A and weight u. It is known
(cf. [24, Section 5.2]) that the set Tab,,, is in bijection with the set O, ; and hence
in bijection with the set M, (N), ;. More precisely, given S € Tab,.,, let M(S) = (m;;)
with m;; being the number of i’s in the jth row of S. Then clearly M(S) € M,(N),,
and, by (5.1), we obtain a double coset representative ds := dys) € D, 1. Conversely,
it is easy to see that the matrix M € M, (N), , uniquely determines a row-semistandard
tableau S.

For each S € Tab,,,, let Tabs = {T € Taby,- | T, = S}, where T, is the row-
semistandard tableau obtained from T by replacing its entries 1,2,...,u; by 1, u; +
1,..., 41 + o by 2 and so forth. It is known from the discussion in [24, Section 5.2]
that for each T € Tabg,

dr =uds and |Dy N &, =Tabs], (A1)

g1
where u € Z);&gl) nS,.

Following [24], we introduce the notion of circled tableau. A circled tableau of
shape disamap S: Y (1) — {1,2,...} U{D,D),...}. From a circled tableau S we obtain
its underlying ordinary tableau S* by removing circles from numbers. The weight of
a circled tableau is defined as that of the underlying tableau. Denote by Tabj. ,, the set
of circled tableaux S such that S* € Tab,., and circled numbers must be placed at the
rightmost of abar | i [ | - | i |in a row for every i.

For S € Tabj;#, define M“(S) = (A|B) € M(N|Z,),, by letting B = (b;;) with b;; =0
if the bar containing i in the jth row of S has the form [ [ ]-]i]and b;; = 1 if the
bar containing i in the jth row of S has the form [ | i |- |@], and A = M(S*) — B. For

1 2
example, for the circled tableau S =| 1 <5D® ®‘, we have M¢(S) = (A|B) with
@
21 0 0 O 1 1.0 00 1 0 00O
1 0 00O 1 0 00O 0 00 0O
M@ES*=|1 0 0 0 0f, A=(0 0 O O O], B=|1 0 0 0 O
00100 00 0O00O0 001 0O
02 000 01 000 01 00O

Conversely, given (A|B) € M(N|Z,),, 1, we have A + B € M(N),,, and hence it uniquely
determines an uncircled tableau in Tab,,, and the matrix B determines the places of
the circled numbers. Hence, we obtain the following result.

Lemma A.1. For A, u € A(n, r), the map M€ : Tabj; M M(N|Z3),,a is a bijection.
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In particular, we may use the set Tab ) to label the basis elements for H7,x,

given in Corollary 3.8 by setting, for T € Tabj;(l,.),
mr =Tg..c""xy (see [24, Section 6.4]), (A.2)

where a1 = (a1, @2, ..., ;) € Z, with a; = 1 if the kth entry is circled and a; =0
otherwise according to the top-to-bottom reading order.
By extending this definition to S € Tabj.,, Mori further defined the element ms €

X, Hpp N H pxa. Suppose that the circled bars in S are [i [i) | - {@), [i2 i - @), - - -,

iy lic|: - J@| with lengths ry, 72, .. ., r. By distributing
L[l J@l- @Lil-Ti]+dil@F - Li]+ - +q [i[i[-]@
for every i =i, and r=r, 1 <t <k, we first make a formal linear combination

Sosi<r-1.1<i<k ¢ TR of circled row-semistandard tableaux R, where R =
Ry, Iy, ..., Iy) are the circled tableaux obtained from S by replacing the circled

bars [i) i) | @], [2]i} 1@, - - [ie it - 1@] by [ir [ - ADL - i1 s [i2] @) - {22
i | - 1@} - i b in which the circled numbers are placed in the (/; + 1)th, (/ + Dth, ...,
(I + Dyth places. Then define

L+l ++ 1
ms = Z g Z mr, (A.3)
0<l,<r—1,1<t<k Tel'(R)

s 5oy

where I'(R) consists of all T € Tabﬁ;(l,) such that T € Tabsx and its positions of circles
are the same as that of R = R(ly, [, ..., ).

ProposiTioN A.2. For S € Tabfhﬂ, if M°(S) = (A|B), then mg = Typ.
Proor. Observe that, for each R = R(/, l, ..., l;), ['(R) is a disjoint union of
I'R,U):={Te Tabfmy)lTX = U, T and R have the same positions of circles}

for all U € Tabgx. Thus, by (A.2), (A.1), (5.3), and (5.4), (A.3) becomes

Li+Dh 4+ @
DY D YR Y

0<l,<r—1,1<t<k UeTabgx TeI'(R(},L,....Ik),U)
L+ ++1g a

N

U€Tabsx 0<l,<r—1,1<r<k TeT Ry Tayennli),U)

’
= Z TquSxCA|Bx/I
A =

uel)v(lg ) >ﬂv,,

= Tas,
as desired. O

Remark. With this identification and by Proposition 5.2, we now can remove the
condition that 1 + ¢ is not a zero divisor in R, stated in [24, Proposition 6.10]. Of
course, the standard assumption that the characteristic of R is not equal to 2 in the
super theory will always be maintained.
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