Canad. J. Math. Vol. 60 (2), 2008 pp. 334-347

Low-Pass Filters and Scaling Functions for Multivariable Wavelets

Eva Curry

Abstract. We show that a characterization of scaling functions for multiresolution analyses given by Hernández and Weiss and that a characterization of low-pass filters given by Gundy both hold for multivariable multiresolution analyses.

1 Introduction

In this paper we investigate low-pass filters and scaling functions associated with multivariable multiresolution analyses. In the multivariable setting, instead of the standard dilation by 2 we use a dilation matrix.

Definition 1.1 A dilation matrix is an $n \times n$ matrix A with integer entries, all of whose eigenvalues λ satisfy $|\lambda| > 1$.

Note that $q := |\det A|$ is an integer with $q \ge 2$. A dilation matrix A gives a mapping of the lattice \mathbb{Z}^n into itself with nontrivial cokernel. The definition of a dilation matrix does not ensure that all singular values of A are strictly greater than 1, so we may not have $||Ax||_{\ell_2} > ||x||_{\ell_2}$ for all $x \in \mathbb{Z}^n$. However there exists an integer $M \ge 1$ such that $||A^jx||_{\ell_2} > ||x||_{\ell_2}$ for all $j \ge M$ (see [1]). It can also be shown that $\mathbb{Z}^n/A(\mathbb{Z}^n)$ has q cosets [13].

Definition 1.2 Let *A* be an $n \times n$ dilation matrix. A *digit set* for *A* is a set containing exactly one representative of each coset of $\mathbb{Z}^n/A(\mathbb{Z}^n)$.

In *n* dimensions, a multiresolution analysis is defined as follows.

Definition 1.3 Let A be an $n \times n$ dilation matrix. A *multiresolution analysis* (MRA) associated with A is a nested sequence of subspaces

$$\cdots \subset V_{-2} \subset V_{-1} \subset V_0 \subset V_1 \subset V_2 \subset \cdots$$

of $L^2(\mathbb{R}^n)$ satisfying the following:

(i)
$$\bigcup_{i \in \mathbb{Z}} V_i = L^2(\mathbb{R}^n);$$

(ii)
$$\bigcap_{i \in \mathbb{Z}} V_i = \{0\};$$

(iii) $f(x) \in V_0$ if and only if $f(x-k) \in V_0$ for all $k \in \mathbb{Z}^n$;

Received by the editors July 6, 2005; revised March 26, 2006. AMS subject classification: Primary: 42C40; secondary: 60G35. Keywords: multivariable multiresolution analysis; low-pass filter; scaling function. ©Canadian Mathematical Society 2008.

- (iv) $f(x) \in V_j$ if and only if $f(Ax) \in V_{j+1}$ for all $j \in \mathbb{Z}$;
- (v) there exists a function $\phi \in V_0$, called a *scaling function*, such that the set

$$\{\phi_{0,k}(x):=\phi(x-k):\ k\in\mathbb{Z}^n\}$$

is a complete orthonormal basis for V_0 .

This generalization of multiresolution analyses beyond the case of dilation by 2 was originally introduced by Gröchenig and Madych [5], who showed that Haarlike scaling functions for multivariable MRAs (that is, scaling functions that can be written as the characteristic function of a set, $\phi = \chi_Q$) are associated with lattice self-affine tilings of \mathbb{R}^n by sets of the form

$$T = \left\{ \sum_{j=1}^{\infty} A^{-j} d_j : d_j \in D \right\}$$

where *D* is a digit set for *A*. The existence of such tilings has been studied by Lagarias and Wang [9-12]), He and Lau [7], Belock and Dobric [3], and the author [1, 2]. This paper investigates general multivariable MRAs. In Section 2 we generalize a characterization theorem for scaling functions given by Hernández and Weiss [8] to the multivariable setting.

As in the case of dilation by 2, a scaling function for a multivariable MRA satisfies a scaling equation

$$\phi(A^{-1}x) = \sum_{k \in \mathbb{Z}^n} h_k \phi(x-k)$$

for some coefficients h_k . Taking the Fourier transform of both sides, there exists a periodic function $m(\xi) \in L^2(\mathbb{T}^n)$ such that $\hat{\phi}(\xi) = m((A^*)^{-1}\xi)\hat{\phi}((A^*)^{-1}\xi)$.

Definition 1.4 A periodic function $m(\xi) \in L^2(\mathbb{T}^n)$ such that

$$\hat{\phi}(\xi) = m((A^*)^{-1}\xi)\hat{\phi}((A^*)^{-1}\xi)$$

is called a *low-pass filter* for the scaling function ϕ and associated multiresolution analysis.

In Section 3 we prove a characterization of low-pass filters, formulated by Gundy [6] in the case of dilation by 2, in the multivariable setting.

2 Scaling Functions

Hernández and Weiss give a characterization of scaling functions for multiresolution analyses associated with dilation by 2 [8, Theorem 5.2, Ch. 7]. Their characterization can be extended to the multivariable setting with few changes.

Theorem 2.1 Let A be an $n \times n$ dilation matrix. A function $\phi \in L^2(\mathbb{R}^n)$ is a scaling function for a multiresolution analysis under dilation by A if and only if

- (i) $\sum_{k \in \mathbb{Z}^n} |\hat{\phi}(\xi + k)|^2 = 1$ almost everywhere,
- (ii) $\lim_{j\to\infty} |\hat{\phi}((A^*)^{-j}\xi)| = 1$ almost everywhere,
- (iii) there exists a periodic function $m(\xi) \in L^2(\mathbb{T}^n)$ such that

$$\hat{\phi}(\xi) = m((A^*)^{-1}\xi)\hat{\phi}((A^*)^{-1}\xi)$$

almost everywhere (note that $m(\xi)$ is then a low-pass filter for ϕ).

Before proving this theorem, we need to know that the result of [8, Theorem 1.6, Ch. 2] still holds. This lemma shows that condition (ii) of the definition of an MRA is redundant.

Lemma 2.2 Let $\{V_j : j \in \mathbb{Z}\}$ be a sequence of subspaces of $L^2(\mathbb{R}^n)$ satisfying

- (i) $V_j \subset V_{j+1}$ for all $j \in \mathbb{Z}$ (the subspaces are nested),
- (ii) $f(x) \in V_j$ if and only if $f(Ax) \in V_{j+1}$ for all $j \in \mathbb{Z}$ (condition (iv) of the definition of an MRA),
- (iii) there exists a function $\phi \in V_0$, called a scaling function, such that the set

$$\{\phi_{0,k}(x) := \phi(x-k) : k \in \mathbb{Z}^n\}$$

is a complete orthonormal basis for V_0 *(condition* (v) *of the definition of an MRA). Then* $\bigcap_{i \in \mathbb{Z}} V_j = \{0\}$ *(condition (ii) of the definition of an MRA holds).*

Proof Suppose that there exists a non-zero function f in $\bigcap_{j \in \mathbb{Z}} V_j$. We may assume $||f||_2 = 1$. Also, since $f \in V_j$ for each $j \in \mathbb{Z}$, if we let $f_j(x) = q^{j/2} f(A^j x)$ (where $q = |\det A|$), then $f_j \in V_0$, by condition (ii) of the statement of the lemma. A change of variables shows that $||f_j||_2 = ||f||_2 = 1$. Since $\{\phi(\cdot - k) : k \in \mathbb{Z}^n\}$ is a basis for V_0 , we may write

$$f_j(x) = \sum_{k \in \mathbb{Z}^n} \alpha_k^j \phi(x-k)$$

for some constant coefficients α_k^j , with convergence in $L^2(\mathbb{R}^n)$ such that

$$\sum_{k \in \mathbb{Z}^n} |\alpha_k^j|^2 = ||f_j||_2^2 = 1.$$

Taking Fourier transforms, we get

$$q^{-j/2}\hat{f}((A^*)^{-j}\xi) = \hat{f}_j(\xi) = \sum_{k \in \mathbb{Z}^n} \alpha_k^j e^{-2\pi i k \cdot \xi} \hat{\phi}(\xi) = m_j(\xi) \hat{\phi}(\xi),$$

where $m_j(\xi) = \sum_{k \in \mathbb{Z}^n} \alpha_k^j e^{-2\pi i k \cdot \xi}$. Note that $m_j(\xi)$ is a \mathbb{Z}^n -periodic function, belonging to $L^2(\mathbb{T}^n)$, with L^2 -norm 1. Thus

$$\hat{f}(\xi) = q^{j/2} m_j((A^*)^j \xi) \hat{\phi}((A^*)^j \xi),$$

Low-Pass Filters and Scaling Functions for Multivariable Wavelets

and, for $j \ge 1$,

$$\int_{[1,2)^n} |\hat{f}(\xi)| \, d\xi \le q^{j/2} \Big(\int_{[1,2)^n} |m_j((A^*)^j \xi)|^2 \, d\xi \Big)^{1/2} \Big(\int_{[1,2)^n} |\hat{\phi}((A^*)^j \xi)|^2 \, d\xi \Big)^{1/2}.$$

Let *D* be a digit set for *A* as in Definition 1.2, and let

$$T = \{\sum_{j=1}^{\infty} A^{-j} d_j : d_j \in D\}.$$

Either the set *T* is congruent modulo \mathbb{Z}^n to the unit cube $[1, 2)^n$ (up to a set of measure zero), or a subset of *T* is congruent to $[1, 2)^n$ [13]. Thus we can use the periodicity of $m_i(\xi)$ to rewrite the first integral above, to see that

$$\int_{[1,2)^n} |\hat{f}(\xi)| \, d\xi \le q^{j/2} \Big(\int_T |m_j((A^*)^j \xi)|^2 \, d\xi \Big)^{1/2} \Big(\int_{[1,2)^n} |\hat{\phi}((A^*)^j \xi)|^2 \, d\xi \Big)^{1/2}.$$

Using a change of variables, $\mu = (A^*)^j \xi$, we then have

$$\begin{split} \int_{[1,2)^n} |\hat{f}(\xi)| \, d\xi &\leq q^{-j/2} \Big(\int_{(A^*)^{j}T} |m_j(\mu)|^2 \, d\mu \Big)^{1/2} \Big(\int_{(A^*)^{j}[1,2)^n} |\hat{\phi}(\mu)|^2 \, d\mu \Big)^{1/2} \\ &= \Big(q^{-j} \sum_{k \in D_{A,j}} \int_{T+k} |m_j(\mu)|^2 \, d\mu \Big)^{1/2} \Big(\int_{(A^*)^{j}[1,2)^n} |\hat{\phi}(\mu)|^2 \, d\mu \Big)^{1/2} \\ &\leq (1)^{1/2} \Big(\int_{(A^*)^{j}[1,2)^n} |\hat{\phi}(\mu)|^2 \, d\mu \Big)^{1/2}, \end{split}$$

where $D_{A,l} = \{k = \sum_{i=0}^{l-1} A^i d_i\}$ with the d_i in a digit set D for A. Note that there are q^j distinct elements in $D_{A,j-1}$. The last line in the above calculation follows from the \mathbb{Z}^n -periodicity of $m_i(\xi)$ and $(\int_E |m_i(\xi)|^2 d\xi)^{1/2} \leq 1$.

We recall that $\lim_{j\to\infty} \min \{\sigma : \sigma \text{ a singular value of } A^j\} = \infty$ and thus

$$\lim_{j \to \infty} \min \{ \|\mu\|_{\ell_2} : \mu \in (A^*)^j [1, 2)^n \} = \infty.$$

In particular, we can take j sufficiently large so that the set $(A^*)^j [1, 2)^n$ contains an arbitrarily small amount of the mass of the function $|\hat{\phi}(\mu)|^2$. Thus the integral in the last line of the above calculation tends to 0 as $j \to \infty$. A similar calculation shows that $\int_{(A^*)^j [1,2)^n} |\hat{f}(\xi)| d\xi = 0$ for any fixed $l \in \mathbb{Z}$. Thus we obtain that $\hat{f}(\xi) = 0$ almost everywhere on $\bigcup_{l \in \mathbb{Z}} (A^*)^l [1,2)^n$. We may apply this argument to any other set congruent to F and such that $|(A^*)^j \mu| \to \infty$ for every μ in the set. For example, for each $\xi \in \mathbb{R}^n$, $\xi \neq 0$, we may take the unit cube translated so that its closest vertex to the origin is at ξ . Then $\hat{f}(\xi) = 0$ for almost every $\xi \in \mathbb{R}^n$. This completes the proof of the lemma.

Proof of Theorem 2.1 First, suppose that ϕ is a scaling function for an MRA $\{V_i:$ $j \in \mathbb{Z}$. Then { $\phi(\cdot - k) : k \in \mathbb{Z}^n$ } is an orthonormal system in $L^2(\mathbb{R}^n)$, implying (i) (e.g., by [13, Proposition 5.7(ii)], which states that $\{f(\cdot - k) : k \in \mathbb{Z}^n\}$ is an orthonormal system if and only if $\sum_{k \in \mathbb{Z}^n} |\hat{f}(\xi + k)|^2 = 1$ almost everywhere). Let $F = [-\frac{1}{2}, \frac{1}{2})^n$ and $q = |\det A|$. We claim that

(1)
$$\lim_{j \to \infty} \int_{F} |\hat{\phi}((A^*)^{-j}\xi)|^2 d\xi = 1.$$

To see this, let f be the function such that $\hat{f} = \chi_F$, and let P_i be the projection onto V_j . Write $\phi_{j,k}(x) = q^{j/2}\phi(A^jx - k)$ for $j \in \mathbb{Z}, k \in \mathbb{Z}^n$. Then

$$\begin{split} \|P_{j}f\|_{2}^{2} &= \left\|\sum_{k\in\mathbb{Z}^{n}}\langle f,\phi_{j,k}\rangle\phi_{j,k}\right\|_{2}^{2} \\ &= \sum_{k\in\mathbb{Z}^{n}}\left|\int_{\mathbb{R}^{n}}\hat{f}(\xi)\overline{\phi_{j,-k}(\xi)}\,d\xi\right|^{2} \\ &= \sum_{k\in\mathbb{Z}^{n}}\left|\int_{\mathbb{R}^{n}}\hat{f}(\xi)q^{-j/2}e^{-2\pi ik\cdot\xi}\overline{\phi}((A^{*})^{-j}\xi)\,d\xi\right|^{2} \\ &= q^{j}\sum_{k\in\mathbb{Z}^{n}}\left|\int_{(A^{*})^{-j}F}\overline{\phi}(\mu)e^{-2\pi ik\cdot\mu}\,d\mu\right|^{2}. \end{split}$$

The last expression is q^j times the sum of the squares of the absolute values of the Fourier coefficients of the function $\chi_{(A^*)^{-j}F}\overline{\phi}$. Therefore, by the Plancherel theorem, it is equal to $q^j \int_{(A^*)^{-j}F} |\hat{\phi}(\mu)|^2 d\mu$. However, since $\{V_j : j \in \mathbb{Z}\}$ is dense in $L^2(\mathbb{R}^n)$, $\lim_{i\to\infty} \|P_i f\|_2^2 = \|f\|_2^2$. Thus this last expression tends to $\|\chi_F\|_2^2 = 1$ as $j\to\infty$.

A change of variables $\xi = (A^*)^{-j}\mu$ then gives us (1).

Since $|m(\xi)| \leq 1$ for almost every ξ and $\hat{\phi}(\xi) = m((A^*)^{-1}\xi)\hat{\phi}((A^*)^{-1}\xi)$, we must have $|\hat{\phi}((A^*)^{-j}\xi)|$ nondecreasing for almost every $\xi \in \mathbb{R}^n$ as $j \to \infty$. Let

$$g(\xi) = \lim_{j \to \infty} |\hat{\phi}((A^*)^{-j}\xi)|.$$

By condition (i) of the statement of the theorem, $|\hat{\phi}(\xi)| \leq 1$ almost everywhere. Together with (1) and the Lebesgue dominated convergence theorem, this gives us $\int_{E} g(\xi) d\xi = 1$. We now have condition (ii) of the statement of the theorem, since $0 \le g(\xi) \le 1$ almost everywhere.

Lastly, we have condition (iii) of the statement of the theorem by [13, Lemma 5.8], which states that a function f belongs to V_1 if and only if $\hat{f}(A^*\xi) = m_f(\xi)\hat{\phi}(\xi)$ for some \mathbb{Z}^n -periodic function $m_f(\xi)$.

Conversely, suppose that ϕ satisfies conditions (i), (ii), and (iii). We want to show that the definition of a multiresolution analysis is satisfied. Proposition 5.7(ii) of [13]

together with (i) imply that $\{\phi(\cdot - k) : k \in \mathbb{Z}^n\}$ is an orthonormal system. We define V_0 as the closure of the span of this system. Thus conditions (iii) and (v) of the definition of an MRA are satisfied. We define each V_j for $j \in \mathbb{Z}$ by

$$V_0 = \overline{\operatorname{span}\left\{\hat{\phi}(\cdot - k) : k \in \mathbb{Z}^n\right\}}; \qquad V_j = \{f : f(A^{-j} \cdot) \in V_0\} \text{ for } j \neq 0.$$

Then condition (iv) of the definition of an MRA is satisfied.

We claim furthermore that

$$V_j = \{ f : \hat{f}((A^*)^j \xi) = \mu_j(\xi) \hat{\phi}(\xi) \text{ for some } \mathbb{Z}^n \text{-periodic } \mu_j \in L^2(\mathbb{T}^n) \},\$$

since we may write $f(A^{-j} \cdot) \in V_0$ as a linear combination of $\phi(\cdot - k)$, $k \in \mathbb{Z}^n$, and then take Fourier transforms. By the periodicity of *m* and by (i), we have

$$\begin{split} 1 &= \sum_{k \in \mathbb{Z}^n} |\hat{\phi}(\xi + k)|^2 \\ &= \sum_{k \in \mathbb{Z}^n} |m((A^*)^{-1}\xi + (A^*)^{-1}k)|^2 |\hat{\phi}((A^*)^{-1}\xi + (A^*)^{-1}k)|^2 \\ &= \sum_{d \in D} |m((A^*)^{-1}(\xi + d))|^2 \sum_{\gamma \in \mathbb{Z}^n} |\hat{\phi}((A^*)^{-1}(\xi + d) + l)|^2 \\ &= \sum_{d \in D} |m((A^*)^{-1}(\xi + d))|^2 \end{split}$$

for almost every $\xi \in \mathbb{T}^n$ (where *D* is a digit set for *A*). In particular, $|m(\xi)| \leq 1$ for almost every $\xi \in \mathbb{T}^n$. Now in order to show that the subspaces $\{V_j\}$ are nested, we only need to show that $V_0 \subset V_1$. Given $f \in V_0$, we may write $\hat{f}(\xi) = \mu_0(\xi)\hat{\phi}(\xi)$ for some \mathbb{Z}^n -periodic function μ_0 . Then

$$\hat{f}(A^*\xi) = \mu_0(A^*\xi)\hat{\phi}(A^*\xi) = \mu_0(A^*\xi)m(\xi)\hat{\phi}(\xi).$$

Note that $\mu_0(A^*\xi)m(\xi)$ is \mathbb{Z}^n -periodic and is in $L^2(\mathbb{T}^n)$, since $|m(\xi)| \leq 1$ for almost every $\xi \in \mathbb{T}^n$. Thus $f \in V_1$.

Next we would like to show that $L^2(\mathbb{R}^n) = \overline{\bigcup_{j \in \mathbb{Z}} V_j}$. Let P_j be the projection onto V_j . It suffices to show that

$$||P_j f - f||_2^2 = ||f||_2^2 - ||P_j f||_2^2 \to 0 \text{ as } j \to \infty.$$

We may also assume that $f \in L^2(\mathbb{R}^n)$ is such that \hat{f} has compact support, so that for

E. Curry

sufficiently large $j \in \mathbb{Z}$, $\hat{f}((A^*)^j)$ has support in *F* (see [1, Lemma 5]). Then

$$\begin{split} \|P_{j}f\|_{2}^{2} &= q^{-j}\sum_{k\in\mathbb{Z}^{n}}\left|\int_{\mathbb{R}^{n}}f(t)\overline{\phi(A^{j}t-k)}q^{j}\,dt\right|^{2} \\ &= q^{-j}\sum_{k\in\mathbb{Z}^{n}}\left|\int_{\mathbb{R}^{n}}f(A^{-j}t)\overline{\phi(t-k)}\,dt\right|^{2} \\ &= q^{j}\sum_{k\in\mathbb{Z}^{n}}\left|\int_{F}\hat{f}((A^{*})^{j}\xi)\overline{\phi(\xi)}e^{2\pi ik\cdot\xi}\,d\xi\right|^{2} \\ &= q^{j}\int_{F}\left|\hat{f}((A^{*})^{j}\xi)\hat{\phi}(\xi)\right|^{2}d\xi \\ &= \int_{A^{j}F}\left|\hat{f}(\eta)\hat{\phi}((A^{*})^{-j}\eta)\right|^{2}d\eta. \end{split}$$

By the dominated convergence theorem, since $|\hat{\phi}(\xi)| \leq 1$, and by condition (ii),

$$\int_{A^{j}F} |\hat{f}(\eta)|^{2} |\hat{\phi}((A^{*})^{-j}\eta)|^{2} d\eta \to \int_{\mathbb{R}^{n}} |\hat{f}(\eta)|^{2} d\eta = \|f\|_{2}^{2}$$

as $j \to \infty$. Thus we have condition (i) of the definition of an MRA.

Lastly, condition (ii) of the definition of an MRA is a consequence of Lemma 2.2.

3 Low-Pass Filters

.

Let ϕ be a scaling function for a multiresolution analysis associated with an $n \times n$ dilation matrix *A*, and let $m(\xi)$ be a low-pass filter for ϕ . By Theorem 2.1(iii),

(2)
$$\hat{\phi}(\xi) = m((A^*)^{-1}\xi)\hat{\phi}((A^*)^{-1}\xi)$$
 a.e. ξ

Also, Wojtasczyk [13] has shown that if D is a digit set for A, then

$$\sum_{d \in D} |m((A^*)^{-1}(\xi + d))|^2 = 1 \text{ a.e. } \xi.$$

These two equations lead us to consider the operators

$$\mathcal{P}: f(\xi) \to \sum_{d \in D} |m((A^*)^{-1}(\xi + d))|^2 f((A^*)^{-1}(\xi + d)),$$
$$\mathbf{p}: f(\xi) \to |m((A^*)^{-1}\xi)|^2 f((A^*)^{-1}\xi),$$

defined on $L^1 \cap L^2(\mathbb{R}^n)$ and $L^{\infty}(\mathbb{T}^n)$, respectively. We see that when $m(\xi) \in L^2(\mathbb{T}^n)$ is a low-pass filter associated with a scaling function $\phi(x)$, $|\hat{\phi}(\xi)|^2$ is a fixed point of the operator \mathcal{P} . Additionally, from Theorem 2.1(i), the function

$$e(\xi) := \sum_{k \in \mathbb{Z}^d} |\hat{\phi}(\xi + k)|^2$$

is 1 almost everywhere, and thus is a fixed point of the operator **p**.

Condition (ii) of Theorem 2.1 states that a necessary condition for $\phi(x)$ to be a scaling function is $\lim_{j\to\infty} |\hat{\phi}((A^*)^{-j}\xi)| = 1$ almost everywhere. If $m(\xi)$ were continuous and sufficiently regular, for example if $m(\xi)$ were a trigonometric polynomial, then $\hat{\phi}(\xi)$ would be continuous at the origin, and we would need

$$1 = |\hat{\phi}(0)|^2 = \prod_{j=1}^{\infty} |m((A^*)^{-j}0)|^2 = \prod_{j=1}^{\infty} |m(0)|^2$$

and thus $|m(0)|^2 = 1$ (see [8,13]). In general, however, we are considering $m(\xi)$ to be an equivalence class of functions in $L^2(\mathbb{T}^n)$, and so cannot specify $m(\xi)$ or $|m(\xi)|^2$ for given ξ . As we show below, a low-pass filter must satisfy a weak form of continuity at the origin, however.

Definition 3.1 Let $g(\xi) \in L^1 \cap L^{\infty}(\mathbb{R}^n)$. A function $f(\xi)$ is almost everywhere *A*-adically *g*-continuous at the origin if

$$\lim_{j \to \infty} \frac{f((A^*)^{-j}\xi)}{|g((A^*)^{-j}\xi)|^2}$$

exists and is constant almost everywhere. We denote the value of the limit by $\frac{f(0)}{|q(0)|^2}$.

We take $g = \hat{\phi}$ below.

Note that $e(\xi)$ is almost everywhere *A*-adically $\hat{\phi}$ -continuous at the origin when $\phi(x)$ is a scaling function, as well. This leads us to consider the following space of functions.

Definition 3.2 $D_{\infty}(\hat{\phi})$ is the space of functions $h(\xi)$ satisfying the following:

(i) both $h(\xi)$ and its reciprocal $h^{-1}(\xi)$ are in $L^{\infty}(\mathbb{T}^n)$;

(ii) $h(\xi)$ is almost everywhere A-adically $\hat{\phi}$ -continuous at the origin with $\frac{h(0)}{|\hat{\phi}(0)|^2} = 1$.

Gundy [6] gave a characterization of low-pass filters in the case of dilation by 2, using the ideas presented above. The same characterization holds in the multivariable setting, and in fact characterizes low-pass filters associated with *pre-scaling functions*.

Definition 3.3 A pre-scaling function associated with a multiresolution analysis $\{V_j : j \in \mathbb{Z}\}$ is a function $\phi(x)$ such that the set of translates $\{\phi(x - k) : k \in \mathbb{Z}^n\}$ forms a Riesz basis for the space V_0 .

As shown in Wojtasczyk [13], a pre-scaling function can be normalized by $e(\xi) = \sum_{k \in \mathbb{Z}^n} |\hat{\phi}(\xi + k)|^2$ so that the function $\gamma(x)$ defined by

$$\hat{\gamma}(\xi) = \frac{\hat{\phi}(\xi)}{(e(\xi))^{1/2}}$$

is a scaling function for the multiresolution analysis $\{V_i\}$.

Theorem 3.4 If $m(\xi)$ is a low-pass filter associated with a pre-scaling function $\phi(x)$, then we have the following statements.

(i) The function $m(\xi)$ is \mathbb{Z}^n -periodic and in $L^2(\mathbb{T}^n)$, and $|m(\xi)|^2$ is a.e. A-adically $\hat{\phi}$ -continuous at the origin with $\frac{|m(0)|^2}{|\hat{\phi}(0)|^2} = 1$, that is,

$$\lim_{j \to \infty} |m((A^*)^{-j}\xi)|^2 = 1 \quad a.e. \ \xi.$$

(ii) The operators **p** and \mathcal{P} have nontrivial fixed points, $|\hat{\phi}(\xi)|^2 \in L^1 \cap L^2(\mathbb{R}^n)$ and $e(\xi) \in L^{\infty}(\mathbb{T}^n)$, respectively.

(iii) The function $e(\xi)$ is the unique fixed point of the operator \mathfrak{P} in the class $D_{\infty}(\hat{\phi})$. Conversely, if a function $m(\xi)$ satisfies these three conditions, then there is a \mathbb{Z}^n -periodic, $L^2(\mathbb{T}^n)$ function $m_0(\xi)$, with $|m(\xi)| = |m_0(\xi)|$ almost everywhere, such that $m_0(\xi)$ is the low-pass filter associated with a pre-scaling function.

We prove the converse direction first in Section 4. We then complete the proof in Section 5.

4 Finding Square Roots

Proof of Theorem 3.4(i) The operators \mathcal{P} and \mathbf{p} depend only on $M(\xi) := |m(\xi)|^2$. Our problem is to find a suitable square root $m_0(\xi)$ for $M(\xi)$ and a square root $\hat{\phi}(\xi)$ for the fixed point $|\hat{\phi}(\xi)|^2$ of \mathbf{p} such that $\hat{\phi}(\xi)$ is a pre-scaling function with low-pass filter $m_0(\xi)$. Since $M(\xi)$, $|\hat{\phi}(\xi)|^2$, and $e(\xi)$ are all real-valued and strictly positive, we can take a real valued square root of each function, $M^{1/2}(\xi)$, $|\hat{\phi}(\xi)|$, and $e^{1/2}(\xi)$, respectively.

Define

$$m_0(\xi) := m(\xi)(e^{1/2}(\xi)/e^{1/2}(A^*\xi)) = \operatorname{sgn} m(\xi)M^{1/2}(\xi)(e^{1/2}(\xi)/e^{1/2}(A^*\xi)).$$

We want to use $\mu(\xi) = \operatorname{sgn} m(\xi)$ to find a function for $\operatorname{sgn} \hat{\phi}(\xi)$. However $m(\xi)$ and $\operatorname{sgn} m(\xi)$ are defined on \mathbb{T}^n , whereas we need $\hat{\phi}(\xi)$ and $\operatorname{sgn} \hat{\phi}(\xi)$ to be defined on \mathbb{R}^n . To extend $\operatorname{sgn} m(\xi)$, we observe [6] that any unimodular, \mathbb{Z}^n -periodic function $\mu(\xi)$ may be written in terms of a non-periodic (not necessarily unique) unimodular function $t(\xi)$ as

$$u(\xi) = t(A^*\xi)t^{-1}(\xi).$$

To show this, first partition $\mathbb{R}^n \setminus \{0\}$ as follows. Let *Q* be the region between the sphere $C = \{x \in \mathbb{R}^n : ||x||_2 = 1\}$ and the set

$$(A^*)^{-1}C = \{ y = (A^*)^{-1}x \in \mathbb{R}^n : ||x||_2 = 1 \},\$$

including *C* but excluding $(A^*)^{-1}C$. For each $j \in \mathbb{Z}$, let $(A^*)^j Q$ denote the region between $(A^*)^j C$ (inclusive) and $(A^*)^{j-1}C$ (exclusive), where these sets are defined similarly to $(A^*)^{-1}C$. Thus the sets $(A^*)^j Q$ for $j \in \mathbb{Z}$ are mutually disjoint, and their union is $\mathbb{R}^n \setminus \{0\}$.

.

Define $t(\xi) = 1$ for $\xi \in Q$. Consider $\mu(\xi)$ as a periodic function on \mathbb{R}^n , and define $t(\xi)$ for ξ in successive sets $(A^*)^j S$, $j \neq 0$, by

$$t(\xi) = \begin{cases} t((A^*)^{-1}\xi)\mu((A^*)^{-1}\xi) & \text{for } \xi \in (A^*)^j Q \text{ with } j \ge 1, \\ t(A^*\xi)\mu^{-1}(\xi) & \text{for } \xi \in (A^*)^j Q \text{ with } j \le -1. \end{cases}$$

Also set t(0) = 1. Then $\mu(\xi) = t(A^*\xi)t^{-1}(\xi)$ for all $\xi \in \mathbb{R}^n$.

Now define $\hat{\phi}(\xi)$ by $\hat{\phi}(\xi) = t(\xi)|\hat{\phi}(\xi)|$. To show that $\hat{\phi}(\xi)$ so defined is a prescaling function, we refer to Theorem 2.1. Observe that

$$\sum_{k \in \mathbb{Z}^n} |\hat{\gamma}(\xi+k)|^2 = \sum_{k \in \mathbb{Z}^n} \frac{|\hat{\phi}(\xi+k)|^2}{e(\xi+k)} = \frac{\sum_{k \in \mathbb{Z}^n} |\hat{\phi}(\xi+k)|^2}{e(\xi)} = \frac{e(\xi)}{e(\xi)} = 1 \quad \text{a.e.},$$

where the second equality follows from the periodicity of $e(\xi)$. Thus condition (i) is satisfied.

For condition (ii), note that

$$\lim_{j \to \infty} |\hat{\gamma}((A^*)^{-j}\xi)|^2 = \lim_{j \to \infty} \frac{|\hat{\phi}((A^*)^{-j}\xi)|^2}{e((A^*)^{-j}\xi)} = 1 \quad \text{a.e.},$$

since $e(\xi) \in D_{\infty}(\hat{\phi})$.

To show condition (iii), first note that

$$\begin{split} \hat{\phi}(\xi) &= t(\xi) |\hat{\phi}(\xi)| = t(\xi) |m((A^*)^{-1}\xi)| |\hat{\phi}((A^*)^{-1}\xi)| \\ &= t(\xi) t^{-1}((A^*)^{-1}\xi) |m((A^*)^{-1}\xi)| t((A^*)^{-1}\xi) |\hat{\phi}((A^*)^{-1}\xi)| \\ &= \operatorname{sgn} m((A^*)^{-1}\xi) |m((A^*)^{-1}\xi)| \hat{\phi}((A^*)^{-1}\xi) \\ &= m((A^*)^{-1}\xi) \hat{\phi}((A^*)^{-1}\xi) \end{split}$$

almost everywhere. Now

$$\begin{split} \hat{\gamma}(\xi) &= \frac{\hat{\phi}(\xi)}{e^{1/2}(\xi)} = \frac{m((A^*)^{-1}\xi)\hat{\phi}((A^*)^{-1}\xi)}{e^{1/2}(\xi)} \\ &= \frac{m((A^*)^{-1}\xi)e^{1/2}((A^*)^{-1}\xi)}{e^{1/2}(\xi)} \frac{\hat{\phi}((A^*)^{-1}\xi)}{e^{1/2}((A^*)^{-1}\xi)} \\ &= m_0((A^*)^{-1}\xi)\hat{\gamma}((A^*)^{-1}\xi) \end{split}$$

almost everywhere.

5 **Proving Uniqueness**

Proof of Theorem 3.4(ii) From the scaling equation (2) and condition (ii) of Theorem 2.1,

$$\lim_{j \to \infty} \frac{|m((A^*)^{-j}\xi)|^2}{|\hat{\phi}((A^*)^{-j}\xi)|^2} = \lim_{j \to \infty} \frac{|\hat{\phi}((A^*)^{-(j-1)}\xi)|^2/|\hat{\phi}((A^*)^{-j}\xi)|^2}{|\hat{\phi}((A^*)^{-j}\xi)|^2} = 1 \quad \text{a.e.}.$$

Thus a low-pass filter $m(\xi)$ for a scaling or pre-scaling function $\phi(x)$ satisfies condition (i). By definition, $|\hat{\phi}(\xi)|$ is a fixed point of the operator **p**. A standard calculation shows that $e(\xi)$ is a fixed point for the operator \mathcal{P} . Thus condition (ii) is also satisfied.

To show that condition (iii) is satisfied, we again refer to Theorem 2.1. If $\hat{\phi}(\xi)$ is a pre-scaling function, then

$$\hat{\gamma}(\xi) := \frac{\hat{\phi}(\xi)}{e^{1/2}(\xi)}$$

is a scaling function. Then

$$\lim_{j \to \infty} \frac{e((A^*)^{-j}\xi)}{|\hat{\phi}((A^*)^{-j}\xi)|^2} = \lim_{j \to \infty} |\hat{\gamma}^{-1}((A^*)^{-j}\xi)| = 1 \quad \text{a.e.},$$

so $e(\xi)$ is almost everywhere *A*-adically $\hat{\phi}$ -continuous at the origin, with $e(0)/|\hat{\phi}(0)|^2 = 1$. Also, since $\hat{\phi}(\xi)$ is a pre-scaling function, there exist constants c, C > 0 such that $c < e(\xi) < C$ almost everywhere [13], so that both $e(\xi)$ and $e^{-1}(\xi)$ are in $L^{\infty}(\mathbb{T}^n)$. Thus $e(\xi)$ is in the class $D_{\infty}(\hat{\phi})$. It remains to show that $e(\xi)$ is the unique function in $D_{\infty}(\hat{\phi})$. That is, if $h(\xi) \in D_{\infty}(\hat{\phi})$, then $h(\xi) = e(\xi)$ almost everywhere.

Since $\sum_{k \in \mathbb{Z}^n} |\hat{\gamma}(\xi + k)|^2 = 1$ almost everywhere, we may interpret $|\hat{\gamma}(\xi + k)|^2$ as a probability distribution on \mathbb{Z}^n for almost every ξ . The low-pass filter associated with $\hat{\gamma}(\xi)$ is

$$m_0(\xi) := m(\xi) \left(\frac{e^{1/2}(\xi)}{e^{1/2}(A^*\xi)} \right).$$

Set $M(\xi) := |m_0(\xi)|^2$ (note that $M(\xi) > 0$ almost everywhere). We can then write $|\hat{\gamma}(\xi + k)|^2$ as a limit of partial products

$$|\hat{\gamma}(\xi+k)|^2 = \lim_{N \to \infty} |\hat{\gamma}_N(\xi+k)|^2$$
 a.e.

where

$$|\hat{\gamma}_N(\xi+k)|^2 := \prod_{j=1}^N M((A^*)^{-j}(\xi+k)).$$

By [1, Corollary 7], there exists an integer $\beta \ge 1$ such that for $B := A^{\beta}$ we may represent each $k \in \mathbb{Z}^n$ by a radix representation. That is, there exists an integer $n = n(k) \ge 1$ such that $k = \sum_{j=0}^{n(k)} B^j d_j$ where each $\omega_j(k)$ is in the digit set $D_B = B([-\frac{1}{2}, \frac{1}{2})^n) \cap \mathbb{Z}^n$ for B. We then identify $k \in \mathbb{Z}^n$ with the sequence $(\omega_0(k), \omega_1(k), \omega_2(k), \dots)$ where $\omega_j(k) = d_j$ for $0 \le j \le n(k)$ and $\omega_j(k) = 0$ for j > n(k).

Let Ω be the set of all such sequences (for arbitrary *n*), $\Omega = D_B \times D_B \times \cdots$. We have identified \mathbb{Z}^n with the subset of Ω consisting of all finite sequences. Given $k \in \mathbb{Z}^n$, let \mathbf{k}_N denote the cylinder set in Ω composed of sequences beginning with $(\omega_0(k), \ldots, \omega_{N-1}(k))$. Define a measure P_{ξ}^N on cylinder sets in Ω by

$$P^N_{\xi}(\mathbf{k}_N) := \prod_{j=0}^{N-1} Q_{\xi,j}(\mathbf{k}_N),$$

 ω_i

where

$$Q_{\xi,j}(\mathbf{k}_N) := \prod_{i=0}^{\beta-1} M(((A^*)^{-1})^{-\beta j - i - 1}(\xi + k))$$

We claim the following.

Lemma 5.1

$$\sum_{\substack{k\in\mathbb{Z}^n\\ (k)=0 \text{ for } j\geq N}} P^N_{\xi}(\mathbf{k}_N) = 1 \quad a.e. \ \xi.$$

We delay the proof of Lemma 5.1 to the end of this present proof.

By a theorem of Kolmogorov, the family P_{ξ}^{N} extends to a probability P_{ξ} on Borel sets of Ω . Since $\hat{\gamma}(\xi)$ is a scaling function,

$$1 = \sum_{k \in \mathbb{Z}^n} |\hat{\gamma}(\xi + k)|^2 = \sum_{k \in \mathbb{Z}^n} \lim_{N \to \infty} \prod_{j=1}^N M((B^*)^{-j}(\xi + k))$$
$$= \sum_{k \in \mathbb{Z}^n} \lim_{N \to \infty} P_{\xi}^N(k)$$

for almost every ξ . Since \mathbb{Z}^n corresponds to the set of finite sequences in Ω , the family P_{ξ}^N is tight on \mathbb{Z}^n . That is, for every $\epsilon > 0$, there exists an $r(\epsilon, \xi)$ such that $\sum P_{\xi}^N(\mathbf{k}_N) \leq \epsilon$ for all $N \geq 1$, where the sum is taken over *N*-dimensional cylinder sets \mathbf{k}_N such that the largest index \tilde{j} with $\omega_{\tilde{j}}(k) \neq 0$ satisfies $\tilde{j} \geq r(\epsilon, \xi)$. This implies that P_{ξ} is concentrated on finite sequences. We say that $P_{\xi}(\mathbb{Z}^n) = 1$ for almost every ξ .

Consider $X_j(k) = \omega_j(k)$ as a sequence of random variables taking values in the digit set D_B , with the probability that $X_j = d$ given X_0, \ldots, X_{j-1} being

$$M((B^*)^{-1}(\xi_i + d))$$

for each $j \ge 0$ and $d \in D_B$, with $\xi_0(k) := \xi$ and $\xi_{j+1} := (B^*)^{-1}(\xi_j + X_j)$ for $j \ge 0$. That P_{ξ} is concentrated on finite sequences for almost every ξ means that the sequence $\{X_j\}_{j\ge 0}$ converges to 0 relative to P_{ξ} for every $k \in \mathbb{Z}^n$ and almost every ξ . Now

$$P_{\xi}(\xi_{j+1} \parallel \xi_j, \dots, \xi_0) = P_{\xi}((B^*)^{-1}(\xi_j + X_j) \parallel \xi_j, \dots, \xi_0)$$
$$= M((B^*)^{-1}(\xi_j + X_j)).$$

By construction, $P_{\xi}(\xi_{j+1} || \xi_j, ..., \xi_0) = P_{\xi}(\xi_{j+1} || \xi_j)$, thus $\{\xi_j\}_{j\geq 0}$ is a Markov process. Furthermore, since P_{ξ} is concentrated on finite sequences (for almost every ξ), $\lim_{j\to\infty} \xi_j = 0$ almost surely, for almost every ξ .

Now consider $r(\xi) := \frac{h(\xi)}{e(\xi)}$. We wish to show that $r(\xi) = 1$ for almost every ξ , so that $h(\xi) = e(\xi)$ almost everywhere. Since $e(\xi)$ and $h(\xi)$ are fixed points of \mathcal{P} , $r(\xi)$ satisfies

$$r(\xi) = \sum_{d \in D} M((A^*)^{-1}(\xi + d)) r((A^*)^{-1}(\xi + d)) \quad \text{a.e.}$$

E. Curry

Using this, and that the sequence $\{\xi_j\}$ is a Markov process with transition probabilities $P_{\xi}(\xi_{j+1} = d || \xi_j) = M((B^*)^{-1}(\xi_j + d))$, we find that for almost every ξ ,

$$\mathbb{E}[r(\xi_{j+1}) \parallel r(\xi_j), \dots, r(\xi_0)] = \mathbb{E}[r((B^*)^{-1}(\xi_j + X_j)) \parallel r(\xi_j), \dots, r(\xi_0)]$$

= $\mathbb{E}[r((B^*)^{-1}(\xi_j + X_j)) \parallel r(\xi_j)]$
= $\sum_{d \in D_B} M((B^*)^{-1}(\xi_j + d)) r((B^*)^{-1}(\xi_j + d))$
= $r(\xi_j).$

Thus $r(\xi_j)$ is a martingale. Note that $r(\xi_j)$ is strictly positive and bounded, and converges P_{ξ} -almost surely to r(0) = 1 for almost every ξ , since $\xi_j \to 0$. Using the Lebesgue dominated convergence theorem,

$$r(0) = \mathbb{E}[r(0) \parallel r(\xi_j)] = \mathbb{E}[\lim_{l \to \infty} r(\xi_l) \parallel r(\xi_j)] = \lim_{l \to \infty} \mathbb{E}[r(\xi_l) \parallel r(\xi_j)] = r(\xi_j)$$

for every $j \ge 0$. Thus

$$1 = r(0) = r(\xi) = \frac{h(\xi)}{e(\xi)}$$

for almost every ξ , and $e(\xi)$ is the unique fixed point of the operator \mathcal{P} in the class $D_{\infty}(\hat{\phi})$.

The proof of Lemma 5.1 relies on the following lemma.

Lemma 5.2 Let A by a dilation matrix and let $B = A^{\beta}$ for some integer $\beta \ge 1$. If $m(\xi)$ is a low-pass filter under dilation by A, then $m_B(\xi) := \prod_{i=0}^{\beta-1} m((A^*)^i \xi)$ is a low-pass filter under dilation by B.

Proof Let $\hat{\phi}(\xi)$ be the Fourier transform of the scaling function associated with $m(\xi)$. Then

$$\prod_{j=1}^{\infty} m_B((B^*)^{-j}\xi) = \prod_{j=1}^{\infty} \prod_{i=0}^{\beta-1} m((A^*)^{-j\beta+i}\xi) = \prod_{j'=1}^{\infty} m((A^*)^{-j'}\xi) = \hat{\phi}(\xi) \quad \text{a.e.},$$
$$\hat{\phi}(\xi) = m_B((B^*)^{-1}\xi)\hat{\phi}((B^*)^{-1}\xi) \quad \text{a.e.}$$

Since $\phi(x)$ is a scaling function under dilation by *A*, we know that

$$\sum_{k\in\mathbb{Z}^n} |\hat{\phi}(\xi+k)|^2 = 1 \quad \text{a.e.}$$

Also, $\lim_{j\to\infty} |\hat{\phi}((A^*)^{-j}\xi)| = 1$ a.e., and thus the limit along a subsequence is the same: $\lim_{j\to\infty} |\hat{\phi}((B^*)^{-j}\xi)| = 1$ a.e. Since all three conditions of Theorem 2.1 are satisfied, $\phi(x)$ is a scaling function under dilation by $B = A^{\beta}$, with low-pass filter $m_B(\xi)$ by construction.

Low-Pass Filters and Scaling Functions for Multivariable Wavelets

Proof of Lemma 5.1 Since $m_B(\xi)$ is a low-pass filter under dilation by *B*, it satisfies the relation

$$\sum_{d\in D_B} |m_B((B^*)^{-1}(\xi+d))|^2 = 1 \quad \text{a.e.},$$

from which the desired result follows:

ω

$$\sum_{\substack{k \in \mathbb{Z}^n \\ j(k)=0 \text{ for } j \ge N}} P_{\xi}^N(\mathbf{k}_N) = \sum_{d \in D_{B,N}} |m_B((B^*)^{-N}(\xi+d))|^2 = 1 \quad \text{a.e. } \xi.$$

References

- E. Curry, Radix Representations in Zⁿ. http://www.mathstat.dal.ca/~ecurry/pub/dissert/radrep.pdf.
 Radix Representations, self-affine tiles, and multivariable wavelet. Proc. Amer. Math. Soc. 134(2006), no. 8, 2411–2418.
- J. Belock and V. Dobric, *Random variable dilation equation and multidimensional prescale functions*. Trans. Amer. Math. Soc. 353(2001), no. 12, 4779–4800.
- [4] V. Dobrić, R. Gundy, and P. Hitczenko, Characterizations of orthonormal scale functions: A probabilistic approach J. Geom. Anal. 10(2000), no. 3, 417–434.
- [5] K. Gröchenig and W. R. Madych, *Multiresolution analysis, Haar bases, and self-similar tilings of* \mathbb{R}^{n} . IEEE Trans. Inform. Theory. **38**(1992), no. 2, 556–568.
- [6] R. Gundy, Low-pass filters, martingales, and multiresolution analyses. Appl. Comput. Harmon. Anal. 9(2000), no. 2, 204–219.
- [7] X.-G. He and K.-S. Lau, Characterization of tile digit sets with prime determinants. Appl. Comput. Harmon. Anal. 16(2004), no. 3, 159–173.
- [8] E. Hernández and G. Weiss, A First Course on Wavelets. CRC Press, Boca Raton, FL, 1996.
- [9] J. C. Lagarias and Y. Wang, Self-Affine tiles in \mathbb{R}^n . Adv. Math. 121(1996), no. 1, 21–49.
- [10] _____, Integral self-affine tiles in \mathbb{R}^n . II. Lattice tilings. J. Fourier Anal. Appl. 3(1997), no. 1, 83–102.
- [11] _____, Haar bases for $L^2(\mathbb{R}^n)$ and algebraic number theory. J. Number Theory 57(1996), no. 1, 181–197.
- [12] _____, Corrigendum/Addendum: Haar Bases for $L^2(\mathbb{R}^n)$ and Algebraic Number Theory, J. Number Theory **76**(1999), no. 1, 330–336.
- [13] P. Wojtaszczyk, A Mathematical Introduction to Wavelets. London Mathematical Society Student Texts 37, Cambridge University Press, Cambridge, 1997.

Department of Mathematics and Statistics Dalhousie University Halifax, NS B3H 3J5 e-mail: ecurry@mathstat.dal.ca