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Low-Pass Filters and Scaling Functions for
Multivariable Wavelets

Eva Curry

Abstract. We show that a characterization of scaling functions for multiresolution analyses given by

Hernández and Weiss and that a characterization of low-pass filters given by Gundy both hold for

multivariable multiresolution analyses.

1 Introduction

In this paper we investigate low-pass filters and scaling functions associated with

multivariable multiresolution analyses. In the multivariable setting, instead of the

standard dilation by 2 we use a dilation matrix.

Definition 1.1 A dilation matrix is an n × n matrix A with integer entries, all of

whose eigenvalues λ satisfy |λ| > 1.

Note that q := |det A| is an integer with q ≥ 2. A dilation matrix A gives a

mapping of the lattice Z
n into itself with nontrivial cokernel. The definition of a

dilation matrix does not ensure that all singular values of A are strictly greater than

1, so we may not have ‖Ax‖ℓ2
> ‖x‖ℓ2

for all x ∈ Z
n. However there exists an integer

M ≥ 1 such that ‖A jx‖ℓ2
> ‖x‖ℓ2

for all j ≥ M (see [1]). It can also be shown that

Z
n/A(Z

n) has q cosets [13].

Definition 1.2 Let A be an n×n dilation matrix. A digit set for A is a set containing

exactly one representative of each coset of Z
n/A(Z

n).

In n dimensions, a multiresolution analysis is defined as follows.

Definition 1.3 Let A be an n×n dilation matrix. A multiresolution analysis (MRA)

associated with A is a nested sequence of subspaces

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · ·

of L2(R
n) satisfying the following:

(i)
⋃

j∈Z
V j = L2(R

n);

(ii)
⋂

j∈Z
V j = {0};

(iii) f (x) ∈ V0 if and only if f (x − k) ∈ V0 for all k ∈ Z
n;
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(iv) f (x) ∈ V j if and only if f (Ax) ∈ V j+1 for all j ∈ Z;

(v) there exists a function φ ∈ V0, called a scaling function, such that the set

{φ0,k(x) := φ(x − k) : k ∈ Z
n}

is a complete orthonormal basis for V0.

This generalization of multiresolution analyses beyond the case of dilation by 2

was originally introduced by Gröchenig and Madych [5], who showed that Haar-

like scaling functions for multivariable MRAs (that is, scaling functions that can be

written as the characteristic function of a set, φ = χQ) are associated with lattice

self-affine tilings of R
n by sets of the form

T =

{

∞
∑

j=1

A− jd j : d j ∈ D
}

where D is a digit set for A. The existence of such tilings has been studied by Lagarias

and Wang [9–12]), He and Lau [7], Belock and Dobric [3], and the author [1, 2].

This paper investigates general multivariable MRAs. In Section 2 we generalize a

characterization theorem for scaling functions given by Hernández and Weiss [8] to

the multivariable setting.

As in the case of dilation by 2, a scaling function for a multivariable MRA satisfies

a scaling equation

φ(A−1x) =

∑

k∈Zn

hkφ(x − k)

for some coefficients hk. Taking the Fourier transform of both sides, there exists a

periodic function m(ξ) ∈ L2(T
n) such that φ̂(ξ) = m((A∗)−1ξ)φ̂((A∗)−1ξ).

Definition 1.4 A periodic function m(ξ) ∈ L2(T
n) such that

φ̂(ξ) = m((A∗)−1ξ)φ̂((A∗)−1ξ)

is called a low-pass filter for the scaling function φ and associated multiresolution

analysis.

In Section 3 we prove a characterization of low-pass filters, formulated by Gundy [6]

in the case of dilation by 2, in the multivariable setting.

2 Scaling Functions

Hernández and Weiss give a characterization of scaling functions for multiresolution

analyses associated with dilation by 2 [8, Theorem 5.2, Ch. 7]. Their characterization

can be extended to the multivariable setting with few changes.

Theorem 2.1 Let A be an n × n dilation matrix. A function φ ∈ L2(R
n) is a scaling

function for a multiresolution analysis under dilation by A if and only if
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(i)
∑

k∈Zn |φ̂(ξ + k)|2 = 1 almost everywhere,

(ii) lim j→∞|φ̂((A∗)− jξ)| = 1 almost everywhere,

(iii) there exists a periodic function m(ξ) ∈ L2(T
n) such that

φ̂(ξ) = m((A∗)−1ξ)φ̂((A∗)−1ξ)

almost everywhere (note that m(ξ) is then a low-pass filter for φ).

Before proving this theorem, we need to know that the result of [8, Theorem 1.6,

Ch. 2] still holds. This lemma shows that condition (ii) of the definition of an MRA

is redundant.

Lemma 2.2 Let {V j : j ∈ Z} be a sequence of subspaces of L2(R
n) satisfying

(i) V j ⊂ V j+1 for all j ∈ Z (the subspaces are nested),

(ii) f (x) ∈ V j if and only if f (Ax) ∈ V j+1 for all j ∈ Z (condition (iv) of the

definition of an MRA),

(iii) there exists a function φ ∈ V0, called a scaling function, such that the set

{φ0,k(x) := φ(x − k) : k ∈ Z
n}

is a complete orthonormal basis for V0 (condition (v) of the definition of an MRA).

Then
⋂

j∈Z
V j = {0} (condition (ii) of the definition of an MRA holds).

Proof Suppose that there exists a non-zero function f in
⋂

j∈Z
V j . We may assume

‖ f ‖2 = 1. Also, since f ∈ V j for each j ∈ Z, if we let f j(x) = q j/2 f (A jx) (where

q = | det A|), then f j ∈ V0, by condition (ii) of the statement of the lemma. A change

of variables shows that ‖ f j‖2 = ‖ f ‖2 = 1. Since {φ( · − k) : k ∈ Z
n} is a basis for

V0, we may write

f j(x) =

∑

k∈Zn

α
j
kφ(x − k)

for some constant coefficients α
j
k, with convergence in L2(R

n) such that

∑

k∈Zn

|α
j
k|

2
= ‖ f j‖

2
2 = 1.

Taking Fourier transforms, we get

q− j/2 f̂ ((A∗)− jξ) = f̂ j(ξ) =

∑

k∈Zn

α
j
ke−2πik·ξ φ̂(ξ) = m j(ξ)φ̂(ξ),

where m j(ξ) =
∑

k∈Zn α
j
ke−2πik·ξ . Note that m j(ξ) is a Z

n-periodic function, belong-

ing to L2(T
n), with L2-norm 1. Thus

f̂ (ξ) = q j/2m j((A∗) jξ)φ̂((A∗) jξ),
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and, for j ≥ 1,

∫

[1,2)n

| f̂ (ξ)| dξ ≤ q j/2
(

∫

[1,2)n

|m j((A∗) jξ)|2 dξ
) 1/2(

∫

[1,2)n

|φ̂((A∗) jξ)|2 dξ
) 1/2

.

Let D be a digit set for A as in Definition 1.2, and let

T = {
∞
∑

j=1

A− jd j : d j ∈ D}.

Either the set T is congruent modulo Z
n to the unit cube [1, 2)n (up to a set of

measure zero), or a subset of T is congruent to [1, 2)n [13]. Thus we can use the

periodicity of m j(ξ) to rewrite the first integral above, to see that

∫

[1,2)n

| f̂ (ξ)| dξ ≤ q j/2
(

∫

T

|m j((A∗) jξ)|2 dξ
) 1/2(

∫

[1,2)n

|φ̂((A∗) jξ)|2 dξ
) 1/2

.

Using a change of variables, µ = (A∗) jξ, we then have

∫

[1,2)n

| f̂ (ξ)| dξ ≤ q− j/2
(

∫

(A∗) j T

|m j(µ)|2 dµ
) 1/2(

∫

(A∗) j [1,2)n

|φ̂(µ)|2 dµ
) 1/2

=

(

q− j
∑

k∈DA, j

∫

T+k

|m j(µ)|2dµ
) 1/2(

∫

(A∗) j [1,2)n

|φ̂(µ)|2 dµ
) 1/2

≤ (1)1/2
(

∫

(A∗) j [1,2)n

|φ̂(µ)|2 dµ
) 1/2

,

where DA,l = {k =
∑l−1

i=0 Aidi} with the di in a digit set D for A. Note that there are

q j distinct elements in DA, j−1. The last line in the above calculation follows from the

Z
n-periodicity of m j(ξ) and (

∫

F
|m j(ξ)|2 dξ)1/2 ≤ 1.

We recall that lim j→∞ min {σ : σ a singular value of A j} = ∞ and thus

lim
j→∞

min {‖µ‖ℓ2
: µ ∈ (A∗) j[1, 2)n} = ∞.

In particular, we can take j sufficiently large so that the set (A∗) j[1, 2)n contains an

arbitrarily small amount of the mass of the function |φ̂(µ)|2. Thus the integral in

the last line of the above calculation tends to 0 as j → ∞. A similar calculation

shows that
∫

(A∗)l[1,2)n | f̂ (ξ)| dξ = 0 for any fixed l ∈ Z. Thus we obtain that f̂ (ξ) = 0

almost everywhere on
⋃

l∈Z
(A∗)l[1, 2)n. We may apply this argument to any other set

congruent to F and such that |(A∗) jµ| → ∞ for every µ in the set. For example, for

each ξ ∈ R
n, ξ 6= 0, we may take the unit cube translated so that its closest vertex to

the origin is at ξ. Then f̂ (ξ) = 0 for almost every ξ ∈ R
n. This completes the proof

of the lemma.
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Proof of Theorem 2.1 First, suppose that φ is a scaling function for an MRA {V j :

j ∈ Z}. Then {φ( · − k) : k ∈ Z
n} is an orthonormal system in L2(R

n), implying

(i) (e.g., by [13, Proposition 5.7(ii)], which states that { f ( · − k) : k ∈ Z
n} is an

orthonormal system if and only if
∑

k∈Zn | f̂ (ξ + k)|2 = 1 almost everywhere).

Let F = [− 1
2
, 1

2
)n and q = |det A|. We claim that

(1) lim
j→∞

∫

F

|φ̂((A∗)− jξ)|2 dξ = 1.

To see this, let f be the function such that f̂ = χF , and let P j be the projection onto

V j . Write φ j,k(x) = q j/2φ(A jx − k) for j ∈ Z, k ∈ Z
n. Then

‖P j f ‖2
2 =

∥

∥

∥

∑

k∈Zn

〈 f , φ j,k〉φ j,k

∥

∥

∥

2

2

=

∑

k∈Zn

∣

∣

∣

∫

Rn

f̂ (ξ) ˆφ j,−k(ξ) dξ
∣

∣

∣

2

=

∑

k∈Zn

∣

∣

∣

∫

Rn

f̂ (ξ)q− j/2e−2πik·ξφ̂((A∗)− jξ) dξ
∣

∣

∣

2

= q j
∑

k∈Zn

∣

∣

∣

∫

(A∗)− j F

φ̂(µ)e−2πik·µ dµ
∣

∣

∣

2

.

The last expression is q j times the sum of the squares of the absolute values of the

Fourier coefficients of the function χ(A∗)− j Fφ̂. Therefore, by the Plancherel theorem,

it is equal to q j
∫

(A∗)− j F
|φ̂(µ)|2dµ. However, since {V j : j ∈ Z} is dense in L2(R

n),

lim j→∞ ‖P j f ‖2
2 = ‖ f ‖2

2. Thus this last expression tends to ‖χF‖
2
2 = 1 as j → ∞.

A change of variables ξ = (A∗)− jµ then gives us (1).

Since |m(ξ)| ≤ 1 for almost every ξ and φ̂(ξ) = m((A∗)−1ξ)φ̂((A∗)−1ξ), we must

have |φ̂((A∗)− jξ)| nondecreasing for almost every ξ ∈ R
n as j → ∞. Let

g(ξ) = lim
j→∞

|φ̂((A∗)− jξ)|.

By condition (i) of the statement of the theorem, |φ̂(ξ)| ≤ 1 almost everywhere.

Together with (1) and the Lebesgue dominated convergence theorem, this gives us
∫

F
g(ξ)dξ = 1. We now have condition (ii) of the statement of the theorem, since

0 ≤ g(ξ) ≤ 1 almost everywhere.

Lastly, we have condition (iii) of the statement of the theorem by [13, Lemma 5.8],

which states that a function f belongs to V1 if and only if f̂ (A∗ξ) = m f (ξ)φ̂(ξ) for

some Z
n-periodic function m f (ξ).

Conversely, suppose that φ satisfies conditions (i), (ii), and (iii). We want to show

that the definition of a multiresolution analysis is satisfied. Proposition 5.7(ii) of [13]
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together with (i) imply that {φ( · − k) : k ∈ Z
n} is an orthonormal system. We

define V0 as the closure of the span of this system. Thus conditions (iii) and (v) of

the definition of an MRA are satisfied. We define each V j for j ∈ Z by

V0 = span {φ̂(· − k) : k ∈ Zn}; V j = { f : f (A− j ·) ∈ V0} for j 6= 0.

Then condition (iv) of the definition of an MRA is satisfied.

We claim furthermore that

V j = { f : f̂ ((A∗) jξ) = µ j(ξ)φ̂(ξ) for some Z
n-periodic µ j ∈ L2(T

n)},

since we may write f (A− j ·) ∈ V0 as a linear combination of φ(· − k), k ∈ Z
n, and

then take Fourier transforms. By the periodicity of m and by (i), we have

1 =

∑

k∈Zn

|φ̂(ξ + k)|2

=

∑

k∈Zn

|m((A∗)−1ξ + (A∗)−1k)|2|φ̂((A∗)−1ξ + (A∗)−1k)|2

=

∑

d∈D

|m((A∗)−1(ξ + d))|2
∑

γ∈Zn

|φ̂((A∗)−1(ξ + d) + l)|2

=

∑

d∈D

|m((A∗)−1(ξ + d))|2

for almost every ξ ∈ T
n (where D is a digit set for A). In particular, |m(ξ)| ≤ 1 for

almost every ξ ∈ T
n. Now in order to show that the subspaces {V j} are nested, we

only need to show that V0 ⊂ V1. Given f ∈ V0, we may write f̂ (ξ) = µ0(ξ)φ̂(ξ) for

some Z
n-periodic function µ0. Then

f̂ (A∗ξ) = µ0(A∗ξ)φ̂(A∗ξ) = µ0(A∗ξ)m(ξ)φ̂(ξ).

Note that µ0(A∗ξ)m(ξ) is Z
n-periodic and is in L2(T

n), since |m(ξ)| ≤ 1 for almost

every ξ ∈ T
n. Thus f ∈ V1.

Next we would like to show that L2(R
n) =

⋃

j∈Z
V j . Let P j be the projection onto

V j . It suffices to show that

‖P j f − f ‖2
2 = ‖ f ‖2

2 − ‖P j f ‖2
2 → 0 as j → ∞.

We may also assume that f ∈ L2(R
n) is such that f̂ has compact support, so that for

https://doi.org/10.4153/CJM-2008-016-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-016-1


340 E. Curry

sufficiently large j ∈ Z, f̂ ((A∗) j ·) has support in F (see [1, Lemma 5]). Then

‖P j f ‖2
2 = q− j

∑

k∈Zn

∣

∣

∣

∫

Rn

f (t)φ(A jt − k)q j dt
∣

∣

∣

2

= q− j
∑

k∈Zn

∣

∣

∣

∫

Rn

f (A− jt)φ(t − k) dt
∣

∣

∣

2

= q j
∑

k∈Zn

∣

∣

∣

∫

F

f̂ ((A∗) jξ)φ̂(ξ)e2πik·ξ dξ
∣

∣

∣

2

= q j

∫

F

∣

∣

∣
f̂ ((A∗) jξ)φ̂(ξ)

∣

∣

∣

2

dξ

=

∫

A j F

∣

∣

∣
f̂ (η)φ̂((A∗)− jη)

∣

∣

∣

2

dη.

By the dominated convergence theorem, since |φ̂(ξ)| ≤ 1, and by condition (ii),
∫

A j F

| f̂ (η)|2|φ̂((A∗)− jη)|2dη →

∫

Rn

| f̂ (η)|2dη = ‖ f ‖2
2

as j → ∞. Thus we have condition (i) of the definition of an MRA.

Lastly, condition (ii) of the definition of an MRA is a consequence of Lemma 2.2.

3 Low-Pass Filters

Let φ be a scaling function for a multiresolution analysis associated with an n × n

dilation matrix A, and let m(ξ) be a low-pass filter for φ. By Theorem 2.1(iii),

(2) φ̂(ξ) = m((A∗)−1ξ)φ̂((A∗)−1ξ) a.e. ξ.

Also, Wojtasczyk [13] has shown that if D is a digit set for A, then

∑

d∈D

|m((A∗)−1(ξ + d))|2 = 1 a.e. ξ.

These two equations lead us to consider the operators

P : f (ξ) →
∑

d∈D

|m((A∗)−1(ξ + d))|2 f ((A∗)−1(ξ + d)),

p : f (ξ) → |m((A∗)−1ξ)|2 f ((A∗)−1ξ),

defined on L1 ∩ L2(R
n) and L∞(T

n), respectively. We see that when m(ξ) ∈ L2(T
n) is

a low-pass filter associated with a scaling function φ(x), |φ̂(ξ)|2 is a fixed point of the

operator P. Additionally, from Theorem 2.1(i), the function

e(ξ) :=
∑

k∈Zd

|φ̂(ξ + k)|2
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is 1 almost everywhere, and thus is a fixed point of the operator p.

Condition (ii) of Theorem 2.1 states that a necessary condition for φ(x) to be a

scaling function is lim j→∞|φ̂((A∗)− jξ)| = 1 almost everywhere. If m(ξ) were con-

tinuous and sufficiently regular, for example if m(ξ) were a trigonometric polyno-

mial, then φ̂(ξ) would be continuous at the origin, and we would need

1 = |φ̂(0)|2 =

∞
∏

j=1

|m((A∗)− j0)|2 =

∞
∏

j=1

|m(0)|2,

and thus |m(0)|2 = 1 (see [8,13]). In general, however, we are considering m(ξ) to be

an equivalence class of functions in L2(T
n), and so cannot specify m(ξ) or |m(ξ)|2 for

given ξ. As we show below, a low-pass filter must satisfy a weak form of continuity at

the origin, however.

Definition 3.1 Let g(ξ) ∈ L1 ∩ L∞(R
n). A function f (ξ) is almost everywhere

A-adically g-continuous at the origin if

lim
j→∞

f ((A∗)− jξ)

|g((A∗)− jξ)|2

exists and is constant almost everywhere. We denote the value of the limit by f (0)
|g(0)|2 .

We take g = φ̂ below.

Note that e(ξ) is almost everywhere A-adically φ̂-continuous at the origin when

φ(x) is a scaling function, as well. This leads us to consider the following space of

functions.

Definition 3.2 D∞(φ̂) is the space of functions h(ξ) satisfying the following:

(i) both h(ξ) and its reciprocal h−1(ξ) are in L∞(T
n);

(ii) h(ξ) is almost everywhere A-adically φ̂-continuous at the origin with h(0)

|φ̂(0)|2
= 1.

Gundy [6] gave a characterization of low-pass filters in the case of dilation by 2,

using the ideas presented above. The same characterization holds in the multivariable

setting, and in fact characterizes low-pass filters associated with pre-scaling functions.

Definition 3.3 A pre-scaling function associated with a multiresolution analysis

{V j : j ∈ Z} is a function φ(x) such that the set of translates {φ(x − k) : k ∈ Z
n}

forms a Riesz basis for the space V0.

As shown in Wojtasczyk [13], a pre-scaling function can be normalized by e(ξ) =
∑

k∈Zn |φ̂(ξ + k)|2 so that the function γ(x) defined by

γ̂(ξ) =
φ̂(ξ)

(e(ξ))1/2

is a scaling function for the multiresolution analysis {V j}.
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Theorem 3.4 If m(ξ) is a low-pass filter associated with a pre-scaling function φ(x),

then we have the following statements.

(i) The function m(ξ) is Z
n-periodic and in L2(T

n), and |m(ξ)|2 is a.e. A-adically

φ̂-continuous at the origin with
|m(0)|2

|φ̂(0)|2
= 1, that is,

lim
j→∞

|m((A∗)− jξ)|2 = 1 a.e. ξ.

(ii) The operators p and P have nontrivial fixed points, |φ̂(ξ)|2 ∈ L1 ∩ L2(R
n) and

e(ξ) ∈ L∞(T
n), respectively.

(iii) The function e(ξ) is the unique fixed point of the operator P in the class D∞(φ̂).

Conversely, if a function m(ξ) satisfies these three conditions, then there is a

Z
n-periodic, L2(T

n) function m0(ξ), with |m(ξ)| = |m0(ξ)| almost everywhere, such

that m0(ξ) is the low-pass filter associated with a pre-scaling function.

We prove the converse direction first in Section 4. We then complete the proof in

Section 5.

4 Finding Square Roots

Proof of Theorem 3.4(i) The operators P and p depend only on M(ξ) := |m(ξ)|2.

Our problem is to find a suitable square root m0(ξ) for M(ξ) and a square root φ̂(ξ)

for the fixed point |φ̂(ξ)|2 of p such that φ̂(ξ) is a pre-scaling function with low-pass

filter m0(ξ). Since M(ξ), |φ̂(ξ)|2, and e(ξ) are all real-valued and strictly positive,

we can take a real valued square root of each function, M1/2(ξ), |φ̂(ξ)|, and e1/2(ξ),

respectively.

Define

m0(ξ) := m(ξ)(e1/2(ξ)/e1/2(A∗ξ)) = sgn m(ξ)M1/2(ξ)(e1/2(ξ)/e1/2(A∗ξ)).

We want to use µ(ξ) = sgn m(ξ) to find a function for sgn φ̂(ξ). However m(ξ)

and sgn m(ξ) are defined on T
n, whereas we need φ̂(ξ) and sgn φ̂(ξ) to be defined on

R
n. To extend sgn m(ξ), we observe [6] that any unimodular, Z

n-periodic function

µ(ξ) may be written in terms of a non-periodic (not necessarily unique) unimodular

function t(ξ) as

µ(ξ) = t(A∗ξ)t−1(ξ).

To show this, first partition R
n\{0} as follows. Let Q be the region between the

sphere C = {x ∈ R
n : ‖x‖2 = 1} and the set

(A∗)−1C = {y = (A∗)−1x ∈ R
n : ‖x‖2 = 1},

including C but excluding (A∗)−1C . For each j ∈ Z, let (A∗) jQ denote the region

between (A∗) jC (inclusive) and (A∗) j−1C (exclusive), where these sets are defined

similarly to (A∗)−1C . Thus the sets (A∗) jQ for j ∈ Z are mutually disjoint, and their

union is R
n\{0}.
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Define t(ξ) = 1 for ξ ∈ Q. Consider µ(ξ) as a periodic function on R
n, and define

t(ξ) for ξ in successive sets (A∗) jS, j 6= 0, by

t(ξ) =

{

t((A∗)−1ξ)µ((A∗)−1ξ) for ξ ∈ (A∗) jQ with j ≥ 1,

t(A∗ξ)µ−1(ξ) for ξ ∈ (A∗) jQ with j ≤ −1.

Also set t(0) = 1. Then µ(ξ) = t(A∗ξ)t−1(ξ) for all ξ ∈ R
n.

Now define φ̂(ξ) by φ̂(ξ) = t(ξ)|φ̂(ξ)|. To show that φ̂(ξ) so defined is a pre-

scaling function, we refer to Theorem 2.1. Observe that

∑

k∈Zn

|γ̂(ξ + k)|2 =

∑

k∈Zn

|φ̂(ξ + k)|2

e(ξ + k)
=

∑

k∈Zn |φ̂(ξ + k)|2

e(ξ)
=

e(ξ)

e(ξ)
= 1 a.e.,

where the second equality follows from the periodicity of e(ξ). Thus condition (i) is

satisfied.

For condition (ii), note that

lim
j→∞

|γ̂((A∗)− jξ)|2 = lim
j→∞

|φ̂((A∗)− jξ)|2

e((A∗)− jξ)
= 1 a.e.,

since e(ξ) ∈ D∞(φ̂).

To show condition (iii), first note that

φ̂(ξ) = t(ξ)|φ̂(ξ)| = t(ξ)|m((A∗)−1ξ)||φ̂((A∗)−1ξ)|

= t(ξ)t−1((A∗)−1ξ)|m((A∗)−1ξ)|t((A∗)−1ξ)|φ̂((A∗)−1ξ)|

= sgn m((A∗)−1ξ)|m((A∗)−1ξ)|φ̂((A∗)−1ξ)

= m((A∗)−1ξ)φ̂((A∗)−1ξ)

almost everywhere. Now

γ̂(ξ) =
φ̂(ξ)

e1/2(ξ)
=

m((A∗)−1ξ)φ̂((A∗)−1ξ)

e1/2(ξ)

=
m((A∗)−1ξ)e1/2((A∗)−1ξ)

e1/2(ξ)

φ̂((A∗)−1ξ)

e1/2((A∗)−1ξ)

= m0((A∗)−1ξ)γ̂((A∗)−1ξ)

almost everywhere.

5 Proving Uniqueness

Proof of Theorem 3.4(ii) From the scaling equation (2) and condition (ii) of The-

orem 2.1,

lim
j→∞

|m((A∗)− jξ)|2

|φ̂((A∗)− jξ)|2
= lim

j→∞

|φ̂((A∗)−( j−1)ξ)|2/|φ̂((A∗)− jξ)|2

|φ̂((A∗)− jξ)|2
= 1 a.e..
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Thus a low-pass filter m(ξ) for a scaling or pre-scaling function φ(x) satisfies condi-

tion (i). By definition, |φ̂(ξ)| is a fixed point of the operator p. A standard calculation

shows that e(ξ) is a fixed point for the operator P. Thus condition (ii) is also satisfied.

To show that condition (iii) is satisfied, we again refer to Theorem 2.1. If φ̂(ξ) is a

pre-scaling function, then

γ̂(ξ) :=
φ̂(ξ)

e1/2(ξ)

is a scaling function. Then

lim
j→∞

e((A∗)− jξ)

|φ̂((A∗)− jξ)|2
= lim

j→∞
|γ̂−1((A∗)− jξ)| = 1 a.e.,

so e(ξ) is almost everywhere A-adically φ̂-continuous at the origin, with

e(0)/|φ̂(0)|2 = 1. Also, since φ̂(ξ) is a pre-scaling function, there exist constants

c,C > 0 such that c < e(ξ) < C almost everywhere [13], so that both e(ξ) and

e−1(ξ) are in L∞(T
n). Thus e(ξ) is in the class D∞(φ̂). It remains to show that e(ξ)

is the unique function in D∞(φ̂). That is, if h(ξ) ∈ D∞(φ̂), then h(ξ) = e(ξ) almost

everywhere.

Since
∑

k∈Zn |γ̂(ξ + k)|2 = 1 almost everywhere, we may interpret |γ̂(ξ + k)|2 as a

probability distribution on Z
n for almost every ξ. The low-pass filter associated with

γ̂(ξ) is

m0(ξ) := m(ξ)
( e1/2(ξ)

e1/2(A∗ξ)

)

.

Set M(ξ) := |m0(ξ)|2 (note that M(ξ) > 0 almost everywhere). We can then write

|γ̂(ξ + k)|2 as a limit of partial products

|γ̂(ξ + k)|2 = lim
N→∞

|γ̂N (ξ + k)|2 a.e.

where

|γ̂N (ξ + k)|2 :=

N
∏

j=1

M((A∗)− j(ξ + k)).

By [1, Corollary 7], there exists an integer β ≥ 1 such that for B := Aβ we

may represent each k ∈ Z
n by a radix representation. That is, there exists an in-

teger n = n(k) ≥ 1 such that k =
∑n(k)

j=0 B jd j where each ω j(k) is in the digit

set DB = B([− 1
2
, 1

2
)n) ∩ Z

n for B. We then identify k ∈ Z
n with the sequence

(ω0(k), ω1(k), ω2(k), . . . ) where ω j(k) = d j for 0 ≤ j ≤ n(k) and ω j(k) = 0 for

j > n(k).

Let Ω be the set of all such sequences (for arbitrary n), Ω = DB × DB × · · · .

We have identified Z
n with the subset of Ω consisting of all finite sequences. Given

k ∈ Z
n, let kN denote the cylinder set in Ω composed of sequences beginning with

(ω0(k), . . . , ωN−1(k)). Define a measure PN
ξ on cylinder sets in Ω by

PN
ξ (kN ) :=

N−1
∏

j=0

Qξ, j(kN ),
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where

Qξ, j(kN ) :=

β−1
∏

i=0

M(((A∗)−1)−β j−i−1(ξ + k)).

We claim the following.

Lemma 5.1
∑

k∈Z
n

ω j (k)=0 for j≥N

PN
ξ (kN ) = 1 a.e. ξ.

We delay the proof of Lemma 5.1 to the end of this present proof.

By a theorem of Kolmogorov, the family PN
ξ extends to a probability Pξ on Borel

sets of Ω. Since γ̂(ξ) is a scaling function,

1 =

∑

k∈Zn

|γ̂(ξ + k)|2 =

∑

k∈Zn

lim
N→∞

N
∏

j=1

M((B∗)− j(ξ + k))

=

∑

k∈Zn

lim
N→∞

PN
ξ (k)

for almost every ξ. Since Z
n corresponds to the set of finite sequences in Ω, the

family PN
ξ is tight on Z

n. That is, for every ǫ > 0, there exists an r(ǫ, ξ) such that
∑

PN
ξ (kN ) ≤ ǫ for all N ≥ 1, where the sum is taken over N-dimensional cylinder

sets kN such that the largest index j̃ with ω j̃(k) 6= 0 satisfies j̃ ≥ r(ǫ, ξ). This implies

that Pξ is concentrated on finite sequences. We say that Pξ(Z
n) = 1 for almost every ξ.

Consider X j(k) = ω j(k) as a sequence of random variables taking values in the

digit set DB, with the probability that X j = d given X0, . . . , X j−1 being

M((B∗)−1(ξ j + d))

for each j ≥ 0 and d ∈ DB, with ξ0(k) := ξ and ξ j+1 := (B∗)−1(ξ j + X j) for

j ≥ 0. That Pξ is concentrated on finite sequences for almost every ξ means that the

sequence {X j} j≥0 converges to 0 relative to Pξ for every k ∈ Z
n and almost every ξ.

Now

Pξ(ξ j+1 ‖ ξ j , . . . , ξ0) = Pξ((B∗)−1(ξ j + X j) ‖ ξ j , . . . , ξ0)

= M
(

(B∗)−1(ξ j + X j)
)

.

By construction, Pξ(ξ j+1 ‖ ξ j , . . . , ξ0) = Pξ(ξ j+1 ‖ ξ j), thus {ξ j} j≥0 is a Markov pro-

cess. Furthermore, since Pξ is concentrated on finite sequences (for almost every ξ),

lim j→∞ ξ j = 0 almost surely, for almost every ξ.

Now consider r(ξ) := h(ξ)
e(ξ)

. We wish to show that r(ξ) = 1 for almost every ξ, so

that h(ξ) = e(ξ) almost everywhere. Since e(ξ) and h(ξ) are fixed points of P, r(ξ)

satisfies

r(ξ) =

∑

d∈D

M
(

(A∗)−1(ξ + d)
)

r
(

(A∗)−1(ξ + d)
)

a.e.
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Using this, and that the sequence {ξ j} is a Markov process with transition probabili-

ties Pξ(ξ j+1 = d ‖ ξ j) = M((B∗)−1(ξ j + d)), we find that for almost every ξ,

E[r(ξ j+1) ‖ r(ξ j), . . . , r(ξ0)] = E[r((B∗)−1(ξ j + X j)) ‖ r(ξ j), . . . , r(ξ0)]

= E[r((B∗)−1(ξ j + X j)) ‖ r(ξ j)]

=

∑

d∈DB

M
(

(B∗)−1(ξ j + d)
)

r
(

(B∗)−1(ξ j + d)
)

= r(ξ j).

Thus r(ξ j) is a martingale. Note that r(ξ j) is strictly positive and bounded, and con-

verges Pξ-almost surely to r(0) = 1 for almost every ξ, since ξ j → 0. Using the

Lebesgue dominated convergence theorem,

r(0) = E[r(0) ‖ r(ξ j)] = E[ lim
l→∞

r(ξl) ‖ r(ξ j)] = lim
l→∞

E[r(ξl) ‖ r(ξ j)] = r(ξ j)

for every j ≥ 0. Thus

1 = r(0) = r(ξ) =
h(ξ)

e(ξ)

for almost every ξ, and e(ξ) is the unique fixed point of the operator P in the class

D∞(φ̂).

The proof of Lemma 5.1 relies on the following lemma.

Lemma 5.2 Let A by a dilation matrix and let B = Aβ for some integer β ≥ 1.

If m(ξ) is a low-pass filter under dilation by A, then mB(ξ) :=
∏β−1

i=0 m((A∗)iξ) is a

low-pass filter under dilation by B.

Proof Let φ̂(ξ) be the Fourier transform of the scaling function associated with

m(ξ). Then

∞
∏

j=1

mB((B∗)− jξ) =

∞
∏

j=1

β−1
∏

i=0

m((A∗)− jβ+iξ) =

∞
∏

j ′=1

m((A∗)− j ′ξ) = φ̂(ξ) a.e.,

φ̂(ξ) = mB((B∗)−1ξ)φ̂((B∗)−1ξ) a.e.

Since φ(x) is a scaling function under dilation by A, we know that

∑

k∈Zn

|φ̂(ξ + k)|2 = 1 a.e.

Also, lim j→∞|φ̂((A∗)− jξ)| = 1 a.e., and thus the limit along a subsequence is the

same: lim j→∞|φ̂((B∗)− jξ)| = 1 a.e. Since all three conditions of Theorem 2.1 are

satisfied, φ(x) is a scaling function under dilation by B = Aβ , with low-pass filter

mB(ξ) by construction.
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Proof of Lemma 5.1 Since mB(ξ) is a low-pass filter under dilation by B, it satisfies

the relation
∑

d∈DB

|mB((B∗)−1(ξ + d))|2 = 1 a.e.,

from which the desired result follows:

∑

k∈Z
n

ω j (k)=0 for j≥N

PN
ξ (kN ) =

∑

d∈DB,N

|mB((B∗)−N (ξ + d))|2 = 1 a.e. ξ.
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[5] K. Gröchenig and W. R. Madych, Multiresolution analysis, Haar bases, and self-similar tilings of R
n.

IEEE Trans. Inform. Theory. 38(1992), no. 2, 556–568.
[6] R. Gundy, Low-pass filters, martingales, and multiresolution analyses. Appl. Comput. Harmon.

Anal. 9(2000), no. 2, 204–219.
[7] X.-G. He and K.-S. Lau, Characterization of tile digit sets with prime determinants. Appl. Comput.

Harmon. Anal. 16(2004), no. 3, 159–173.
[8] E. Hernández and G. Weiss, A First Course on Wavelets. CRC Press, Boca Raton, FL, 1996.
[9] J. C. Lagarias and Y. Wang, Self-Affine tiles in Rn. Adv. Math. 121(1996), no. 1, 21–49.
[10] , Integral self-affine tiles in R

n. II. Lattice tilings. J. Fourier Anal. Appl. 3(1997), no. 1,
83–102.

[11] , Haar bases for L2(R
n) and algebraic number theory. J. Number Theory 57(1996), no. 1,

181–197.
[12] , Corrigendum/Addendum: Haar Bases for L2(R

n) and Algebraic Number Theory, J.
Number Theory 76(1999), no. 1, 330–336.

[13] P. Wojtaszczyk, A Mathematical Introduction to Wavelets. London Mathematical Society Student
Texts 37, Cambridge University Press, Cambridge, 1997.

Department of Mathematics and Statistics

Dalhousie University

Halifax, NS

B3H 3J5

e-mail: ecurry@mathstat.dal.ca

https://doi.org/10.4153/CJM-2008-016-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-016-1

