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Low-Pass Filters and Scaling Functions for
Multivariable Wavelets

Eva Curry

Abstract. 'We show that a characterization of scaling functions for multiresolution analyses given by
Hernandez and Weiss and that a characterization of low-pass filters given by Gundy both hold for
multivariable multiresolution analyses.

1 Introduction

In this paper we investigate low-pass filters and scaling functions associated with
multivariable multiresolution analyses. In the multivariable setting, instead of the
standard dilation by 2 we use a dilation matrix.

Definition 1.1 A dilation matrix is an n X n matrix A with integer entries, all of
whose eigenvalues )\ satisfy |A| > 1.

Note that g := |detA| is an integer with ¢ > 2. A dilation matrix A gives a
mapping of the lattice Z" into itself with nontrivial cokernel. The definition of a
dilation matrix does not ensure that all singular values of A are strictly greater than
1, so we may not have ||Ax||,, > ||x||¢, for all x € Z". However there exists an integer
M > 1 such that ||A/x||,, > |jx[|¢, forall j > M (see [1]). It can also be shown that
7" /A(7") has g cosets [13].

Definition 1.2 Let A be an n X n dilation matrix. A digit set for A is a set containing
exactly one representative of each coset of 7" /A(Z").

In n dimensions, a multiresolution analysis is defined as follows.

Definition 1.3 Let A be an n X n dilation matrix. A multiresolution analysis (MRA)
associated with A is a nested sequence of subspaces

eCV,,CcvVo CcVyCcVyCcV,Ceee

of L*(IR") satisfying the following:
() Ujez Vi = LR

(ii) ﬂjez V;={0};
(iii) f(x) € Vyifand onlyif f(x — k) € V, forall k € 2%
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(iv) f(x) € V;ifand onlyif f(Ax) € V;j;, forall j € Z;
(v) there exists a function ¢ € V, called a scaling function, such that the set

{bok(x) :== p(x — k) : ke 2"}
is a complete orthonormal basis for V.

This generalization of multiresolution analyses beyond the case of dilation by 2
was originally introduced by Grochenig and Madych [5], who showed that Haar-
like scaling functions for multivariable MRAs (that is, scaling functions that can be
written as the characteristic function of a set, ¢ = ) are associated with lattice
self-affine tilings of R" by sets of the form

.
T={} A"d;: d; e D}

j=1

where D is a digit set for A. The existence of such tilings has been studied by Lagarias
and Wang [9-12]), He and Lau [7], Belock and Dobric [3], and the author [1, 2].
This paper investigates general multivariable MRAs. In Section 2 we generalize a
characterization theorem for scaling functions given by Hernandez and Weiss [8] to
the multivariable setting.

As in the case of dilation by 2, a scaling function for a multivariable MRA satisfies
a scaling equation

OA™x) =) hplx— k)

kezr

for some coefficients /. Taking the Fourier transform of both sides, there exists a
periodic function m(¢) € L*(T") such that ¢(¢) = m((A*)~1€)P((A*)~1€).

Definition 1.4 A periodic function m(¢) € L?(T") such that
B(&) = m((A) ')A 1Y)

is called a low-pass filter for the scaling function ¢ and associated multiresolution
analysis.

In Section 3 we prove a characterization of low-pass filters, formulated by Gundy [6]
in the case of dilation by 2, in the multivariable setting.

2 Scaling Functions

Hernéndez and Weiss give a characterization of scaling functions for multiresolution
analyses associated with dilation by 2 [8, Theorem 5.2, Ch. 7]. Their characterization
can be extended to the multivariable setting with few changes.

Theorem 2.1  Let A be an n x n dilation matrix. A function ¢ € L*(R") is a scaling
function for a multiresolution analysis under dilation by A if and only if
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1) Drem G(& + k)|* = 1 almost everywhere,
(ii) limj_,oo|q3((A*)_jf)| = 1 almost everywhere,
(iii) there exists a periodic function m(€) € L*(T") such that

A(&) = m((A")'E)P((A) 1)
almost everywhere (note that m(&) is then a low-pass filter for ¢).

Before proving this theorem, we need to know that the result of [8, Theorem 1.6,
Ch. 2] still holds. This lemma shows that condition (ii) of the definition of an MRA
is redundant.

Lemma2.2 Let{V;: j €7} beasequence of subspaces of L*(R") satisfying

(i) V; CVjy forall j €7 (the subspaces are nested),

(i) f(x) € V;ifand only if f(Ax) € Vi forall j € Z (condition (iv) of the
definition of an MRA),

(iii) there exists a function ¢ € V,, called a scaling function, such that the set

{pox(x) := px —k) : k € 2"}

is a complete orthonormal basis for Vi (condition (v) of the definition of an MRA).
Then (e, Vj = {0} (condition (ii) of the definition of an MRA holds).

Proof Suppose that there exists a non-zero function f in () jez Vj- We may assume
| fll = 1. Also, since f € V; for each j € Z, if we let fi(x) = g//?f(Aix) (where
q = | detAl), then f; € V, by condition (ii) of the statement of the lemma. A change
of variables shows that || fj||l, = || f||> = 1. Since {¢(- — k) : k € 7"} is a basis for
Vo, we may write

fix) =" aléx—k

kezr

for some constant coefficients ai, with convergence in L?(R") such that

>l =Ifill5 = 1.

kezn

Taking Fourier transforms, we get

A Te) = fie) = Z afe R EG(E) = mi(©)d(&),

kezr

where m;(§) = Zkezn aie_zmk'f. Note that m;(§) is a Z"-periodic function, belong-
ing to L2(T"), with L>-norm 1. Thus

F&) = @m (A" E)d((A*)¢),
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and, for j > 1,

/[1 )”|f(§)|d§ < qj/z(/m),,mj((A*)j§)|2d§> 1/2(/[1’2)”|q§((A*)j§)|2dg) 1/2

B

Let D be a digit set for A as in Definition 1.2, and let

T = {ZAijdj : dj € D}

j=1

Either the set T is congruent modulo 7Z" to the unit cube [1,2)" (up to a set of
measure zero), or a subset of T is congruent to [1,2)" [13]. Thus we can use the
periodicity of m;(&) to rewrite the first integral above, to see that

/m)nlf(é“)dé“ < qj/z(/T|mj((A*)j€)‘2 dg) 1/2(/[1’2);1'03((14*)]-5”2(15) 1/2

Using a change of variables, ;1 = (A*)] &, we then have

) . /2 ) 12
/ 1f(©)]de < q‘f/z(/ m; ()| du) (/ _ \¢(u)l2du)
[1,2) (A*)iT (A*)i[1,2)"
2 2
—(q7 d 2g
[ moran) ([ jigoran)”

k€Da ;

X 1/2
<"( S du)
(A*)i[12)"

where Dy = {k = Zf;é A'd;} with the d; in a digit set D for A. Note that there are
qf distinct elements in Dy j_;. The last line in the above calculation follows from the
7"-periodicity of m;(£) and ([,|m;(&)]? d§)V/? < 1.

We recall that lim;_, o, min {o : ¢ a singular value of A’} = oo and thus

Jfim min {|jufl : p € (A7)11,2)"} = oc.

In particular, we can take j sufficiently large so that the set (A*)7[1,2)" contains an
arbitrarily small amount of the mass of the function |q3(u)|2. Thus the integral in
the last line of the above calculation tends to 0 as j — oo. A similar calculation
shows that f | d¢ = 0 for any fixed I € Z. Thus we obtain that f & =0

almost everywhere on J,c,(A* )1, 2)". We may apply this argument to any other set
congruent to F and such that |(A*)/ | — oo for every p in the set. For example, for
each £ € R, € # 0, we may take the unit cube translated so that its closest vertex to
the origin is at £&. Then f(£) = 0 for almost every £ € R". This completes the proof
of the lemma. ]
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Proof of Theorem 2.1  First, suppose that ¢ is a scaling function for an MRA {V/; :
j € Z}. Then {¢(- — k) : k € 7"} is an orthonormal system in L*>(R"), implying
(i) (e.g., by [13, Proposition 5.7(ii)], which states that {f(- — k) : k € Z"} is an
orthonormal system if and only if ) 0, ;. f(€ +Kk)> = 1 almost everywhere).

Let F = [—3,3)" and g = |det A|. We claim that

(1) lim /
]J—7° JF

To see this, let f be the function such that f = xr, and let P; be the projection onto
V. Write ¢; k(x) = q//?¢(Aix — k) for j € 7,k € 7. Then

(AN TTEPde = 1.

12313 = | 34 o0

kezr

=Y [ few o
kezn R
=S| [ Ha e G o]
kezn
- 2
— i 2 727Tik<p,d ]
q k;\ /( Ay

The last expression is ¢/ times the sum of the squares of the absolute values of the
Fourier coefficients of the function x(4+)-i +&. Therefore, by the Plancherel theorem,
it is equal to ¢/ f(A*),jF\(ﬁ(u)Fd,u. However, since {V; : j € Z} is dense in L*(R"),
lim;_ ||Pjf]|3 = || f||3- Thus this last expression tends to || x¢[|3 = 1 as j — oo.

A change of variables £ = (A*) ™/ then gives us (1).

Since [m(&)| < 1 for almost every £ and (&) = m((A*) L) P((A*) 1), we must
have |¢p((A*)~/€)| nondecreasing for almost every £ € R” as j — oo. Let

g(&) = lim [¢((4M) ).

By condition (i) of the statement of the theorem, |$(£)| < 1 almost everywhere.
Together with (1) and the Lebesgue dominated convergence theorem, this gives us
f £8(§)d§ = 1. We now have condition (ii) of the statement of the theorem, since
0 < g(¢) < 1 almost everywhere.

Lastly, we have condition (iii) of the statement of the theorem by [13, Lemma 5.8],
which states that a function f belongs to V; if and only if f (A*E) = my(¢ )$(§ ) for
some 2"-periodic function m(§).

Conversely, suppose that ¢ satisfies conditions (i), (ii), and (iii). We want to show
that the definition of a multiresolution analysis is satisfied. Proposition 5.7(ii) of [13]
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together with (i) imply that {¢(- — k) : k € 7"} is an orthonormal system. We
define Vj as the closure of the span of this system. Thus conditions (iii) and (v) of
the definition of an MRA are satisfied. We define each V; for j € Z by

Vo=span{p(- —k):k€ 2}, Vi={f: f(A71.) € Vy}for j #0.

Then condition (iv) of the definition of an MRA is satisfied.
We claim furthermore that

Vi={f: f(Aa*ie) = uj(f)(ﬁ(f) for some 7"-periodic yi; € L*(T")},

since we may write f(A~/-) € V; as a linear combination of ¢(- — k), k € 7", and
then take Fourier transforms. By the periodicity of m and by (i), we have

1= |6 +hP

kezn

= Im(A) e+ @A) TR

kezr

=Y m(@) g+ Y

deD Nez"

= |m((A) T €+ D)

deD

PUAN)TIE+ (A" TR

(AT E+d) + D)

for almost every £ € T" (where D is a digit set for A). In particular, |m(§)| < 1 for
almost every £ € T". Now in order to show that the subspaces {V;} are nested, we

only need to show that Vy C V. Given f € Vj, we may write f (&) = po(€ )g?)(ﬁ) for
some 7Z"-periodic function yig. Then

FA*E) = po(A*€)P(AE) = po(A*E)m(E)H(E).

Note that po(A*€)m(€) is Z"-periodic and is in L*(T"), since |m(¢)| < 1 for almost
every ¢ € T". Thus f € V.

Next we would like to show that L>(R") = | J
V. It suffices to show that

jez Vj- Let Pj be the projection onto

1Pif = flI5 = £l = IPifllz = 0 as j — oo.

We may also assume that f € L*(R") is such that f has compact support, so that for
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sufficiently large j € 7, f((A*)j-) has supportin F (see [1, Lemma 5]). Then

1Pf3=a7 Y| [ ros@n—ogal
kezr /R
a7 Y| [ s =R ’
kez" :RH
g Y| [ fuaryodeent<
kezr OF

— ¢ [|iayoie) a

/AfF

By the dominated convergence theorem, since |$(¢)| < 1, and by condition (i),

fanduanyn)| " dy

/ ) PId(An) i) Pdy — / |f)Pdn = |I£1I3
AJF R~

as j — oo. Thus we have condition (i) of the definition of an MRA.
Lastly, condition (ii) of the definition of an MRA is a consequence of Lemma 2.2.
|

3 Low-Pass Filters

Let ¢ be a scaling function for a multiresolution analysis associated with an n x n
dilation matrix A, and let m(&) be a low-pass filter for ¢. By Theorem 2.1(iii),

) $(€) = m((A)T'OM(A")'E) ae. &
Also, Wojtasczyk [13] has shown that if D is a digit set for A, then
D Im(A)THE+ D) =1 ae &
deD

These two equations lead us to consider the operators

P: () = D _|m((A")THE+ )P FIA") T E +d)),

deD
p: f(§) — [m((A") 'O (AT,

defined on L' N L*(R") and L>° ("), respectively. We see that when m(&) € L*(T") is
a low-pass filter associated with a scaling function ¢(x), |¢(€)|* is a fixed point of the
operator P. Additionally, from Theorem 2.1(i), the function

e(§) ==Y B+ R’

kezd
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is 1 almost everywhere, and thus is a fixed point of the operator p.

Condition (ii) of Theorem 2.1 states that a necessary condition for ¢(x) to be a
scaling function is limjﬁoo|($((A*)*j £)| = 1 almost everywhere. If m(£) were con-
tinuous and sufficiently regular, for example if m(&) were a trigonometric polyno-
mial, then (&) would be continuous at the origin, and we would need

oo o0

1= 60 = [[Im(a")70)> = [[Im(©),

j=1 j=1

and thus |m(0)|* = 1 (see [8,13]). In general, however, we are considering m(£) to be
an equivalence class of functions in L*(T"), and so cannot specify m(£) or |m(&)|* for
given £. As we show below, a low-pass filter must satisfy a weak form of continuity at
the origin, however.

Definition 3.1 Let g(¢) € L' N L>®(R"). A function f(£) is almost everywhere
A-adically g-continuous at the origin if

f(A")7T¢)
hm T A
j—oo [g((A*)7TE)|
exists and is constant almost everywhere. We denote the value of the limit by I gf((o(’))'z .

We take ¢ = ¢ below.

Note that e(£) is almost everywhere A-adically ¢-continuous at the origin when
@(x) is a scaling function, as well. This leads us to consider the following space of
functions.

Definition 3.2 Doo(é) is the space of functions k(&) satisfying the following:

(i) both h(¢) and its reciprocal k=1 (&) are in L* (T");

(ii) (&) is almost everywhere A-adically gzg—continuous at the origin with AU

EOE

Gundy [6] gave a characterization of low-pass filters in the case of dilation by 2,
using the ideas presented above. The same characterization holds in the multivariable
setting, and in fact characterizes low-pass filters associated with pre-scaling functions.

Definition 3.3 A pre-scaling function associated with a multiresolution analysis
{V; : j € 7} is a function ¢(x) such that the set of translates {¢(x — k) : k € 2"}
forms a Riesz basis for the space V.

As shown in Wojtasczyk [13], a pre-scaling function can be normalized by e(§) =
> ke | @€ + k)|? so that the function ~(x) defined by

63)
(e(6))12

is a scaling function for the multiresolution analysis {V/; }.

(&) =
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Theorem 3.4  If m(&) is a low-pass filter associated with a pre-scaling function ¢(x),
then we have the following statements.
(i) The function m(£) is Z"-periodic and in L*(T"), and |m(€)|* is a.e. A-adically

Im©@* _ ;
BOE = 1, that is,

b-continuous at the origin with
lim |m((A*) 76 =1 ae €.
j—o0

(ii) The operators p and P have nontrivial fixed points, |p(¢))> € L' N L2(R") and
e(&) € Loo(T"), respectively.

(iii) The function e(§) is the unique fixed point of the operator P in the class D (é).

Conversely, if a function m(§) satisfies these three conditions, then there is a
1"-periodic, L*(T") function my(€), with |m(€)| = |mo(&)| almost everywhere, such
that my (&) is the low-pass filter associated with a pre-scaling function.

We prove the converse direction first in Section 4. We then complete the proof in
Section 5.

4 Finding Square Roots

Proof of Theorem 3.4(i) The operators P and p depend only on M(&) := |m(&)|%.
Our problem is to find a suitable square root m,(§) for M(€) and a square root q§(§ )
for the fixed point |q3(§ )|? of p such that H(€) is a pre-scaling function with low-pass
filter my(§). Since M(&), |¢(§ )|?, and e(&) are all real-valued and strictly positive,
we can take a real valued square root of each function, M1/2(£), |¢3(§)|, and 61/2(5),
respectively.

Define

mo(€) := m(€)(e'?(€) /e /2 (AE)) = sgn m(E)M'/2(€)(e"*(€) /e > (A*€)).

We want to use p(§) = sgnm(€) to find a function for sgn é(ﬁ). However m(&)
and sgn m(&) are defined on T", whereas we need H(€) and sgn A(€) to be defined on
R". To extend sgn m(§), we observe [6] that any unimodular, 7"-periodic function
(&) may be written in terms of a non-periodic (not necessarily unique) unimodular
function #(§) as

(&) = t(A*OE(€).
To show this, first partition R”\{0} as follows. Let Q be the region between the
sphere C = {x € R" : ||x||, = 1} and the set
A IC={y=A")"xeR": ||x|l, = 1},

including C but excluding (A*)~'C. For each j € Z, let (A*)7Q denote the region
between (A*)/C (inclusive) and (A*)/~'C (exclusive), where these sets are defined
similarly to (A*)~'C. Thus the sets (A*)/Q for j € 7 are mutually disjoint, and their
union is R"\{0}.
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Define #(§) = 1for§ € Q. Consider (£) as a periodic function on R”, and define
t(&) for € in successive sets (A*)’S, j # 0, by

() = {ATOMANTIO for§ € (A7) Quith j > 1,
AT OO for £ € (A*)IQwith j < —1.

Also set £(0) = 1. Then p(&) = t(A*E)t~1(€) forall £ € R".
Now define ¢(€) by ¢(€) = t(£)|p(€)]. To show that ¢(€) so defined is a pre-

scaling function, we refer to Theorem 2.1. Observe that

a.e.,

gL S ETRE | Sl OP e
2 E+BF =2 «© (!

kezn

where the second equality follows from the periodicity of e(§). Thus condition (i) is
satisfied.
For condition (ii), note that

lim [§((A*)77¢))? = lim M =1 ae.,
j—o0 i

—oo e((A*)7IE)

since e(§) € Dy ().
To show condition (iii), first note that

$(&) = 1(O)]P(©)] = tE)m((A")T'E)||p((A) €]
= (O (A" T'OIm(AM) T O[H(A) T1O)|A((A™) 1O
= sgnm((A*) "' O)[m((A*)"'O)|S((A™)1¢)
= m((A") ')A 1Y)
almost everywhere. Now

OE)  m(A)'O((A*)7E)

W= T T e
_ m((A1)7'e! (A1) 1) d((A")79)
el/2(€) el/2((A*)71€)
= mo((A")7'OA((A™) 19
almost everywhere. ]

5 Proving Uniqueness

Proof of Theorem 3.4(ii) From the scaling equation (2) and condition (ii) of The-

orem 2.1,
i ADTOR L GAT)UTDOP/|G(AN) O
Im ————— = lim P - =1 ae.
= |g((AF)TIEF oo lo((A*)~TE[?
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Thus a low-pass filter m(&) for a scaling or pre-scaling function ¢(x) satisfies condi-

tion (i). By definition, |$(€)] is a fixed point of the operator p. A standard calculation

shows that () is a fixed point for the operator P. Thus condition (ii) is also satisfied.
To show that condition (iii) is satisfied, we again refer to Theorem 2.1. If g%(f )isa

pre-scaling function, then

P(&)

A(&) = a7(6)

is a scaling function. Then

lim M = lim |57 1((A") 76| =1 ae,,

= p((AX)TIOF Jmee

so e(¢) is almost everywhere A-adically ¢-continuous at the origin, with
e(O)/|(;A5(O)|2 = 1. Also, since ¢?(§) is a pre-scaling function, there exist constants
¢,C > 0 such that ¢ < e(§) < C almost everywhere [13], so that both e(£) and
e 1(€) are in L°(T™). Thus e(€) is in the class Doo(qg). It remains to show that e(¢)
is the unique function in Doo (). That is, if h(¢) € Doo (), then h(§) = e(§) almost
everywhere.

Since Yo [9(€ + k)|* = 1 almost everywhere, we may interpret [(£ + k)|* asa
probability distribution on Z" for almost every £. The low-pass filter associated with
9(£) is

e'2() )
el/2 (A* 5) :
Set M (&) = |mg(£)]? (note that M(&) > 0 almost everywhere). We can then write
A(€ + k)|? as a limit of partial products

(&) i= (&) (

YE+RP = Jim [Fn(E+ R ae.
where

N
N+ B[P = [ M(A") 7€ + k).

j=1

By [1, Corollary 7], there exists an integer 3 > 1 such that for B := A” we
may represent each k € Z" by a radix representation. That is, there exists an in-
teger n = n(k) > 1 such that k = E?g Bjdj where each wj;(k) is in the digit
set Dy = B([—1,3)") N 2" for B. We then identify k € Z" with the sequence
(wo(k),wi(k),wy(k),...) where wj(k) = d;j for 0 < j < n(k) and w;(k) = 0 for
j > n(k).

Let €2 be the set of all such sequences (for arbitrary n), 2 = Dp x Dg X ---
We have identified Z" with the subset of €2 consisting of all finite sequences. Given
k € 7", let ky denote the cylinder set in {2 composed of sequences beginning with

(wo(k), ..., wn_1(k)). Define a measure Pg’ on cylinder sets in {2 by
N-1
PY(ky) == ] Qe jlkn),
i=0
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where
-1

Qcj(ky) := [ M((A") ™) =71 (e + k).
i=0

We claim the following.

Lemma 5.1

Z Pg’(kN) =1 aect.

kez"
wj(k)=0 for j>N

We delay the proof of Lemma 5.1 to the end of this present proof.
By a theorem of Kolmogorov, the family Pé‘] extends to a probability P on Borel
sets of (2. Since 4(€) is a scaling function,

N

1= KWE+hfF =) lim [TM®B)(E+h)
kezn kezr j=1
= 3 Jim B
kezr

for almost every £. Since Z" corresponds to the set of finite sequences in §2, the
family szv is tight on Z". That is, for every € > 0, there exists an (e, §) such that
> Pg’ (ky) < eforall N > 1, where the sum is taken over N-dimensional cylinder
sets ky such that the largest index j with w (k) # 0 satisfies j > r(e, &). This implies
that P¢ is concentrated on finite sequences. We say that P¢(Z") = 1 for almost every &.

Consider X;(k) = wj(k) as a sequence of random variables taking values in the
digit set Dp, with the probability that X; = d given Xy, ..., X;_; being

M((B*)"'(¢; +d))

for each j > 0 and d € Dg, with & (k) := § and &4y = (B*) (& + X;) for
j = 0. That P¢ is concentrated on finite sequences for almost every £ means that the
sequence {X;};>o converges to 0 relative to P¢ for every k € 7" and almost every &.
Now

P& | &vo ooy &) = Pe(B) T+ XD |1 &Go - -+, &)
=M((B) ' +X)).

By construction, Pe (&1 || &), - - -, &) = Pe(&j1 || €)s thus {£;} j>0 is a Markov pro-
cess. Furthermore, since P is concentrated on finite sequences (for almost every &),
lim;_ o §; = 0 almost surely, for almost every §.

Now consider r(§) := % We wish to show that (£) = 1 for almost every &, so
that h(&) = e(£) almost everywhere. Since e(£) and h(€) are fixed points of P, r(£)
satisfies

r(€) = ZM((A*)’I(f + d)) r((A*)’l(g +d)) a.e.

deD
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Using this, and that the sequence {¢;} is a Markov process with transition probabili-
ties Pe({j1 = d || £) = M((B*)"'(&; + d)), we find that for almost every &,

E[r(€n) || (&) -, 1(€0)] = E[r((BY) (& + X)) || (&), - -, 1(&)]
= E[r((B") (& + X)) || (&))]
=D M(B) G+ D) r((B)E + )

deDg
= r(§;)-

Thus r(¢;) is a martingale. Note that r(;) is strictly positive and bounded, and con-
verges P¢-almost surely to 7(0) = 1 for almost every &, since §; — 0. Using the
Lebesgue dominated convergence theorem,

r(0) = Er(0) | r(6)] = Ellim r(€) || r(¢))] = lim E[r(&) || r(€)] = r(&))

for every j > 0. Thus

h(§)

1=r(0)=r) = —=

0) =r(&) «©)
for alznost every &, and e(&) is the unique fixed point of the operator P in the class
Doo (). L]

The proof of Lemma 5.1 relies on the following lemma.
Lemma5.2 Let A by a dilation matrix and let B = AP for some integer 3 > 1.
If m(€) is a low-pass filter under dilation by A, then mg(§) = 1—[?:—01 m((A*)€) is a
low-pass filter under dilation by B.

Proof Let (&) be the Fourier transform of the scaling function associated with

m(€). Then
0o ‘ co -1 - o) )
[T ms@) 779 =TT ] mar) 7776 = T m(a)7°9) = (&) ae,
j=1 j=1i=0 j’=1

B(€) = mp((B)"1)P((B) 7€)  ae.

Since ¢(x) is a scaling function under dilation by A, we know that

D IE+RP=1 ae.

kezn

QAS((A*)_Jf)| = 1 a.e., and thus the limit along a subsequence is the

Also, lim;_,

same: limj_)oo|<£((B*)*j§)| = 1 a.e. Since all three conditions of Theorem 2.1 are
satisfied, ¢(x) is a scaling function under dilation by B = A”, with low-pass filter
mg (&) by construction. [ |
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Proof of Lemma 5.1 Since mjp(€) is a low-pass filter under dilation by B, it satisfies
the relation

ST ima((B)HE+ )P =1 ae,

deDg

from which the desired result follows:

> Py = Y mp(B)YNE+A)P =1 aed

kez" deDpy
wj(k)=0 forj>N
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