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Abstract. Approximate asymptotic solutions for rotating MHD winds are 
obtained analytically in terms of the first integrals of the motion. It is shown 
that the paraxial region of such winds is a line-shaped boundary layer which 
has, even at large distances, the structure of a pressure-supported current 
pinch. A necessary condition for cylindrically focused asymptotics to be 
possible is derived. A simplified model by which the asymptotic structure 
of such winds can be obtained in terms of general boundary conditions at 
the wind source is introduced. Results of semi numerical solutions of the 
model are reported. The model is analytically solved in the limit of very fast 
rotators, giving in this particular case an explicit and complete description 
of the wind outputs and asymptotic structure in terms of arbitrary bound-
ary conditions at the wind source. 

1. Introduction 

Young Stellar Objects have collimated outflows as do other types of more 
exotic astrophysical objects, such as Active Galactic Nuclei. It has been 
suggested that the reason for the focusing of these outflows could be found 
in the action of the "magnetic hoop stress" which develops in MHD winds as 
a result of their rotation. Due to flux freezing, rotation builds an azimuthal 
(or "toroidal") component BQ of the magnetic field which is supported 
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by a "poloidal" (i.e. in the meridional plane) electric current density jp. 

By Ampere's law the cross product jp χ B$ has a component, the "hoop 
stress" or "pinching force", which pushes the plasma to the rotation axis, 
while its component along the poloidal magnetic field Bp causes magnetic 
acceleration of the wind. The azimuthal force jp χ Bp exerts a torque on 
the wind which is ultimately transmitted to the wind source. 
The pinching force competes with other forces, such as the centrifugal force, 
the gas pressure or the poloidal magnetic pressure and tension je χ Bp, the 
sum of which is generally oriented outwards in the asymptotic region of the 
flow. The wind will be turned into a collimated jet if the pinching force 
dominates over these other forces. We have shown this to be generally the 
case for polytropic non-relativistic winds (Heyvaerts and Norman 1989), 
and found that the focusing of the flow may be to a cylindrical type of 
geometry if the asymptotic total poloidal current per hemisphere (lim for 
ζ - » oo / jp.dS) does not vanish, while it must be to a parabolic type of 
geometry if it does. However, these very general results have left open the 
question of deciding from an examination of boundary conditions on the 
wind source which of these possible situations was to be met, nor did they 
provide any explicit asymptotic solution for the wind flow nor for the global 
energy, mass and angular momentum outputs of such winds. 
It is the purpose of this communication to report progress on these issues. 

2. General Properties of Magnetized Rotating Winds 

The basics of stationary, axisymmetric, rotating, perfect-MHD winds are 
well known from the works of Weber and Davis (1967) who described the 
field-aligned dynamics and of Heinemann and Olbert (1978) and Okamoto 
(1975) who described the cross-field force balance. A recent introduction to 
this subject is given by Heyvaerts (1996). The main results of this classical 
analysis are as follows. 

2.1. REPRESENTATION OF THE MAGNETIC FIELD 

Cylindrical coordinates r, θ, ζ and the MKSA system of units are used, μο 
being the magnetic permeability of vacuum. The axisymmetric stationary 
magnetic field, as any other vector, can be split into a poloidal part and a 
toroidal part. It can be represented as 

+ (1) 
r 

BQ and a are functions of r and ζ and SQ is the unit azimuthal vector. Field 
lines of the poloidal part of magnetic field are lines of constant a(r,z). 
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Magnetic surfaces are generated by rotation about the polar axis of such 
lines. They form a family of nested axisymmetric surfaces on which field 
lines of the total field Β are drawn. 

2.2. SURFACE FUNCTIONS 

The toroidal component of the induction equation in the perfect MHD 
limit, Ε + ν χ Β = 0, integrates as pvp — aBp and the mass conservation 
equation implies that α is a constant on a magnetic surface. Such functions 
are called "surface functions". 

a(r, z) = a(a(r, z)) = a(a) (2) 

The poloidal component of the induction equation implies that the electric 
potential φ is a surface function, φ(α). The angular velocity "of the field", 
Ω, is defined to be Ω (a) = άφ/da and the poloidal part of the induction 
equation can be written in terms of it as 

V0 = rQ(a) + a(a)Be/p (3) 

The flow then consists of a field-aligned part combined with the rotation 
of the field, a result known as the isorotation law. Since the plasma flows 
on magnetic surfaces, the function Q involved in the polytropic relation 
Ρ = Qp1 is itself a surface function, Q(a). The toroidal component of the 
equation of motion integrates into an angular momentum conservation law 
which states that the specific angular momentum (i.e. per unit escaping 
mass) is conserved following the fluid motion, defining yet another surface 
function L(a) 

rvg - rBe/(p0a) = L(a) (4) 

which consists of a kinetic and magnetic part. The equation of motion 
projected on the poloidal magnetic field also integrates into an energy con-
servation law which states that the total specific energy, in kinetic and 
magnetic forms, is conserved following the fluid motion and equals another 
surface function E(a): 

\{V2P + vl) + - ^ Q ( a ) ^ - 1 + G(r,z) - = E(a) (5) 
2 7 - I μ0α 

This equation is referred to as the Bernoulli equation. G(r, z) is the grav-
itational potential. At this stage all of the relevant equations have been 
integrated once but for the component of the equation of motion perpen-
dicular to magnetic surfaces, and five surface functions, or "first-integrals" 
or "constants of the motion", have been introduced, namely: 

α(α), Ω(α), Q(a), L(a), E(a) (6) 
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Not all of them, however, are determined by the boundary conditions at 
the wind source. Only Q(a) and Ω (a) can be known that way. The other 
three have to be determined from regularity requirements described below. 

2.3. ALFVEN DENSITY AND RADIUS 

It is possible to eliminate the toroidal components by using the angular 
momentum conservation law and the isorotation law. They can be expressed 
as: 

L ρ L- Γ 2 Ω _ 
ve = - + - — o — : ( 7 ) 

r μ0α
2 - ρ 

Βθ = 
μοαρ L — Γ 2 Ω 

r μ0α
2 - ρ 

( 8 ) 

For regularity it is necessary that when the density equals the Alfvén den-
sity, ρ a, defined by ρ a = μο<22, the radius r equals the Alfvén radius, r^, 
defined as ta = L/Ω. Both ρ a and τ a depend on the magnetic surface. The 
ratio pa/Ρ is the square of the alfvénic Mach number of the poloidal flow 
relative to the poloidal Alfvén velocity. The flow then passes the Alfvén 
speed at this point which for this reason is called the Alfvén point. 

2.4. TRANSFIELD EQUATION 

The equation of motion projected perpendicular to the magnetic surface 
gives a non-linear partial differential equation for the function a(r,z). This 
so-called generalized Grad-Shafranoff equation or transfield equation deter-
mines the shape of magnetic surfaces. It can be written as: 

a 

pr 

d a da 1 ïd_l da d_lda 

popr [dz r dz dr r dr 

d a da 

dz pr dz drprdr\ 

7 —1 a ypoa'—p; 

ρ (L' - Γ 2 Ω ' ) ( £ - Γ 2 Ω ) LV 

r2 μοα2 — ρ r2 
(9) 

where a notation like V means dL/da. The fluid density ρ is implicitly given 
in terms of r and a by the Bernoulli equation B(p,r) = E, the Bernoulli 
function Β being defined by: 

B = 1 a ( V o ) 2 

2 p2r2 
+G+ 

, 7 - 1 

7 - 1 
-pU 

2 r 2

A - r 2 l ü 2 r \ ( pAr\ - pr2 

PA-Ρ 2 r2 \r2

A(pA-p) 
(10) 
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The problem reduces to solving the coupled system of Bernoulli and trans-

field equations. However, at this point, three surface functions are left un-

determined. 

2.5. CRITICALITY EQUATIONS 

It is known that no solution of the algebraic Bernoulli equation can be found 

that is regular from small to large r's unless this solution passes points 

where the differential of the Bernoulli function vanishes. These "critical 

points" are located where the poloidal velocity equals the speed of either the 

slow or the fast magnetosonic mode for propagation along the poloidal field 

(Weber and Davis 1967, Heinemann and Olbert 1978; see also Heyvaerts 

1996). The solution then passes in the (r-p) plane a "slow point" and a 

"fast point". The condition that the differential of the Bernoulli function 

vanishes at these points gives implicitly their position and density, r s , ps 

and r/, pj in terms of Ω, Q, a, L. Moreover, one must have 

which provides two equations, the so-called criticality relations, which relate 

the five surface functions Ω, Q, a, L and E. 

2.6. ALFVÉN REGULARITY EQUATION 

All transalfvénic solutions to the Bernoulli equation pass the Alfvén point 

(ΤΑ, PA) SO that no condition has to be imposed at that point for its solution. 

Not so, however, for the transfield equation. It is now well known that this 

equation is singular at the Alfvén surface, the locus of Alfvén points, where 

all of its highest order derivative terms vanish (Sakurai 1985, Heyvaerts and 

Norman 1989, Heyvaerts 1996). A more direct and physical approach to the 

singularity of the transfield equation at the Alfvén surface is as follows. The 

transfield equation can be given the following form: 

E = B(ps,rs)=Fs(n,Q,a,L) (11) 

E = B(pf,rf) = Ff(n,Q,a,L) (12) 

(V χ Bp) χ Bp 

POP 
- (V χ ΰρ) χ ΰρ 

V a 2 

Va 
= Ε'-

7 - 1 

a1 ρρΑ ( L — Γ 2 Ω 

ot r2 I PA- ρ 

2 
ρ (V - r2Ü'){L - Γ 2 Ω ) LL' 

r2 ΡΑ — Ρ r2 

(13) 

The velocity is related to the field by pvp = aBp. Note also that the mod-

ulus of the poloidal velocity is implicitly given by the Bernoulli equation. 
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The transfield equation at the Alfvén surface becomes an ordinary differ-

ential equation which relates these five functions of a and the angle ΦΑ(Ο) 

So, it must be possible to turn the transfield equation into an equation for 
the direction of the poloidal velocity. For that we write 

(14) 

and insert this in the transfield equation, transforming it into an equa-

tion for the curvature of poloidal field lines, dip/ds, s being the curvilinear 

abcissa along such a field line. Let also η = — V a / | V a | be the unit vec-

tor normal to magnetic surfaces. We obtain a new form of the transfield 

equation: 

(15) 

All the second order derivative terms are gathered in the l.h.s of this equa-
tion and vanish at the Alfvén surface, where ρ = ρ A · The physical reason 
why the curvature term vanishes at the Alfvén point is that this term sums 
the inward poloidal magnetic curvature force, Bp/μο7£, where TZ is the ra-
dius of curvature, with the outward centrifugal force due to the curvature 
of the poloidal motion pvp/TZ. At the Alfvén point these two forces bal-
ance each other exactly. This is why at this position the transfield equation 
degenerates into an ordinary differential equation involving functions of a, 
expressing cross field balance of "locally" defined forces. On the Alfvén sur-
face the transfield equation reduces to the vanishing of the right hand side 
of equation (15), where the ratio (L — Γ2Ω)/(ΡΑ — ρ) must be understood 
in a limit sense. Its value can be expressed in terms of 

(16) 

In this expression the limit is to be taken at constant a approaching the 
Alfvén point, as indicated by the subscript (a, A) on the r.h.s. The value of 
q depends on the solution of the Bernoulli equation achieved on magnetic 
surface a, so it is a function of the five surface functions, i.e.: 

(17) 
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(18) 

that the tangent to the poloidal field line a makes with the equatorial plane 
at the Alfvén point. It can be written as (Heyvaerts and Norman, 1989): 

a' ^ | 8ίηφΑ | E' Q'p\x 

a rA rA\Va\A vpA (7 - l)vpA 

vf>A \qz a q τ A \l ) 

Failure to satisfy it at the Alfvén surface would cause the curvature of 
calculated poloidal field lines to become infinite at the Alfvén point and 
these lines to get an unphysical sharp kink there. 

This Alfvén regularity equation provides another relation among the five 
surface functions E, Ω, a. Together with the criticality relations, 
it provides the means for determining the surface functions which are not 
directly given by boundary conditions. The angle ΦΑ which appears in 
equation (18) is implicitly a function of them, resulting from the solution 
of the transfield equation between the wind source and the Alfvén surface. 

3. The Asymptotic Transfield Equation 

It is possible to derive an asymptotic form of the transfield equation in 
those regions of the flow where the axial distance becomes very large as 
compared to the Alfvén radius, r^. We have shown that in this limit the 
potentially dominant terms of the transfield equation can be written as 

as a \ μοα J ρ 

Examination of the terms of this equation further shows that the curva-
ture term can be neglected in a first approximation and that the pressure 
term must be considered only in the vicinity of the polar axis and of the 
equatorial plane. Indeed, the hoop stress (first term on the r.h.s) cannot 
dominate near the axis because the current enclosed in a circle centered 
on the axis vanishes with its radius. On the other hand, when symmetry 
is of a dipolar type, the field vanishes at the equatorial plane. There is 
then a rapid change, a jump, in toroidal field at its crossing, implying a 
sheet-like current concentration at the equator. Plasma in this region finds 
a sheet-pinch type of equilibrium, as indeed observed in the solar wind, the 
equatorial sheet being in this case warped. 
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3.1. ASYMPTOTIC HAMILTON-JACOBI EQUATION 

So, in the lowest order approximation the transfield equation simply reduces 
in the "field", i.e. away from the equatorial and polar regions, to 

Va - VJ = 0 (20) 

where J, defined by J = ρτ2Ω/α is proportional to the electric current 
enclosed in a circle centered on the axis and passing at the point under 
consideration. Indeed, pr2 is proportional to TBQ in this limit. This is a 
generalized form of Heyvaerts and Norman's (1989) solvability condition at 
infinity. This equation integrates as / = I(R) where R is a variable that 
labels orthogonal trajectories to poloidal field lines in the meridional plane. 
We can take it as being the value of ζ on the axis on such a curve. Two cases 
must be considered according to whether the current I(R) approaches zero 
for large R or not. According to Heyvaerts and Norman (1989) and Hey-
vaerts and Norman (1996) the magnetic surfaces would asymptotically ap-
proach paraboloids in the former case while in the second case they should 
approach, close to the axis, a cylindrical structure, possibly nested into a 
conical one. That this is indeed so can be seen directly from this equation, 
for when I(R) approaches a non-vanishing constant / the asymptotic Grad 
Shafranoff equation integrates as 

= ; (21) 

which can be transformed into the the following Hamilton-Jacobi equation 
for the function S(a) defined by: 

fi|Va| = | V 5 | = I (22) Iy/2(E - m/μοα) 

This reduces the search for orthogonal trajectories to magnetic surfaces to 
a ray tracing problem in a medium with a refractive index proportional to 
1/r. The Hamilton Jacobi equation is easy to solve analytically that way 
in full generality. These orthogonal trajectories are found to form a family 
of circles centered on the rotation axis. Imposing the boundary condition 
that they become perpendicular to the equatorial plane at large r's further 
shows that they must asymptotically tend to be centered on the origin. 
Hence, those magnetic surfaces on which r can actually reach infinitely 
large values approach a family of nested cones, as expected. The question 
of the connection between the cylindrical and the conical part of the flow 
is considered in subsection 3.3. 
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3.2. ASYMPTOTIC PARABOLIC SOLUTION 

When the poloidal current asymptotically vanishes, the transfield equation 
still integrates as / = I(R) in regions which are neither close to the polar 
axis nor to the equator. It is possible to turn this into a solution valid in all 
the asymptotic field when I(R) declines only very slowly to zero, so that a 
W K B method can be used. Actually, in that case, the solution is similar to 
one with a constant J in large regions of the asymptotic domain. In such 
regions orthogonal trajectories to poloidal field lines must then be close to 
circles centered on the origin. The distribution of flux along them can be 
calculated as well as the structure of the polar boundary layer at distance 
R from the origin. Treating locally the magnetic surfaces approximately as 
a set of nested cones leads us to solve along circles centered on the origin 
the asymptotic transfield equation 

(23) 

where η is the normal to magnetic surfaces and the curvature term has 
been neglected, a consistent treatment when the W K B method is indeed 
justified. In the "field", the pressure term is also negligible and the equation 
integrates into 

The fluid velocity at distance R has been taken equal to its asymptotic 
value. When the flux is distributed with angle as α(ψ), r\Va\ = simp άα/αψ, 
and φ is found to be given in terms of a by: 

This solution is valid away from the polar region. It can be regarded as 
valid near the equator as well if the equatorial sheet-like current is treated 
as a surface singularity. Near the pole, the surface functions Ω, a and Q 
can be taken as almost constant and equal to their polar values Ωο, αο, Qo-
The transfield equation with its pressure term integrates approximately as 

with the same integration constant C(R) as in eq. (24). A length scale I 
defined by 

1 

(27) 

(26) 

(25) 

(24) 
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3.3. A NECESSARY CONDITION FOR CYLINDRICAL ASYMPTOTICS 

In the case of cylindrical asymptotics, when the jet is unconfined by an 
external pressure, it is necessary that the solution fills all space for otherwise 
the total pressure balance could not be satisfied at the jet outer boundary. 
The radius r ^ a ) , of the last "cylindrical" magnetic surfaces must approach 
infinity, for otherwise a vacuum gap would be left between the cylindrically 
focused region and the outer conical one, if any. The asymptotic cylindrical 
radius of such lines is given by the following equation, derived from the 
asymptotic transfield equation in the "field" zone: 

thus appears naturally in this equation, which can be solved to give the 
relation between flux and radius in the polar boundary layer parametrically 
in terms of χ = p/po(R), where po(R) is the density on the axis at distance 
R: 

(28) 

(29) 

The condition that the solution in the polar boundary layer asymptotically 

matches the outer "field" solution can be reduced to the following equation 

for the ratio no = Po(R)/pAO: 

(30) 

The second term in the parenthesis on the l.h.s can be neglected for an 
approximate solution. The poloidal current is seen to vanish at large i?'s. 
The shape of magnetic surfaces can be calculated. In the region intermediate 
between the polar boundary layer and the equatorial region, they become 
a set of nested paraboloids of variable exponent, m(a) given by 

(31) 

(32) 

In the polar boundary layer, r is found proportional to (log z)1'2^1 lK 

(33) 
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For Too to diverge the quantity under the square root denominator must 
have a double zero at the value a = a* which corresponds to the last cylin-
drical magnetic surface. For positiveness (αΕ/Ω) must reach its minimum 
there. The poloidal current brought per hemisphere to infinity must be this 
minimum value and the amount of flux trapped in the asymptotically cylin-
drical region is 2πα*. One should note that this critérium is unfortunately 
not expressed directly in terms of the boundary conditions at the wind 
source, since it requires a knowledge of the surface functions, which can be 
known only after solving for the flow near the source. 

4. A Simplified Model 

4.1. DESCRIPTION OF THE MODEL 

All our results presented above have regarded the surface functions as 
known. In reality they have to be determined by solving the criticality 
relations and Alfvén regularity conditions, which implicitly requires a so-
lution for the shape of magnetic surfaces near the source. No exact general 
analytical solution can be obtained. Only solutions of a self-similar or sepa-
rable type are known, which cannot cope with general boundary conditions. 
Numerical solutions are difficult to construct. To investigate the relation 
between the boundary conditions at the wind source and the asymptotic 
structure, we therefore adopted a strategy that sacrifices exactness to allow 
for general boundary conditions. We study a simplified model, which makes 
the following simplifications and assumptions. 

(a) The wind-emitting object is treated as a point source, be it a star or 
an accretion disk. 

(b) The magnetic field configuration is regarded as a-priori known from 
the wind source to the fast critical surface. This is our main simplification. 
Such an assumption is certainly justified between the source and the Alfvén 
surface, where the magnetic energy dominates over the kinetic energy of the 
flow, but it is weaker further out. In the present state of our work, a model 
where the magnetic surfaces in this region are represented as nested cones 
has been studied. This model then consists of a family of off-equator Weber 
Davis flows in cross field equilibrium with each other at their Alfvén surface. 

(c) Cross field balance is not imposed everywhere, but only near the wind 
source, at the Alfvén surface, where it takes the form of the Alfvén regular-
ity equation, and at infinity, where it determines the asymptotic structure. 
For low-ß conditions near the source, a split-monopole field approximately 
solves the transfield equation there. 

(d) We impose on each magnetic surface the slow mode and fast mode 
criticality relations, which is easy thanks to assumption (b). We could solve 
for the field-aligned dynamics from the source to the fast surface, but did 
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not explicitly do so. This set of assumptions allows to solve for the surface 
functions within the framework of this model, which, we recall, is not an 
exact representation of the reality, though it can be improved iteratively. 
We checked by try and error that the fast critical point tends to be located 
in regions where magnetic surfaces do not grossly deviate from conical 
geometry, so that assumption (b) is in practice somewhat better than could 
anticipated. 

4.2. SEMI-NUMERICAL RESULTS FOR CONFINED JETS 

We solved this model for a variety of different conditions for rotation (solid 
body or not) and distribution of the "entropy" surface function Q, assum-
ing the jet to be externally confined by a plasma of very low density and of 
a given, uniform, pressure. This extra assumption has been made both for 
simplicity and to incorporate a relevant physical aspect of actual jets. This 
uniform confinement forces a cylindrically symmetric asymptotic structure 
with a limited jet radius, calculated by imposing continuity of the total 
pressure. The methods for analytically/numerically solving the model have 
been presented at this conference by T. Lery, and are reported in the poster 
proceedings book and in Lery et al. (1997). It appeared that electric current 
and mass flow profiles are more concentrated for fast than for slow rota-
tors. An important aspect of these results is that the total poloidal current 
brought to infinity decreases regularly when the confining pressure is de-
creased, with a much slower decline for faster rotators, and a very small 
one indeed for very fast rotators (Lery et al. 1997). This seems to indicate 
that fast rotators are more likely to give rise to asymptotically cylindrical 
structures when unconfined. This is also supported by the study of the vari-
ations of the function αΕ/Ω given by the model. This function appears to 
have a more pronounced minimum for faster rotators (Norman et al. 1997). 

4.3. ANALYTICAL SOLUTION FOR VERY FAST ROTATORS 

We have obtained an explicit solution of the equations of the model in 
the limit case of a very fast rotator. In that case, it turned out that a 
cylindrically symmetric unconfined asymptotic solution is possible, though 
perhaps not unique. It is described below. A split monopole model is as-
sumed from the source to the fast surface, the angle of the surface a with 
the equator being #o(a). The degree of rotation on a magnetic surface can 
be measured by the parameter ω = ΩΓΑ/VPA while the specific energy can 
be similarly normalized to the square of Alfvén velocity at the Alfvén point 
as e = 2E/vpA. In terms of these parameters, the criticality relations can 
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It decreases towards the equator, as it should to allow for cylindrical asymp-

totics, but diverges at the polar axis. Note also that RA approaches zero 

at the pole according to this expression. These pathologies at the pole are 

related to the fact that the wind on the polar axis cannot be in the fast 

rotator regime. The fast rotator approximation then breaks down in some 

region near the pole, which should be treated as a boundary layer. Simi-

lar calculations to those described above, but carried in the slow rotator 

regime, give the Alfvén regularity relation in the form: 

be written, in the limit of very fast rotators (Ω —> oo), as: 

(34) 

(35) 

So, for very fast Weber-Davis types of rotators, 

Given these results and the fact that the shape of the magnetic surfaces 

is taken as known, the Alfvén regularity equation becomes a logarithmic 

differential in a which can be integrated, C being an integration constant, 

as: 

(36) 

Prom these relations the unknown surface functions, E, a and the spherical 

distance to the Alfvén point, RA, can be calculated and expressed in terms 

of a constant Κ which derives from the constant C above as: 

(37) 

(38) 

(39) 

(40) 

The function αΕ/Ω is then expressed as 

(41) 
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and the criticality relations can be similarly solved to obtain E, a and Ra-

The slow-rotator paraxial solution can then be matched to the fast rotator 

solution by demanding continuity of the Alfvén surface at the flux variable 

a where the regime changes. This relates the two integration constants Κ 

and Co. As said above, the profile of αΕ/Ω allows in this case for cylindrical 

asymptotics, with a* = A, the total flux. The solution is entirely cylindri-

cally focused at infinity. Once the surface functions have been determined, 

it is possible to calculate the total jet outputs, i.e., mass loss, torque and 

thrust. We do not present these expressions explicitly here for lack of space 

(Heyvaerts and Norman, 1997). Each of them contains a contribution from 

the "field", where the fast rotator approximation applies, and a contribu-

tion from the polar region which is in the slow rotator regime. The total 

current emitted per hemisphere is 2π//μο, and J is the minimum value of 

αΕ/Ω, expressed in terms of integration constant Κ as: 

(42) 

In the paraxial region, gas pressure must be considered, even far from the 

source. Regarding Ω, a and Ε as approximately constant in this region, a 

solution to the transfield equation can be found in parametric form, much 

as in subsection (3.2), namely: 

and if 

(46) 

(47) 

(43) 

(44) 

In the region where gas pressure is negligible and S> TA the solution 
takes the form 

The polar boundary layer solution asymptotically matches this far field 

solution if the scale of the "polar pinch" is 

(45) 

https://doi.org/10.1017/S0074180900061702 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900061702


ASYMPTOTICS OF ROTATING MHD WINDS 289 

ά = 2ΤΓΛ/8(81 - 5 4 ^ / f ) Ω ^ 2 / 2 λ / 2 π μ0 I s"-Vf 

108(168^5 - 162)π 2 μο£ο / 2 \ Ω ° Α / 

5. W i n d s , Breezes and Asymptotics 

It is interesting here to comment on whether the flow can become faster 
than the fast mode speed at infinity or not. If, on a certain magnetic surface, 
the asymptotic poloidal wind speed Vqq is to exceed the fast mode speed, 
the following inequality must be satisfied 

lim < vi (50) 

because the fast mode speed is in the limit of zero pressure the Alfvén speed 
associated to the total magnetic field. For a magnetic surface which diverges 
at large ζ from the polar axis or approaches a cylindrical radius much larger 
than its Alfvén radius, = 2(Ε — ΙΩ/μοα) and pr2 approaches αϊ/Ω. The 
preceding inequality can thus be written as 

If the flow approaches a parabolic shape and / approaches 0 this inequality 
is satisfied since Ε is positive. However, as shown in subsection 3.3, if the 
flow contains an asymptotically cylindrical part, (Ε — ΙΩ/μ^α) must van-
ish on the last cylindrical magnetic surface. We then meet a contradiction 

This latter relation gives the current that flows in the pinch in terms of the 
pressure which it confines, and is akin to relations known as Bennet pinch 
relations in the field of laboratory plasma confinement. The density on the 
axis of the jet at large distances is then a function of the current that it 
supports, itself related to the total mass loss rate. The latter is actually 
obtained from a by the quadrature: 

M — A \ cos0o α(α(0 ο)) άθ0 (48) 
Jo 

Since a is expressed both in the fast and slow rotator region in terms of 
the integration constant Κ (or Co which is related to it) M is expressible 
in terms of Κ and conversely. We have seen above how the total electric 
current / emitted by the jet is expressed in terms of Κ. This relation can 
be turned into a (rather complicated) relation between J and M. When the 
current J is weak we find that this relation becomes approximately 
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since a finite current current should flow in such a cylindrical region while 

this is not allowed by the above inequality. This shows that the flow can-

not pass the fast mode speed on this "last cylindrical" surface and must 

therefore have the character of a "breeze" rather than of a "wind". An-

other way to state this is to say that the fast point must be rejected to 

infinity on this magnetic surface (Heyvaerts and Norman, 1989). However, 

if the flow becomes super-fast-mode on magnetic surfaces polewards from 

the last cylindrical one, so that the fast point only approaches infinity when 

the last cylindrical surface is approached, the above inequality turns into 

an equality, and / is still seen to vanish on the last cylindrical surface. 

It thus appears that MHD "winds" can only be cylindrically focused if 

bordered by a region where the wind remains strictly sub-fast-mode. The 

approximate analytical solution presented above for the very fast rotator 

has, in the adopted quasi Weber Davis description of the flow at finite dis-

tances, its fast point rejected to infinity on all magnetic surfaces which are 

in the fast rotator regime. This is implied by the special value of ( 3 / 2 ) 3 / 2 

taken by the parameter ω (Heyvaerts, 1996). This solution would subsist 

in a more elaborate description of the magnetic configuration only if the 

flow on the outer-most magnetic surfaces would turn from asymptotically 

fast-critical to strictly sub-fast. In the quasi Weber-Davis representation, 

rejection of the fast point to infinity is possible only for infinitely fast ro-

tators. Therefore cylindrical collimation appears in this simplified model 

as a limit-property, which is also consistent with the results reported in 

subsection 4.2. 
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