
9
Beyond mean field

The Hartree–Fock mean field is represented by a static potential. Non-locality
may be approximated by a momentum dependence but the potential is energy
independent. In general, independent particle motion is renormalized by cou-
pling to more complicated degrees of freedom. Such couplings often involve a
time delay and introduce an energy dependence into the single-particle motion.
For example the effective interaction of two nucleons mediated by coupling to
a surface vibration has an energy dependence related to the frequency of the
vibrational mode.

The state of motion of a nucleon in a nucleus may change by a core polarization
process where it promotes a nucleon from a state in the Fermi sea to a state
above the Fermi surface as illustrated in Fig. 9.1 (see also Fig. 8.3(b)), or by an
inelastic collision as illustrated in Fig. 8.10. This is an example of the doorway
phenomenon, the states containing a nucleon and a vibration being the doorway
states. The original formulation of the concepts of doorway state can be found
in Block and Feshbach (1963). The review by Feshbach (1974) contains details
of subsequent developments.

9.1 Doorway states

Through the coupling introduced in equation (8.24) a particle can set the nuclear
surface into vibration. Such process can be repeated, the particle interacting a
second time with the surface and reabsorbing the vibration (see Fig. 9.2). In this
way the particle becomes dressed and the properties characterizing the nucleon,
such as mass, charge, mean free path, occupation number, etc., are modified due
to this coupling.
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9.1 Doorway states 205

Figure 9.1. Collision between nucleons where a particle changes state of motion by inducing
a particle–hole core excitation.
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Figure 9.2. The lowest-order process by which the single-particle motion is renormalized
by the coupling to the nuclear surface. In (a) the particle excites the vibration by bouncing
inelastically off the surface. In (b) the vibration is excited by a virtual process (vacuum
fluctuation). Particles are represented by an upwardgoing arrowed line (by a solid dot) while
holes are pictured as a downwardgoing arrowed line (open circle). The surface vibration is
drawn as a wavy line.

9.1.1 The dynamical shell model

The self-energy  of a nucleon in a nucleus is the renormalization of single
particle or single hole energies due to coupling of single-particle motion to
more complicated degrees of freedom. The present chapter will focus on the
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206 Beyond mean field

self-energy due to the coupling of single-particle motion to nuclear surface vi-
brations (the coupling to pairing vibrations in rotating nuclei was discussed in
Chapter 6, in particular in Sections 6.3 and 6.4). The relevant processes in lowest
order are illustrated in Fig. 9.2. The corresponding perturbation expression of
the self-energy operator for a particle state is

 (ν1, ω) =
∑
λ,ε2>εF

V 2(ν1, ν2; λ)

ω − (ε2 + ωλ) −
∑
λ,ε2<εF

V 2(ν1, ν2; λ)

−ω + (ε2 − ωλ) , (9.1)

where the minus sign in the second term arises because of fermion exchange
(Pauli principle). Each term of this expression has the typical structure of an
energy correction in second-order perturbation theory, i.e. a square matrix el-
ement divided by an energy denominator. In equation (9.1) ω is the energy of
the initial single-particle state |ν1〉. The phonons associated with the surface
vibrations have energy ωλ and multipolarity λ. The quantities V (ν1, ν2; λ) are
the particle-vibration coupling matrix elements which were defined in equation
(8.31). The energy denominators are the energy differences between the initial
and the intermediate states. The first term in equation (9.1) corresponds to the
polarization graph in Fig. 9.2(a). The energies of both the initial single-particle
state and the intermediate particle state ε2 are both greater than the Fermi energy
εF. The second term illustrated by the graph in Fig. 9.2(b) is associated with
core correlations and the intermediate state |ν−1

2 〉 is a hole state with energy
ε2 < εF.

Some general conclusions can be drawn from the structure of equation (9.1).
The first term is negative for particle states with energies relative to the Fermi
energy which are lower than the phonon energy, ε1 − εF < �ωλ. There is a can-
cellation between negative and positive contributions for high-energy single-
particle states ε1 − εF � �ωλ. The second term is always positive because
ε1 − ε2 > 0 and ωλ > 0. The net result is that low-energy single-particle states
have a negative self-energy and are shifted towards the Fermi level. This shift
has a maximum when ε1 − εF ≈ �ωλ and decreases or even changes sign for
high single-particle states. The self-energy has the opposite sign for hole states
and the resulting effect is to narrow the energy gap between particle states
and hole states. A number of calculations starting from that of Bertsch and
Kuo (1968) support these conclusions (see Mahaux et al. (1985) and references
therein).

Both terms in equation (9.1) are important for an initial state |ν1〉 near the
Fermi level and, in a Fermi gas model, the self-energy  (ν1) ≈ 0 at the Fermi
level due to a cancellation between the two terms. The first term in equation (9.1)
is more important for an initial state |ν1〉 away from the Fermi level because the
energy denominators are smaller. In the following we will make a simple estimate
of the quantity  (ν1) neglecting the second term. The first term can be written
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9.1 Doorway states 207

more explicitly as

 (ν1) =
∑
ν2,λ

V 2(ν1, ν2, λ)

ε1 − (ε2 + �ωλ)

=
∑
ν2λ

β 2
λ

(2 j2 + 1)(2λ+ 1)

〈 j2|R0
∂U
∂r | j1〉2〈l2 j2||Yλ||l1 j1〉2
ε1 − (ε2 + �ωλ)

, (9.2)

where the statistical factors and reduced matrix element of the spherical har-
monic Yλμ associated with angular momentum coupling are shown explicitly
(see Appendix D). There is a parity constraint and l1 + l2 − λ is restricted to
being even.

When ν2 = ν1 the phonon multipolarity λ must be even because of the parity
constraint. Assuming furthermore that j1 � λ, one can use the asymptotic form
of the 3 j-symbols and write (see Appendix D)

〈l1 j1||Yλ||l1 j1〉2 ≈ 0.1(2 j1 + 1), when λ is even. (9.3)

The squared matrix element coupling the nucleon with the vibration can then
be expressed as

V 2(ν1, ν1; λ) = 0.1β 2
λ

(2λ+ 1)
〈 j1|R0

∂U

∂r
| j1〉2, (9.4)

and the quantity  (ν1) becomes

 (ν1) ≈
∑
λ

 λ(ν1), (9.5)

where

 λ(ν1, ω) = −V 2(ν1, ν1; λ)

�ωλ
. (9.6)

The numerators of all the factors appearing in the above equations have a
similar magnitude for both low-lying collective surface vibrations and for high-
lying modes. Because the energy �ωλ is much smaller for low-lying modes than
for giant resonances, we shall consider only the coupling to low-lying vibra-
tional states. In what follows we will estimate (9.6) for the low-lying quadrupole
vibration of 208Pb.

Single-particle levels can be clearly identified in closed-shell nuclei. The nu-
cleus 208

82 Pb is a paradigm of such systems, the single-particle gap for neutrons
(N = 126), i.e. the energy difference between the last occupied 3p1/2 orbital and
the first empty state 2g9/2 is 3.1 MeV. Making use of equations (7.37) and (7.38)
we obtain �ω = 0.7 MeV and β2 = 0.11. An estimate for the radial matrix el-
ement derived in Appendix D is 〈 j |R0∂U/∂r | j〉 ≈ −50 MeV. Substituting into
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208 Beyond mean field

equation (9.4) one obtains

V 2(ν1, ν1; λ = 2) = 0.6 MeV2 (9.7)

and

 λ=2(ν1) = −0.9 MeV. (9.8)

The estimate given in equation (9.8) is very sensitive to the parameters used. In
particular a more realistic value of �ω2 as well as ofβ2 will reduce it considerably.

On the other hand the contribution of λ = 4 phonons and other j-values in
the intermediate state would increase the estimate for the level shift. We retain
the value  (ν1) ≈ −0.9 MeV for the purposes of the present section. The self-
energy of a hole level has a similar magnitude but with opposite sign so the
spacing between the occupied and unoccupied neutron levels would be reduced
by 1.8 MeV. The ansatz that this reduction leads to the experimental value of
3.1 MW implies that the single-particle gap predicted by HF theory is 4.9 MeV
(see Section 8.2). Because the density of levels is inversely proportional to the
mass of the particle (see Appendix B) the above result corresponds to an effective
mass (called ω-mass, see next section)

m∗

m
≈ 4.9

3.1
= 1.6. (9.9)

It could be argued that the relation dε/dk ∼ 1/m∗ was obtained for a uniform
system. To bridge the gap between infinite nuclear matter and the case of potential
wells of finite range let us consider a particle of mass m in a one-dimensional
harmonic oscillator, which provides a sensible parametrization of the Saxon–
Woods potential (see Fig. 9.3). It would be argued that in this case the density of
levels is inversely proportional to the square root of the mass of the particle, in
keeping with the fact that �ω0 = �(C/m)1/2, C being the restoring force of the
system. This is not the case as can be seen by writing the above relation in terms
of the unit length parameter b = (�/mω0)1/2, namely �ω0 = �

2/mb2. Requiring
the ground-state wavefunction �0(r ) ∼ exp(−r2/2b2) to have the same radial
spread (b = const.) when one replaces the mass of the particle m by m∗ > m,
the density of levels turns out thus to be proportional to the effective mass, as in
the infinite system discussed in Appendix B.

9.1.2 Motion of a particle in a complex potential

There is extensive experimental evidence showing that a nucleon moving in an or-
bital close to the Fermi energy has a mean free path which is large compared with
the nuclear dimensions and it is effectively in a stationary state. Consequently the
wavefunction can be written as ϕ1(	r , t) = ϕ1(	r )e−iωt . For single-particle levels
progressively removed from the Fermi energy, the probability of finding states
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Figure 9.3. Comparison of a typical Saxon–Woods shell model potential and of a harmonic
oscillator potential whose frequency has been chosen in order to fit the Saxon–Woods poten-
tial. (From Bohr and Mottelson (1969))

with the same energy as the single-particle state becomes sizable, in particu-
lar, states built out of a single particle and a collective surface vibration. Under
these circumstances, the single-particle levels acquire a width and the associ-
ated wavefunction can be written as ϕ1(	r , t) = ϕ1(	r )e−iωt e−

�
2�

t . Consequently,
the probability of finding the state 1 occupied by a particle at time t , when it
was occupied with probability 1 at time t = 0 decays exponentially with time,∫

d3r |ϕ1(	r , t)|2 = exp−
�
�

t . The associated lifetime of the state is connected to
the width � by Heisenberg’s uncertainty relation,

τ = �

�
. (9.10)

The width � is associated with the imaginary part of the self-energy of a
particle. When the energy of the intermediate state ε2 + �ωλ coincides with the
energy ε1 of the initial state the first term in the expression for the self-energy
diverges. The divergence can be avoided by making an energy average, replacing
ω by ω + i I

2 , where I represents the energy interval over which averages are
carried out. The self-energy operator can then be written as

 (1, ω + iI ) = �E(1, ω + iI )− i

2
�(1, ω + iI ), (9.11)

the sum of a real and an imaginary term. The final result, obtained by taking the
limit of  (1, ω + iI ) as I → 0, should not depend on the averaging process.
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210 Beyond mean field

It is illuminating to calculate the imaginary part of the self-energy, i.e.

�(1, ω) =
∑
2,λ

V 2(1, 2; λ)
I

(ω − (ε2 + ωλ))2 + ( I
2 )2
. (9.12)

Taking the limit of this function as I → 0 one obtains

�(1, ω) = 2π
∑
2,λ

V 2(1, 2; λ)δ(ω − (ε2 + ωλ)). (9.13)

Approximating V (1, 2; λ) by its average value V leads to the formula

�(1, ω) = 2πV 2�(ω), (9.14)

where the quantity �(ω) =∑
2,λ δ(ω − (ε2 + ωλ)) is the density of final states

per unit energy, into which the particle state can decay. This is just the Golden
Rule and is the basic expression used to describe the decay width of a quantal
state. For scattering states, the quantity− 1

2� can be identified with the imaginary
part of the optical potential.

A simple empirical parametrization of the damping width is provided by the
relation (see Fig. 9.4)

�↓sp ≈ 0.5�ω, (9.15)

where �ω is the single-particle energy measured from the Fermi energy (�ω =
|ε1 − εF|). This parametrization is supported by detailed calculations: Bortignon

EE

Figure 9.4. Full width at half maximum of the strength function associated with deep hole
states, bound states and scattering states in a variety of nuclei. (From Bortignon et al. (1998))

https://doi.org/10.1017/9781009401920.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401920.010


9.2 Effective mass (ω-mass) 211

10

5

50 100−50−100 0

E ε− F

(M
eV

)

(MeV)

W

Figure 9.5. Dependence upon ω = E − εF of the imaginary part of the optical potential for
nuclei with mass number 12 ≤ A ≤ 60. (After Mahaux et al. (1985))

et al. (1986), Donati et al. (1996). Inserting the estimate given in equation (9.7)
of the square of the particle-vibration coupling matrix elements and the empirical
expression equation (9.15) into equation (9.14), we get an estimate for the density
of intermediate states,

�(ω) = 0.5

2π

�ω

V 2
≈ 0.13(�ω) MeV, (9.16)

where �ω is the single-particle energy measured from the Fermi energy expressed
in MeV. In order that the single-particle state |ν〉 can undergo a real transition
into states composed of a particle and a vibration, the density of states should be
sufficiently large (�(ω) � 1 MeV−1). Thus damping will become important when
�ω� 7 MeV. On the other hand, for single-particle levels lying far away from the
Fermi energy the virtual processes become unimportant and the effective mass
of the nucleon coincides with the k-mass, while real processes give a damping
width to these states (see Fig. 9.5).

9.2 Effective mass (ω-mass)

As the graphical perturbation expansion of the single-particle self-energy sug-
gests (see Fig. 9.2 and equation (9.11)), the Hamiltonian describing the single-
particle motion reads (see also equation (8.9)),

Hs.p. =
[
− �

2

2m
∇2 + Ṽ (k)+�E(ω)

]
+U (r )+ iW (ω), (9.17)

where�E(ω) is the real part of the self-energy and W = − 1
2� is the imaginary

part of the optical potential. The dependence of Ṽ (k) on the momentum of the
particle is associated with the non-locality arising from the Pauli principle, and
has been discussed in Section 8.2.1. The dependence of�E(ω) on the frequency
is associated with the non-locality in time generated by the coupling to a surface
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212 Beyond mean field

vibration excited by the particle at a given time and reabsorbed at a different
time (virtual, off the energy shell-processes). Effects associated with real, on the
energy shell-processes are described by W(ω).

For many purposes it is possible to rewrite the term in square brackets in
equation (9.17) as a kinetic energy term with an effective mass m∗ (see e.g.
Mahaux et al. (1985)). In fact, requiring that (in keeping with the fact that one
is calculating an inertia, see Appendix B)

d�ω

dk
= �

2k

m∗
,

and calculating

d�ω

dk
= �

2k

m
+ ∂ Ṽ (k)

∂k
+ ∂�E(ω)

∂�ω

d�ω

dk
, (9.18)

which is equivalent to

d�ω

dk
= �

2k

m
(1− ∂�E

∂ω
)−1(1+ m

�2k

∂ Ṽ (k)

∂k
), (9.19)

one obtains

m∗

m
= mk

m

mω

m
. (9.20)

In this equation the ω- and k-masses are given by

mω

m
= (1− ∂�E(ω)

∂�ω
),

mk

m
=

(
1+ m

�2k

∂ Ṽ (k)

∂k

)−1

, (9.21)

where the ω-derivative is to be calculated at the Fermi energy, while mk/m
coincides with the k-mass defined in Section 8.2.1. Consequently,

Hs.p. = − �
2

2m∗
∇2 + Ũ + iW̃ , (9.22)

which is the optical-model Hamiltonian with Ũ = (m/m∗)U and W̃ =
(m/m∗)W . Note that m∗ can have a radial dependence (m∗(r )).

In Fig. 9.6 we display results of calculations of the ω-mass for the single-
particle and single-hole states of 208Pb (see also equation (9.9)). The quantity
mω/m has a peak as a function of the single-particle energy centred around εF,
such that

m∗

m
= mω

m

mk

m
≈ 1.4× 0.7 ≈ 1.

The associated FWHM is approximately 10 MeV, i.e. the ω-mass increase over
the bare mass happens in the interval of energy between −5 MeV and +5 MeV
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Figure 9.6. The ratio mω/m of the ω-mass of a nucleon in 208Pb to the bare nucleon mass as
a function of the energy of the particle measured with respect to the Fermi energy, calculated
within the particle-vibration coupling model. (After Mahaux et al. (1985))

around the Fermi energy. This width is controlled by the frequency of collective
surface vibrations which, in 208Pb, correspond to an energy of the order of a few
MeV. Consequently, for frequencies of the single particle much higher than this
value, the phonons cannot dress the particle in an efficient way any more. Within
the same interval of energy around the Fermi energy for which mω/m > 1, the
imaginary part of the self-energy (see Fig. 9.5 and equation (9.15)) is essentially
zero. This is because no real transitions exist in this energy interval (�(ω) <
1 MeV−1, see equation (9.16)). Furthermore, the result that the ω-mass is larger
than the bare mass has the consequence that the density of levels around the Fermi
energy is larger than that predicted by Hartree–Fock theory, in accordance with
the experimental findings (see Fig. 8.8).

From these results one can understand why the empirical evidence concerning
the energy of single-particle levels around the Fermi energy is well described
by the motion of nucleons in a real, energy-independent, average potential, with
a mass equal to the bare nucleon mass. However, there is a basic difference
between this simple model and the results expressed by equation (9.17). In fact,
in the empirical independent particle model the occupation of each level is either
1 or 0. The situation is more subtle here. Owing to its coupling to the nuclear
surface, a particle which starts in a pure single-particle configuration is forced
into more complicated states of motion. Consequently, the probability of finding
a particle in a single-particle state below the Fermi level is different from 1.
Similarly, unoccupied states at the level of the pure independent particle model
become partially occupied as the particle jumps to these states by exciting a
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214 Beyond mean field

surface mode. In fact, the quantity

Zω = (mω/m)−1 (9.23)

is the single-particle spectroscopic factor at the Fermi energy (quasiparticle
strength, see Appendix E, equation (E.18)).

The fact that the ‘more complicated’ states to which the particle states couple
can be at a higher energy than the original energy available to the particle presents
no contradiction, as these are virtual states, i.e. states which last a finite amount of
time (off the energy shell-processes). Because of Heisenberg’s relations, energy
does not need to be conserved within a range which becomes larger the shorter
the time the intermediate state is virtually excited. However, an external field,
such as that produced by a proton, can provide the necessary energy to make
the process real and eventually pick up a neutron in the reaction A(p, d)B from
states above the Fermi energy. Results of calculations of the occupation number

n j =
{

1+ d�E ′
dE j = occ. orbit,

− d�E ′
dE j = empty orbit

(9.24)

are given in Fig. 9.7. In the above equation, the quantity�E ′ is the contribution
associated with Fig. 9.2(b) arising from ground-state correlations.

BBDM

n − 208Pb

−25 −15 −5 5 15
0.00
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ε (0)
nlj

n n
lj
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Figure 9.7. Occupation probability of neutron orbits in the correlated 208Pb nucleus plotted
against the single-particle energy εnl j computed in the Skyrme III-Hartree–Fock approxima-
tion. The calculation is based on equation (9.24). The dots correspond to the 1 f7/2, 2p1/2,
1g7/2, 1h11/2, 1h9/2, 2 f7/2,2 f5/2, 1i13/2, 3p3/2 and 3p1/2 hole states, and to the 2g9/2, 1i11/2,
1 j15/2, 3d5/2, 2g7/2, 4s1/2, 3d3/2, 2h11/2 and 2h9/2 particle states. The dashed curve has been
drawn to guide the eye through the calculated dots in order to exhibit their trend. The arrows
show the location of ε−F = ε3p1/2 and ε+F = ε2g9/2 (After Mahaux et al. (1985))
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9.3 The ω-mass and the induced interaction 215

The physics which is at the basis of the results displayed in Figs. 9.5 and 9.6
finds a compact expression in the dispersion relation (Mahaux et al. (1985))

�E(ω) ≈ P

π

∫
W (ω′)
ω − ω′ dω

′.

In this equation, P stands for the principal part integral for the real and imaginary
parts of an analytic function (see equation (9.11)), i.e.

P
∫ b

a
f (x)/(x − x0)dx = lim

δ→0+

[∫ x0−δ

a
+

∫ b

x0+δ

]
Because energy-conserving, on-the-energy shell processes are easier to cal-

culate than virtual, off-the-energy shell processes, the dispersion relation above
can be used in calculating the real potential from a known imaginary potential
(see (9.17)).

9.3 The ω-mass and the induced interaction

In this section we obtain an expression for the ω-mass in a simplified version of
the particle-vibration coupling model and show how it is related to the induced
pairing interaction between nucleons resulting from the exchange of surface
phonons. The self-energy of a nucleon is due to the emission and absorption
of a virtual phonon as illustrated in Fig. 9.2 while the induced interaction is
represented by Fig. 8.3(c). The general particle-vibration coupling model is
simplified by considering coupling with only one type of phonon with frequency
ωλ and by assuming that the single nucleon levels are uniformly distributed
around the Fermi level. A more systematic discussion of the induced nucleon–
nucleon interaction due to phonon exchange will be presented in the next chapter.

The single-particle self-energy expression given in equation (9.1) is the sum
of a polarization term  (p) (ω) (Fig. 9.2(a)) and a core correlation term  (c) (ω)
(Fig. 9.2(b)) They give equal contributions to the ω-mass at the Fermi level in
the simplified model considered here. The polarization term is

 (p)
ν (ω) = �E (p) (ω) =

∑
ν ′

V 2(ν, ν ′; λ)

ω − (eν ′ + �ωλ)
, (9.25)

where eν ′ = εν ′ − εF and ω = eν − εF. At the Fermi energy ω = 0 and

∂�E (p)
ν (ω)

∂ω

∣∣∣∣∣
ω=0

= −
∑
ν ′

V 2(ν, ν ′; λ)

(ω − (eν ′ + �ωλ))2

∣∣∣∣∣
ω=0

(9.26)

= −
∑
ν ′

V 2(ν, ν ′; λ)

(eν ′ + �ωλ)2
.
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If the sum is approximated by an integral assuming a density of single-particle
states of one-spin orientation at the Fermi level N (0) (g/2 in equation (3.58),
1/d and 3A/8EF in equation (2.1)) and constant single-particle matrix elements
V we get

∂�E (p)
ν (ω)

∂ω

∣∣∣∣∣ ≈ −N (0)
∫ ∞

0

V 2de

(e + �ωλ)2
(9.27)

= −N (0)
V 2

�ωλ
.

The core correlation part of the self-energy gives an equal contribution so that
the total value is

∂�Eν(ω)

∂ω

∣∣∣∣ = −2N (0)
V 2

�ωλ
. (9.28)

Consequently the ω-mass defined in equation (9.21) is

mω = m

(
1− ∂�E (p)

ν (ω)

∂ω

)
= m(1+ λp-v). (9.29)

The quantity λp-v is defined by

λp-v = N (0)
2V 2

�ωλ
= N (0)gp-v, (9.30)

where

gp-v = 2V 2

�ωλ
, (9.31)

is a particle-vibration coupling parameter. The factor (1+ λp-v) is known as the
mass enhancement factor.

The vibration excited by a nucleon interacting with the surface can be absorbed
by a second nucleon as shown in Fig. 8.3(c), giving rise to an induced interaction.
In this section we are interested in the induced interaction which contributes to
pairing. Nucleons in time-reversed states |ν〉 and |ν̄〉 with energies ε exchange
a phonon and make a transition to final states

∣∣ν ′〉 and
∣∣ν̄ ′〉 with energies ε′ as

illustrated in the inset of Fig. 10.1. The transition matrix element is

vνν ′ = 2V 2(ν, ν ′; λ)

εν − (εν ′ + �ωλ)
. (9.32)

The factor 2 arises because there are two possible processes each giving the same
matrix element: the phonon may be emitted by the state |ν〉 and absorbed by |ν̄〉,
and vice versa. The matrix element is not symmetric in the initial and final state.

https://doi.org/10.1017/9781009401920.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401920.010


9.3 The ω-mass and the induced interaction 217

A symmetrized form can be obtained by interchanging the initial and final states
and averaging

vνν ′ = V 2(ν, ν ′; λ)

εν − (εν ′ + �ωλ)
+ V 2(ν, ν ′; λ)

εν ′ − (εν + �ωλ)
(9.33)

= 2�ωλV 2(ν, ν ′; λ)

(εν − εν ′)2 − (�ωλ)2
. (9.34)

For εν ≈ εν ′ ≈ εF and assuming a constant particle-vibration coupling matrix
elements V , one obtains

vνν ′ = −2V 2

�ωλ
= −gp-v. (9.35)

Making use of typical values of λp-v ≈ 0.6 (see equation (9.9) and Fig. 9.6)
and N (0) ≈ 3.4 MeV−1 (e.g. 120Sn, see Fig. 8.4 and discussion following (8.21))
one obtains from equations (9.30) and (9.35) v̄ = −0.2 MeV (see also Section
10.2, discussion in paragraph before equation (10.20)).

The bare nucleon–nucleon interaction is essential for the production of pair
correlations in nuclei, but the induced interaction due to phonon exchange also
contributes. In order to assess the importance of the induced interaction we make
an estimate of the pairing gap, neglecting the bare interaction completely. The
pairing gap equation with the interaction vνν ′ = −gp-v is

� = gp-v

∑
ν>0

�

2Eν
. (9.36)

By approximating the sum by an integral this relation can be written as

1 = gp-v N (0)
∫ ωD

−ωD

de
1√

e2 +�2
≈ gp-v N (0) sinh−1

(ωD

�

)
, (9.37)

where N (0) is the density of levels at the Fermi energy for one-spin orientation,
and ωD is a typical energy associated with surface vibrations. From the relation
above one obtains

� = ωD

(
sinh

(
1

λp-v

))−1

. (9.38)

In the case in which λp-v � 1 (weak coupling limit) one can write (see (3.58))

� = 2ωD exp

(
− 1

λp-v

)
, (9.39)

while

� = ωDλp-v (9.40)
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218 Beyond mean field

in the case in which λp-v � 1 (strong coupling limit).
Making use of typical values of λp-v ≈ 0.6 (see (9.9)) and ωD ≈ 1–2 MeV, one

expects from equation (9.39) the induced interaction arising from the exchange
of low-lying collective surface vibrational states to give rise to pairing gaps of
the order of 0.4–0.8 MeV, i.e. pairing gaps which are of the order of 50% of the
empirical value 12/

√
A MeV.

The above treatment of the consequences the fermion–boson (particle–
vibration) coupling has on the properties of the single-particle states neglects
two major effects (see Sections 9.1 and 9.2, see also Schrieffer (1964) equation
(7.83); note that Z (p�) is the inverse of Zω). Firstly, the single-particle strength
is reduced from the value of 1 to a smaller value Zω (see equation (9.23)). Sec-
ondly, the single-particle states acquire a finite width �(ω). These effects can
change quantitatively the estimates given in Equations (9.39) and (9.40). In par-
ticular, considering only the effect of the width, i.e. setting Zω = 1, Morel and
Nozières (1962) found, for the case of an infinite system,

�(	k) =
∫

V
(
	k − 	k ′

) �(k ′)
2Ek ′

[
2

π
tanh−1

(
Ek ′

�k ′

)]
d3k ′

(2π )3
(9.41)

where 	k is the momentum of the single particle and V (	k − 	k ′) is the (state
dependent) two-body interaction. The effect of the bracketed factor is to cut off
the integral when the imaginary part �k reaches the same magnitude as Ek , thus
reducing the prefactor appearing in equations (9.39) and (9.40) (see also Baldo
et al. (2002)).

The fact that there is an explicit relation between the value of the induced
pairing interaction, of the ω-mass, of the occupation number Zω and of the
damping width�(ω) is closely connected to sum rule arguments (Ward identities)
relating self-energy and vertex correction processes to particle conservation (see
Section 8.3.4 and Fig. 8.16) (see also Mahan (1981)).

Note that one has also neglected some of these relations and effects when
discussing the results displayed in Fig. 8.6 and 8.9. They are taken up in Section
10.4, in connection with the results displayed in Fig. 10.16 (see also Appendix H,
Section H.4, as well as Terasaki et al. (2002a, 2002b)).

Let us close this section by relating equation (9.40) to the single j-shell equa-
tion (H.30). Because N (0) =∑

j � j/2ωD = �/2ωD, where� j = (2 j + 1)/2,
equation (9.40) can also be written as

� = 1

2
gp-v�. (9.42)
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