Low-Pass Filters and Scaling Functions for Multivariable Wavelets

Eva Curry

Abstract

We show that a characterization of scaling functions for multiresolution analyses given by Hernández and Weiss and that a characterization of low-pass filters given by Gundy both hold for multivariable multiresolution analyses.

Introduction

In this paper we investigate low-pass filters and scaling functions associated with multivariable multiresolution analyses. In the multivariable setting, instead of the standard dilation by 2 we use a dilation matrix.

Definition 1.1 A dilation matrix is an $n \times n$ matrix A with integer entries, all of whose eigenvalues λ satisfy $|\lambda|>1$.

Note that $q:=|\operatorname{det} A|$ is an integer with $q \geq 2$. A dilation matrix A gives a mapping of the lattice \mathbb{Z}^{n} into itself with nontrivial cokernel. The definition of a dilation matrix does not ensure that all singular values of A are strictly greater than 1 , so we may not have $\|A x\|_{\ell_{2}}>\|x\|_{\ell_{2}}$ for all $x \in \mathbb{Z}^{n}$. However there exists an integer $M \geq 1$ such that $\left\|A^{j} x\right\|_{\ell_{2}}>\|x\|_{\ell_{2}}$ for all $j \geq M$ (see [1]). It can also be shown that $\mathbb{Z}^{n} / A\left(\mathbb{Z}^{n}\right)$ has q cosets [13].

Definition 1.2 Let A be an $n \times n$ dilation matrix. A digit set for A is a set containing exactly one representative of each coset of $\mathbb{Z}^{n} / A\left(\mathbb{Z}^{n}\right)$.

In n dimensions, a multiresolution analysis is defined as follows.

Definition 1.3 Let A be an $n \times n$ dilation matrix. A multiresolution analysis (MRA) associated with A is a nested sequence of subspaces

$$
\cdots \subset V_{-2} \subset V_{-1} \subset V_{0} \subset V_{1} \subset V_{2} \subset \cdots
$$

of $L^{2}\left(\mathbb{R}^{n}\right)$ satisfying the following:
(i) $\bigcup_{j \in \mathbb{Z}} V_{j}=L^{2}\left(\mathbb{R}^{n}\right)$;
(ii) $\bigcap_{j \in \mathbb{Z}} V_{j}=\{0\}$;
(iii) $f(x) \in V_{0}$ if and only if $f(x-k) \in V_{0}$ for all $k \in \mathbb{Z}^{n}$;

[^0](iv) $f(x) \in V_{j}$ if and only if $f(A x) \in V_{j+1}$ for all $j \in \mathbb{Z}$;
(v) there exists a function $\phi \in V_{0}$, called a scaling function, such that the set
$$
\left\{\phi_{0, k}(x):=\phi(x-k): k \in \mathbb{Z}^{n}\right\}
$$
is a complete orthonormal basis for V_{0}.
This generalization of multiresolution analyses beyond the case of dilation by 2 was originally introduced by Gröchenig and Madych [5], who showed that Haarlike scaling functions for multivariable MRAs (that is, scaling functions that can be written as the characteristic function of a set, $\phi=\chi_{Q}$) are associated with lattice self-affine tilings of \mathbb{R}^{n} by sets of the form
$$
T=\left\{\sum_{j=1}^{\infty} A^{-j} d_{j}: d_{j} \in D\right\}
$$
where D is a digit set for A. The existence of such tilings has been studied by Lagarias and Wang [9-12]), He and Lau [7], Belock and Dobric [3], and the author [1, 2]. This paper investigates general multivariable MRAs. In Section 2 we generalize a characterization theorem for scaling functions given by Hernández and Weiss [8] to the multivariable setting.

As in the case of dilation by 2 , a scaling function for a multivariable MRA satisfies a scaling equation

$$
\phi\left(A^{-1} x\right)=\sum_{k \in \mathbb{Z}^{n}} h_{k} \phi(x-k)
$$

for some coefficients h_{k}. Taking the Fourier transform of both sides, there exists a periodic function $m(\xi) \in L^{2}\left(\mathbb{T}^{n}\right)$ such that $\hat{\phi}(\xi)=m\left(\left(A^{*}\right)^{-1} \xi\right) \hat{\phi}\left(\left(A^{*}\right)^{-1} \xi\right)$.

Definition 1.4 A periodic function $m(\xi) \in L^{2}\left(\mathbb{T}^{n}\right)$ such that

$$
\hat{\phi}(\xi)=m\left(\left(A^{*}\right)^{-1} \xi\right) \hat{\phi}\left(\left(A^{*}\right)^{-1} \xi\right)
$$

is called a low-pass filter for the scaling function ϕ and associated multiresolution analysis.

In Section 3 we prove a characterization of low-pass filters, formulated by Gundy [6] in the case of dilation by 2 , in the multivariable setting.

2 Scaling Functions

Hernández and Weiss give a characterization of scaling functions for multiresolution analyses associated with dilation by 2 [8 , Theorem 5.2, Ch. 7]. Their characterization can be extended to the multivariable setting with few changes.

Theorem 2.1 Let A be an $n \times n$ dilation matrix. A function $\phi \in L^{2}\left(\mathbb{R}^{n}\right)$ is a scaling function for a multiresolution analysis under dilation by A if and only if
(i) $\quad \sum_{k \in \mathbb{Z}^{n}}|\hat{\phi}(\xi+k)|^{2}=1$ almost everywhere,
(ii) $\lim _{j \rightarrow \infty}\left|\hat{\phi}\left(\left(A^{*}\right)^{-j} \xi\right)\right|=1$ almost everywhere,
(iii) there exists a periodic function $m(\xi) \in L^{2}\left(\mathbb{T}^{n}\right)$ such that

$$
\hat{\phi}(\xi)=m\left(\left(A^{*}\right)^{-1} \xi\right) \hat{\phi}\left(\left(A^{*}\right)^{-1} \xi\right)
$$

almost everywhere (note that $m(\xi)$ is then a low-pass filter for ϕ).
Before proving this theorem, we need to know that the result of [8, Theorem 1.6, Ch. 2] still holds. This lemma shows that condition (ii) of the definition of an MRA is redundant.

Lemma 2.2 Let $\left\{V_{j}: j \in \mathbb{Z}\right\}$ be a sequence of subspaces of $L^{2}\left(\mathbb{R}^{n}\right)$ satisfying
(i) $\quad V_{j} \subset V_{j+1}$ for all $j \in \mathbb{Z}$ (the subspaces are nested),
(ii) $f(x) \in V_{j}$ if and only if $f(A x) \in V_{j+1}$ for all $j \in \mathbb{Z}$ (condition (iv) of the definition of an MRA),
(iii) there exists a function $\phi \in V_{0}$, called a scaling function, such that the set

$$
\left\{\phi_{0, k}(x):=\phi(x-k): k \in \mathbb{Z}^{n}\right\}
$$

is a complete orthonormal basis for V_{0} (condition (v) of the definition of an MRA).
Then $\bigcap_{j \in \mathbb{Z}} V_{j}=\{0\}$ (condition (ii) of the definition of an MRA holds).
Proof Suppose that there exists a non-zero function f in $\bigcap_{j \in \mathbb{Z}} V_{j}$. We may assume $\|f\|_{2}=1$. Also, since $f \in V_{j}$ for each $j \in \mathbb{Z}$, if we let $f_{j}(x)=q^{j / 2} f\left(A^{j} x\right)$ (where $q=|\operatorname{det} A|)$, then $f_{j} \in V_{0}$, by condition (ii) of the statement of the lemma. A change of variables shows that $\left\|f_{j}\right\|_{2}=\|f\|_{2}=1$. Since $\left\{\phi(\cdot-k): k \in \mathbb{Z}^{n}\right\}$ is a basis for V_{0}, we may write

$$
f_{j}(x)=\sum_{k \in \mathbb{Z}^{n}} \alpha_{k}^{j} \phi(x-k)
$$

for some constant coefficients α_{k}^{j}, with convergence in $L^{2}\left(\mathbb{R}^{n}\right)$ such that

$$
\sum_{k \in \mathbb{Z}^{n}}\left|\alpha_{k}^{j}\right|^{2}=\left\|f_{j}\right\|_{2}^{2}=1
$$

Taking Fourier transforms, we get

$$
q^{-j / 2} \hat{f}\left(\left(A^{*}\right)^{-j} \xi\right)=\hat{f}_{j}(\xi)=\sum_{k \in \mathbb{Z}^{n}} \alpha_{k}^{j} e^{-2 \pi i k \cdot \xi} \hat{\phi}(\xi)=m_{j}(\xi) \hat{\phi}(\xi)
$$

where $m_{j}(\xi)=\sum_{k \in \mathbb{Z}^{n}} \alpha_{k}^{j} e^{-2 \pi i k \cdot \xi}$. Note that $m_{j}(\xi)$ is a \mathbb{Z}^{n}-periodic function, belonging to $L^{2}\left(\mathbb{T}^{n}\right)$, with L^{2}-norm 1 . Thus

$$
\hat{f}(\xi)=q^{j / 2} m_{j}\left(\left(A^{*}\right)^{j} \xi\right) \hat{\phi}\left(\left(A^{*}\right)^{j} \xi\right)
$$

and, for $j \geq 1$,

$$
\int_{[1,2)^{n}}|\hat{f}(\xi)| d \xi \leq q^{j / 2}\left(\int_{[1,2)^{n}}\left|m_{j}\left(\left(A^{*}\right)^{j} \xi\right)\right|^{2} d \xi\right)^{1 / 2}\left(\int_{[1,2)^{n}}\left|\hat{\phi}\left(\left(A^{*}\right)^{j} \xi\right)\right|^{2} d \xi\right)^{1 / 2}
$$

Let D be a digit set for A as in Definition 1.2, and let

$$
T=\left\{\sum_{j=1}^{\infty} A^{-j} d_{j}: d_{j} \in D\right\}
$$

Either the set T is congruent modulo \mathbb{Z}^{n} to the unit cube [1,2) (up to a set of measure zero), or a subset of T is congruent to $[1,2)^{n}$ [13]. Thus we can use the periodicity of $m_{j}(\xi)$ to rewrite the first integral above, to see that

$$
\int_{[1,2)^{n}}|\hat{f}(\xi)| d \xi \leq q^{j / 2}\left(\int_{T}\left|m_{j}\left(\left(A^{*}\right)^{j} \xi\right)\right|^{2} d \xi\right)^{1 / 2}\left(\int_{[1,2)^{n}}\left|\hat{\phi}\left(\left(A^{*}\right)^{j} \xi\right)\right|^{2} d \xi\right)^{1 / 2}
$$

Using a change of variables, $\mu=\left(A^{*}\right)^{j} \xi$, we then have

$$
\begin{aligned}
\int_{[1,2)^{n}}|\hat{f}(\xi)| d \xi & \leq q^{-j / 2}\left(\int_{\left(A^{*}\right)^{j} T}\left|m_{j}(\mu)\right|^{2} d \mu\right)^{1 / 2}\left(\int_{\left(A^{*}\right)^{j}[1,2)^{n}}|\hat{\phi}(\mu)|^{2} d \mu\right)^{1 / 2} \\
& =\left(q^{-j} \sum_{k \in D_{A, j}} \int_{T+k}\left|m_{j}(\mu)\right|^{2} d \mu\right)^{1 / 2}\left(\int_{\left(A^{*}\right)^{j}[1,2)^{n}}|\hat{\phi}(\mu)|^{2} d \mu\right)^{1 / 2} \\
& \leq(1)^{1 / 2}\left(\int_{\left(A^{*}\right)^{j}[1,2)^{n}}|\hat{\phi}(\mu)|^{2} d \mu\right)^{1 / 2}
\end{aligned}
$$

where $D_{A, l}=\left\{k=\sum_{i=0}^{l-1} A^{i} d_{i}\right\}$ with the d_{i} in a digit set D for A. Note that there are q^{j} distinct elements in $D_{A, j-1}$. The last line in the above calculation follows from the \mathbb{Z}^{n}-periodicity of $m_{j}(\xi)$ and $\left(\int_{F}\left|m_{j}(\xi)\right|^{2} d \xi\right)^{1 / 2} \leq 1$.

We recall that $\lim _{j \rightarrow \infty} \min \left\{\sigma: \sigma\right.$ a singular value of $\left.A^{j}\right\}=\infty$ and thus

$$
\lim _{j \rightarrow \infty} \min \left\{\|\mu\|_{\ell_{2}}: \mu \in\left(A^{*}\right)^{j}[1,2)^{n}\right\}=\infty
$$

In particular, we can take j sufficiently large so that the set $\left(A^{*}\right)^{j}[1,2)^{n}$ contains an arbitrarily small amount of the mass of the function $|\hat{\phi}(\mu)|^{2}$. Thus the integral in the last line of the above calculation tends to 0 as $j \rightarrow \infty$. A similar calculation shows that $\int_{\left(A^{*}\right)^{l}[1,2)^{n}}|\hat{f}(\xi)| d \xi=0$ for any fixed $l \in \mathbb{Z}$. Thus we obtain that $\hat{f}(\xi)=0$ almost everywhere on $\bigcup_{l \in \mathbb{Z}}\left(A^{*}\right)^{l}[1,2)^{n}$. We may apply this argument to any other set congruent to F and such that $\left|\left(A^{*}\right)^{j} \mu\right| \rightarrow \infty$ for every μ in the set. For example, for each $\xi \in \mathbb{R}^{n}, \xi \neq 0$, we may take the unit cube translated so that its closest vertex to the origin is at ξ. Then $\hat{f}(\xi)=0$ for almost every $\xi \in \mathbb{R}^{n}$. This completes the proof of the lemma.

Proof of Theorem 2.1 First, suppose that ϕ is a scaling function for an MRA $\left\{V_{j}\right.$: $j \in \mathbb{Z}\}$. Then $\left\{\phi(\cdot-k): k \in \mathbb{Z}^{n}\right\}$ is an orthonormal system in $L^{2}\left(\mathbb{R}^{n}\right)$, implying (i) (e.g., by [13, Proposition 5.7(ii)], which states that $\left\{f(\cdot-k): k \in \mathbb{Z}^{n}\right\}$ is an orthonormal system if and only if $\sum_{k \in \mathbb{Z}^{n}}|\hat{f}(\xi+k)|^{2}=1$ almost everywhere).

Let $F=\left[-\frac{1}{2}, \frac{1}{2}\right)^{n}$ and $q=|\operatorname{det} A|$. We claim that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \int_{F}\left|\hat{\phi}\left(\left(A^{*}\right)^{-j} \xi\right)\right|^{2} d \xi=1 \tag{1}
\end{equation*}
$$

To see this, let f be the function such that $\hat{f}=\chi_{F}$, and let P_{j} be the projection onto V_{j}. Write $\phi_{j, k}(x)=q^{j / 2} \phi\left(A^{j} x-k\right)$ for $j \in \mathbb{Z}, k \in \mathbb{Z}^{n}$. Then

$$
\begin{aligned}
\left\|P_{j} f\right\|_{2}^{2} & =\left\|\sum_{k \in \mathbb{Z}^{n}}\left\langle f, \phi_{j, k}\right\rangle \phi_{j, k}\right\|_{2}^{2} \\
& =\sum_{k \in \mathbb{Z}^{n}}\left|\int_{\mathbb{R}^{n}} \hat{f}(\xi) \overline{\phi_{j,-k}(\xi)} d \xi\right|^{2} \\
& =\sum_{k \in \mathbb{Z}^{n}}\left|\int_{\mathbb{R}^{n}} \hat{f}(\xi) q^{-j / 2} e^{-2 \pi i k \cdot \xi} \overline{\hat{\phi}\left(\left(A^{*}\right)^{-j} \xi\right)} d \xi\right|^{2} \\
& =q^{j} \sum_{k \in \mathbb{Z}^{n}}\left|\int_{\left(A^{*}\right)^{-j} F} \overline{\hat{\phi}(\mu)} e^{-2 \pi i k \cdot \mu} d \mu\right|^{2}
\end{aligned}
$$

The last expression is q^{j} times the sum of the squares of the absolute values of the Fourier coefficients of the function $\chi_{\left(A^{*}\right)^{-j} F} \overline{\hat{\phi}}$. Therefore, by the Plancherel theorem, it is equal to $q^{j} \int_{\left(A^{*}\right)^{-j} F}|\hat{\phi}(\mu)|^{2} d \mu$. However, since $\left\{V_{j}: j \in \mathbb{Z}\right\}$ is dense in $L^{2}\left(\mathbb{R}^{n}\right)$, $\lim _{j \rightarrow \infty}\left\|P_{j} f\right\|_{2}^{2}=\|f\|_{2}^{2}$. Thus this last expression tends to $\left\|\chi_{F}\right\|_{2}^{2}=1$ as $j \rightarrow \infty$.

A change of variables $\xi=\left(A^{*}\right)^{-j} \mu$ then gives us (1).
Since $|m(\xi)| \leq 1$ for almost every ξ and $\hat{\phi}(\xi)=m\left(\left(A^{*}\right)^{-1} \xi\right) \hat{\phi}\left(\left(A^{*}\right)^{-1} \xi\right)$, we must have $\left|\hat{\phi}\left(\left(A^{*}\right)^{-j} \xi\right)\right|$ nondecreasing for almost every $\xi \in \mathbb{R}^{n}$ as $j \rightarrow \infty$. Let

$$
g(\xi)=\lim _{j \rightarrow \infty}\left|\hat{\phi}\left(\left(A^{*}\right)^{-j} \xi\right)\right|
$$

By condition (i) of the statement of the theorem, $|\hat{\phi}(\xi)| \leq 1$ almost everywhere. Together with (1) and the Lebesgue dominated convergence theorem, this gives us $\int_{F} g(\xi) d \xi=1$. We now have condition (ii) of the statement of the theorem, since $0 \leq g(\xi) \leq 1$ almost everywhere.

Lastly, we have condition (iii) of the statement of the theorem by [13, Lemma 5.8], which states that a function f belongs to V_{1} if and only if $\hat{f}\left(A^{*} \xi\right)=m_{f}(\xi) \hat{\phi}(\xi)$ for some \mathbb{Z}^{n}-periodic function $m_{f}(\xi)$.

Conversely, suppose that ϕ satisfies conditions (i), (ii), and (iii). We want to show that the definition of a multiresolution analysis is satisfied. Proposition 5.7(ii) of [13]
together with (i) imply that $\left\{\phi(\cdot-k): k \in \mathbb{Z}^{n}\right\}$ is an orthonormal system. We define V_{0} as the closure of the span of this system. Thus conditions (iii) and (v) of the definition of an MRA are satisfied. We define each V_{j} for $j \in \mathbb{Z}$ by

$$
V_{0}=\overline{\operatorname{span}\left\{\hat{\phi}(\cdot-k): k \in \mathbb{Z}^{n}\right\}} ; \quad V_{j}=\left\{f: f\left(A^{-j}\right) \in V_{0}\right\} \text { for } j \neq 0
$$

Then condition (iv) of the definition of an MRA is satisfied.
We claim furthermore that

$$
V_{j}=\left\{f: \hat{f}\left(\left(A^{*}\right)^{j} \xi\right)=\mu_{j}(\xi) \hat{\phi}(\xi) \text { for some } \mathbb{Z}^{n} \text {-periodic } \mu_{j} \in L^{2}\left(\mathbb{T}^{n}\right)\right\}
$$

since we may write $f\left(A^{-j}.\right) \in V_{0}$ as a linear combination of $\phi(\cdot-k), k \in \mathbb{Z}^{n}$, and then take Fourier transforms. By the periodicity of m and by (i), we have

$$
\begin{aligned}
1 & =\sum_{k \in \mathbb{Z}^{n}}|\hat{\phi}(\xi+k)|^{2} \\
& =\sum_{k \in \mathbb{Z}^{n}}\left|m\left(\left(A^{*}\right)^{-1} \xi+\left(A^{*}\right)^{-1} k\right)\right|^{2}\left|\hat{\phi}\left(\left(A^{*}\right)^{-1} \xi+\left(A^{*}\right)^{-1} k\right)\right|^{2} \\
& =\sum_{d \in D}\left|m\left(\left(A^{*}\right)^{-1}(\xi+d)\right)\right|^{2} \sum_{\gamma \in \mathbb{Z}^{n}}\left|\hat{\phi}\left(\left(A^{*}\right)^{-1}(\xi+d)+l\right)\right|^{2} \\
& =\sum_{d \in D}\left|m\left(\left(A^{*}\right)^{-1}(\xi+d)\right)\right|^{2}
\end{aligned}
$$

for almost every $\xi \in \mathbb{T}^{n}$ (where D is a digit set for A). In particular, $|m(\xi)| \leq 1$ for almost every $\xi \in \mathbb{T}^{n}$. Now in order to show that the subspaces $\left\{V_{j}\right\}$ are nested, we only need to show that $V_{0} \subset V_{1}$. Given $f \in V_{0}$, we may write $\hat{f}(\xi)=\mu_{0}(\xi) \hat{\phi}(\xi)$ for some \mathbb{Z}^{n}-periodic function μ_{0}. Then

$$
\hat{f}\left(A^{*} \xi\right)=\mu_{0}\left(A^{*} \xi\right) \hat{\phi}\left(A^{*} \xi\right)=\mu_{0}\left(A^{*} \xi\right) m(\xi) \hat{\phi}(\xi)
$$

Note that $\mu_{0}\left(A^{*} \xi\right) m(\xi)$ is \mathbb{Z}^{n}-periodic and is in $L^{2}\left(\mathbb{T}^{n}\right)$, since $|m(\xi)| \leq 1$ for almost every $\xi \in \mathbb{T}^{n}$. Thus $f \in V_{1}$.

Next we would like to show that $L^{2}\left(\mathbb{R}^{n}\right)=\overline{\bigcup_{j \in \mathbb{Z}} V_{j}}$. Let P_{j} be the projection onto V_{j}. It suffices to show that

$$
\left\|P_{j} f-f\right\|_{2}^{2}=\|f\|_{2}^{2}-\left\|P_{j} f\right\|_{2}^{2} \rightarrow 0 \quad \text { as } j \rightarrow \infty .
$$

We may also assume that $f \in L^{2}\left(\mathbb{R}^{n}\right)$ is such that \hat{f} has compact support, so that for
sufficiently large $j \in \mathbb{Z}, \hat{f}\left(\left(A^{*}\right)^{j} \cdot\right)$ has support in F (see [1, Lemma 5]). Then

$$
\begin{aligned}
\left\|P_{j} f\right\|_{2}^{2} & =q^{-j} \sum_{k \in \mathbb{Z}^{n}}\left|\int_{\mathbb{R}^{n}} f(t) \overline{\phi\left(A^{j} t-k\right)} q^{j} d t\right|^{2} \\
& =q^{-j} \sum_{k \in \mathbb{Z}^{n}}\left|\int_{\mathbb{R}^{n}} f\left(A^{-j} t\right) \overline{\phi(t-k)} d t\right|^{2} \\
& =q^{j} \sum_{k \in \mathbb{Z}^{n}}\left|\int_{F} \hat{f}\left(\left(A^{*}\right)^{j} \xi\right) \overline{\hat{\phi}(\xi)} e^{2 \pi i k \cdot \xi} d \xi\right|^{2} \\
& =q^{j} \int_{F}\left|\hat{f}\left(\left(A^{*}\right)^{j} \xi\right) \hat{\phi}(\xi)\right|^{2} d \xi \\
& =\int_{A^{j} F}\left|\hat{f}(\eta) \hat{\phi}\left(\left(A^{*}\right)^{-j} \eta\right)\right|^{2} d \eta .
\end{aligned}
$$

By the dominated convergence theorem, since $|\hat{\phi}(\xi)| \leq 1$, and by condition (ii),

$$
\int_{A^{j} F}|\hat{f}(\eta)|^{2}\left|\hat{\phi}\left(\left(A^{*}\right)^{-j} \eta\right)\right|^{2} d \eta \rightarrow \int_{\mathbb{R}^{n}}|\hat{f}(\eta)|^{2} d \eta=\|f\|_{2}^{2}
$$

as $j \rightarrow \infty$. Thus we have condition (i) of the definition of an MRA.
Lastly, condition (ii) of the definition of an MRA is a consequence of Lemma 2.2.

3 Low-Pass Filters

Let ϕ be a scaling function for a multiresolution analysis associated with an $n \times n$ dilation matrix A, and let $m(\xi)$ be a low-pass filter for ϕ. By Theorem 2.1(iii),

$$
\begin{equation*}
\hat{\phi}(\xi)=m\left(\left(A^{*}\right)^{-1} \xi\right) \hat{\phi}\left(\left(A^{*}\right)^{-1} \xi\right) \text { a.e. } \xi . \tag{2}
\end{equation*}
$$

Also, Wojtasczyk [13] has shown that if D is a digit set for A, then

$$
\sum_{d \in D}\left|m\left(\left(A^{*}\right)^{-1}(\xi+d)\right)\right|^{2}=1 \text { a.e. } \xi
$$

These two equations lead us to consider the operators

$$
\begin{gathered}
\mathcal{P}: f(\xi) \rightarrow \sum_{d \in D}\left|m\left(\left(A^{*}\right)^{-1}(\xi+d)\right)\right|^{2} f\left(\left(A^{*}\right)^{-1}(\xi+d)\right), \\
\mathbf{p}: f(\xi) \rightarrow\left|m\left(\left(A^{*}\right)^{-1} \xi\right)\right|^{2} f\left(\left(A^{*}\right)^{-1} \xi\right),
\end{gathered}
$$

defined on $L^{1} \cap L^{2}\left(\mathbb{R}^{n}\right)$ and $L^{\infty}\left(\mathbb{T}^{n}\right)$, respectively. We see that when $m(\xi) \in L^{2}\left(\mathbb{T}^{n}\right)$ is a low-pass filter associated with a scaling function $\phi(x),|\hat{\phi}(\xi)|^{2}$ is a fixed point of the operator \mathcal{P}. Additionally, from Theorem 2.1(i), the function

$$
e(\xi):=\sum_{k \in \mathbb{Z}^{d}}|\hat{\phi}(\xi+k)|^{2}
$$

is 1 almost everywhere, and thus is a fixed point of the operator \mathbf{p}.
Condition (ii) of Theorem 2.1 states that a necessary condition for $\phi(x)$ to be a scaling function is $\lim _{j \rightarrow \infty}\left|\hat{\phi}\left(\left(A^{*}\right)^{-j} \xi\right)\right|=1$ almost everywhere. If $m(\xi)$ were continuous and sufficiently regular, for example if $m(\xi)$ were a trigonometric polynomial, then $\hat{\phi}(\xi)$ would be continuous at the origin, and we would need

$$
1=|\hat{\phi}(0)|^{2}=\prod_{j=1}^{\infty}\left|m\left(\left(A^{*}\right)^{-j} 0\right)\right|^{2}=\prod_{j=1}^{\infty}|m(0)|^{2},
$$

and thus $|m(0)|^{2}=1$ (see [8,13]). In general, however, we are considering $m(\xi)$ to be an equivalence class of functions in $L^{2}\left(\mathbb{T}^{n}\right)$, and so cannot specify $m(\xi)$ or $|m(\xi)|^{2}$ for given ξ. As we show below, a low-pass filter must satisfy a weak form of continuity at the origin, however.

Definition 3.1 Let $g(\xi) \in L^{1} \cap L^{\infty}\left(\mathbb{R}^{n}\right)$. A function $f(\xi)$ is almost everywhere A-adically g-continuous at the origin if

$$
\lim _{j \rightarrow \infty} \frac{f\left(\left(A^{*}\right)^{-j} \xi\right)}{\left|g\left(\left(A^{*}\right)^{-j} \xi\right)\right|^{2}}
$$

exists and is constant almost everywhere. We denote the value of the limit by $\frac{f(0)}{|g(0)|^{2}}$.
We take $g=\hat{\phi}$ below.
Note that $e(\xi)$ is almost everywhere A-adically $\hat{\phi}$-continuous at the origin when $\phi(x)$ is a scaling function, as well. This leads us to consider the following space of functions.

Definition 3.2 $D_{\infty}(\hat{\phi})$ is the space of functions $h(\xi)$ satisfying the following:
(i) both $h(\xi)$ and its reciprocal $h^{-1}(\xi)$ are in $L^{\infty}\left(\mathbb{T}^{n}\right)$;
(ii) $h(\xi)$ is almost everywhere A-adically $\hat{\phi}$-continuous at the origin with $\frac{h(0)}{|\hat{\phi}(0)|^{2}}=1$.

Gundy [6] gave a characterization of low-pass filters in the case of dilation by 2, using the ideas presented above. The same characterization holds in the multivariable setting, and in fact characterizes low-pass filters associated with pre-scaling functions.

Definition 3.3 A pre-scaling function associated with a multiresolution analysis $\left\{V_{j}: j \in \mathbb{Z}\right\}$ is a function $\phi(x)$ such that the set of translates $\left\{\phi(x-k): k \in \mathbb{Z}^{n}\right\}$ forms a Riesz basis for the space V_{0}.

As shown in Wojtasczyk [13], a pre-scaling function can be normalized by e $e(\xi)=$ $\sum_{k \in \mathbb{Z}^{n}}|\hat{\phi}(\xi+k)|^{2}$ so that the function $\gamma(x)$ defined by

$$
\hat{\gamma}(\xi)=\frac{\hat{\phi}(\xi)}{(e(\xi))^{1 / 2}}
$$

is a scaling function for the multiresolution analysis $\left\{V_{j}\right\}$.

Theorem 3.4 If $m(\xi)$ is a low-pass filter associated with a pre-scaling function $\phi(x)$, then we have the following statements.
(i) The function $m(\xi)$ is \mathbb{Z}^{n}-periodic and in $L^{2}\left(\mathbb{T}^{n}\right)$, and $|m(\xi)|^{2}$ is a.e. A-adically $\hat{\phi}$-continuous at the origin with $\frac{|m(0)|^{2}}{|\hat{\phi}(0)|^{2}}=1$, that is,

$$
\lim _{j \rightarrow \infty}\left|m\left(\left(A^{*}\right)^{-j} \xi\right)\right|^{2}=1 \quad \text { a.e. } \xi
$$

(ii) The operators \mathbf{p} and \mathcal{P} have nontrivial fixed points, $|\hat{\phi}(\xi)|^{2} \in L^{1} \cap L^{2}\left(\mathbb{R}^{n}\right)$ and $e(\xi) \in L^{\infty}\left(\mathbb{T}^{n}\right)$, respectively.
(iii) The function $e(\xi)$ is the unique fixed point of the operator \mathcal{P} in the class $D_{\infty}(\hat{\phi})$.

Conversely, if a function $m(\xi)$ satisfies these three conditions, then there is a \mathbb{Z}^{n}-periodic, $L^{2}\left(\mathbb{T}^{n}\right)$ function $m_{0}(\xi)$, with $|m(\xi)|=\left|m_{0}(\xi)\right|$ almost everywhere, such that $m_{0}(\xi)$ is the low-pass filter associated with a pre-scaling function.

We prove the converse direction first in Section 4. We then complete the proof in Section 5.

4 Finding Square Roots

Proof of Theorem 3.4(i) The operators \mathcal{P} and \mathbf{p} depend only on $M(\xi):=|m(\xi)|^{2}$. Our problem is to find a suitable square root $m_{0}(\xi)$ for $M(\xi)$ and a square $\operatorname{root} \hat{\phi}(\xi)$ for the fixed point $|\hat{\phi}(\xi)|^{2}$ of \mathbf{p} such that $\hat{\phi}(\xi)$ is a pre-scaling function with low-pass filter $m_{0}(\xi)$. Since $M(\xi),|\hat{\phi}(\xi)|^{2}$, and $e(\xi)$ are all real-valued and strictly positive, we can take a real valued square root of each function, $M^{1 / 2}(\xi),|\hat{\phi}(\xi)|$, and $e^{1 / 2}(\xi)$, respectively.

Define

$$
m_{0}(\xi):=m(\xi)\left(e^{1 / 2}(\xi) / e^{1 / 2}\left(A^{*} \xi\right)\right)=\operatorname{sgn} m(\xi) M^{1 / 2}(\xi)\left(e^{1 / 2}(\xi) / e^{1 / 2}\left(A^{*} \xi\right)\right)
$$

We want to use $\mu(\xi)=\operatorname{sgn} m(\xi)$ to find a function for $\operatorname{sgn} \hat{\phi}(\xi)$. However $m(\xi)$ and $\operatorname{sgn} m(\xi)$ are defined on $\mathbb{\Gamma}^{n}$, whereas we need $\hat{\phi}(\xi)$ and $\operatorname{sgn} \hat{\phi}(\xi)$ to be defined on \mathbb{R}^{n}. To extend sgn $m(\xi)$, we observe [6] that any unimodular, \mathbb{Z}^{n}-periodic function $\mu(\xi)$ may be written in terms of a non-periodic (not necessarily unique) unimodular function $t(\xi)$ as

$$
\mu(\xi)=t\left(A^{*} \xi\right) t^{-1}(\xi)
$$

To show this, first partition $\mathbb{R}^{n} \backslash\{0\}$ as follows. Let Q be the region between the sphere $C=\left\{x \in \mathbb{R}^{n}:\|x\|_{2}=1\right\}$ and the set

$$
\left(A^{*}\right)^{-1} C=\left\{y=\left(A^{*}\right)^{-1} x \in \mathbb{R}^{n}:\|x\|_{2}=1\right\}
$$

including C but excluding $\left(A^{*}\right)^{-1} C$. For each $j \in \mathbb{Z}$, let $\left(A^{*}\right)^{j} Q$ denote the region between $\left(A^{*}\right)^{j} C$ (inclusive) and $\left(A^{*}\right)^{j-1} C$ (exclusive), where these sets are defined similarly to $\left(A^{*}\right)^{-1} C$. Thus the sets $\left(A^{*}\right)^{j} Q$ for $j \in \mathbb{Z}$ are mutually disjoint, and their union is $\mathbb{R}^{n} \backslash\{0\}$.

Define $t(\xi)=1$ for $\xi \in Q$. Consider $\mu(\xi)$ as a periodic function on \mathbb{R}^{n}, and define $t(\xi)$ for ξ in successive sets $\left(A^{*}\right)^{j} S, j \neq 0$, by

$$
t(\xi)= \begin{cases}t\left(\left(A^{*}\right)^{-1} \xi\right) \mu\left(\left(A^{*}\right)^{-1} \xi\right) & \text { for } \xi \in\left(A^{*}\right)^{j} Q \text { with } j \geq 1 \\ t\left(A^{*} \xi\right) \mu^{-1}(\xi) & \text { for } \xi \in\left(A^{*}\right)^{j} Q \text { with } j \leq-1\end{cases}
$$

Also set $t(0)=1$. Then $\mu(\xi)=t\left(A^{*} \xi\right) t^{-1}(\xi)$ for all $\xi \in \mathbb{R}^{n}$.
Now define $\hat{\phi}(\xi)$ by $\hat{\phi}(\xi)=t(\xi)|\hat{\phi}(\xi)|$. To show that $\hat{\phi}(\xi)$ so defined is a prescaling function, we refer to Theorem 2.1. Observe that

$$
\sum_{k \in \mathbb{Z}^{n}}|\hat{\gamma}(\xi+k)|^{2}=\sum_{k \in \mathbb{Z}^{n}} \frac{|\hat{\phi}(\xi+k)|^{2}}{e(\xi+k)}=\frac{\sum_{k \in \mathbb{Z}^{n}}|\hat{\phi}(\xi+k)|^{2}}{e(\xi)}=\frac{e(\xi)}{e(\xi)}=1 \quad \text { a.e. }
$$

where the second equality follows from the periodicity of $e(\xi)$. Thus condition (i) is satisfied.

For condition (ii), note that

$$
\lim _{j \rightarrow \infty}\left|\hat{\gamma}\left(\left(A^{*}\right)^{-j} \xi\right)\right|^{2}=\lim _{j \rightarrow \infty} \frac{\left|\hat{\phi}\left(\left(A^{*}\right)^{-j} \xi\right)\right|^{2}}{e\left(\left(A^{*}\right)^{-j} \xi\right)}=1 \quad \text { a.e. }
$$

since $e(\xi) \in D_{\infty}(\hat{\phi})$.
To show condition (iii), first note that

$$
\begin{aligned}
\hat{\phi}(\xi) & =t(\xi)|\hat{\phi}(\xi)|=t(\xi)\left|m\left(\left(A^{*}\right)^{-1} \xi\right)\right|\left|\hat{\phi}\left(\left(A^{*}\right)^{-1} \xi\right)\right| \\
& =t(\xi) t^{-1}\left(\left(A^{*}\right)^{-1} \xi\right)\left|m\left(\left(A^{*}\right)^{-1} \xi\right)\right| t\left(\left(A^{*}\right)^{-1} \xi\right)\left|\hat{\phi}\left(\left(A^{*}\right)^{-1} \xi\right)\right| \\
& =\operatorname{sgn} m\left(\left(A^{*}\right)^{-1} \xi\right)\left|m\left(\left(A^{*}\right)^{-1} \xi\right)\right| \hat{\phi}\left(\left(A^{*}\right)^{-1} \xi\right) \\
& =m\left(\left(A^{*}\right)^{-1} \xi\right) \hat{\phi}\left(\left(A^{*}\right)^{-1} \xi\right)
\end{aligned}
$$

almost everywhere. Now

$$
\begin{aligned}
\hat{\gamma}(\xi) & =\frac{\hat{\phi}(\xi)}{e^{1 / 2}(\xi)}=\frac{m\left(\left(A^{*}\right)^{-1} \xi\right) \hat{\phi}\left(\left(A^{*}\right)^{-1} \xi\right)}{e^{1 / 2}(\xi)} \\
& =\frac{m\left(\left(A^{*}\right)^{-1} \xi\right) e^{1 / 2}\left(\left(A^{*}\right)^{-1} \xi\right)}{e^{1 / 2}(\xi)} \frac{\hat{\phi}\left(\left(A^{*}\right)^{-1} \xi\right)}{e^{1 / 2}\left(\left(A^{*}\right)^{-1} \xi\right)} \\
& =m_{0}\left(\left(A^{*}\right)^{-1} \xi\right) \hat{\gamma}\left(\left(A^{*}\right)^{-1} \xi\right)
\end{aligned}
$$

almost everywhere.

5 Proving Uniqueness

Proof of Theorem 3.4(ii) From the scaling equation (2) and condition (ii) of Theorem 2.1,

$$
\lim _{j \rightarrow \infty} \frac{\left|m\left(\left(A^{*}\right)^{-j} \xi\right)\right|^{2}}{\left|\hat{\phi}\left(\left(A^{*}\right)^{-j} \xi\right)\right|^{2}}=\lim _{j \rightarrow \infty} \frac{\left|\hat{\phi}\left(\left(A^{*}\right)^{-(j-1)} \xi\right)\right|^{2} /\left|\hat{\phi}\left(\left(A^{*}\right)^{-j} \xi\right)\right|^{2}}{\left|\hat{\phi}\left(\left(A^{*}\right)^{-j} \xi\right)\right|^{2}}=1 \quad \text { a.e.. }
$$

Thus a low-pass filter $m(\xi)$ for a scaling or pre-scaling function $\phi(x)$ satisfies condition (i). By definition, $|\hat{\phi}(\xi)|$ is a fixed point of the operator \mathbf{p}. A standard calculation shows that $e(\xi)$ is a fixed point for the operator \mathcal{P}. Thus condition (ii) is also satisfied.

To show that condition (iii) is satisfied, we again refer to Theorem 2.1. If $\hat{\phi}(\xi)$ is a pre-scaling function, then

$$
\hat{\gamma}(\xi):=\frac{\hat{\phi}(\xi)}{e^{1 / 2}(\xi)}
$$

is a scaling function. Then

$$
\lim _{j \rightarrow \infty} \frac{e\left(\left(A^{*}\right)^{-j} \xi\right)}{\left|\hat{\phi}\left(\left(A^{*}\right)^{-j} \xi\right)\right|^{2}}=\lim _{j \rightarrow \infty}\left|\hat{\gamma}^{-1}\left(\left(A^{*}\right)^{-j} \xi\right)\right|=1 \quad \text { a.e. }
$$

so $e(\xi)$ is almost everywhere A-adically $\hat{\phi}$-continuous at the origin, with $e(0) /|\hat{\phi}(0)|^{2}=1$. Also, since $\hat{\phi}(\xi)$ is a pre-scaling function, there exist constants $c, C>0$ such that $c<e(\xi)<C$ almost everywhere [13], so that both $e(\xi)$ and $e^{-1}(\xi)$ are in $L^{\infty}\left(\mathbb{T}^{n}\right)$. Thus $e(\xi)$ is in the class $D_{\infty}(\hat{\phi})$. It remains to show that $e(\xi)$ is the unique function in $D_{\infty}(\hat{\phi})$. That is, if $h(\xi) \in D_{\infty}(\hat{\phi})$, then $h(\xi)=e(\xi)$ almost everywhere.

Since $\sum_{k \in \mathbb{Z}^{n}}|\hat{\gamma}(\xi+k)|^{2}=1$ almost everywhere, we may interpret $|\hat{\gamma}(\xi+k)|^{2}$ as a probability distribution on \mathbb{Z}^{n} for almost every ξ. The low-pass filter associated with $\hat{\gamma}(\xi)$ is

$$
m_{0}(\xi):=m(\xi)\left(\frac{e^{1 / 2}(\xi)}{e^{1 / 2}\left(A^{*} \xi\right)}\right)
$$

Set $M(\xi):=\left|m_{0}(\xi)\right|^{2}$ (note that $M(\xi)>0$ almost everywhere). We can then write $|\hat{\gamma}(\xi+k)|^{2}$ as a limit of partial products

$$
|\hat{\gamma}(\xi+k)|^{2}=\lim _{N \rightarrow \infty}\left|\hat{\gamma}_{N}(\xi+k)\right|^{2} \quad \text { a.e. }
$$

where

$$
\left|\hat{\gamma}_{N}(\xi+k)\right|^{2}:=\prod_{j=1}^{N} M\left(\left(A^{*}\right)^{-j}(\xi+k)\right)
$$

By [1, Corollary 7], there exists an integer $\beta \geq 1$ such that for $B:=A^{\beta}$ we may represent each $k \in \mathbb{Z}^{n}$ by a radix representation. That is, there exists an integer $n=n(k) \geq 1$ such that $k=\sum_{j=0}^{n(k)} B^{j} d_{j}$ where each $\omega_{j}(k)$ is in the digit set $D_{B}=B\left(\left[-\frac{1}{2}, \frac{1}{2}\right)^{n}\right) \cap \mathbb{Z}^{n}$ for B. We then identify $k \in \mathbb{Z}^{n}$ with the sequence $\left(\omega_{0}(k), \omega_{1}(k), \omega_{2}(k), \ldots\right)$ where $\omega_{j}(k)=d_{j}$ for $0 \leq j \leq n(k)$ and $\omega_{j}(k)=0$ for $j>n(k)$.

Let Ω be the set of all such sequences (for arbitrary n), $\Omega=D_{B} \times D_{B} \times \cdots$. We have identified \mathbb{Z}^{n} with the subset of Ω consisting of all finite sequences. Given $k \in \mathbb{Z}^{n}$, let \mathbf{k}_{N} denote the cylinder set in Ω composed of sequences beginning with $\left(\omega_{0}(k), \ldots, \omega_{N-1}(k)\right)$. Define a measure P_{ξ}^{N} on cylinder sets in Ω by

$$
P_{\xi}^{N}\left(\mathbf{k}_{N}\right):=\prod_{j=0}^{N-1} Q_{\xi, j}\left(\mathbf{k}_{N}\right)
$$

where

$$
Q_{\xi, j}\left(\mathbf{k}_{N}\right):=\prod_{i=0}^{\beta-1} M\left(\left(\left(A^{*}\right)^{-1}\right)^{-\beta j-i-1}(\xi+k)\right) .
$$

We claim the following.

Lemma 5.1

$$
\sum_{\substack{k \in \mathbb{Z}^{n} \\ \omega_{j}(k)=0 \text { for } j \geq N}} P_{\xi}^{N}\left(\mathbf{k}_{N}\right)=1 \quad \text { a.e. } \xi .
$$

We delay the proof of Lemma 5.1 to the end of this present proof.
By a theorem of Kolmogorov, the family P_{ξ}^{N} extends to a probability P_{ξ} on Borel sets of Ω. Since $\hat{\gamma}(\xi)$ is a scaling function,

$$
\begin{aligned}
1 & =\sum_{k \in \mathbb{Z}^{n}}|\hat{\gamma}(\xi+k)|^{2}=\sum_{k \in \mathbb{Z}^{n}} \lim _{N \rightarrow \infty} \prod_{j=1}^{N} M\left(\left(B^{*}\right)^{-j}(\xi+k)\right) \\
& =\sum_{k \in \mathbb{Z}^{n}} \lim _{N \rightarrow \infty} P_{\xi}^{N}(k)
\end{aligned}
$$

for almost every ξ. Since \mathbb{Z}^{n} corresponds to the set of finite sequences in Ω, the family P_{ξ}^{N} is tight on \mathbb{Z}^{n}. That is, for every $\epsilon>0$, there exists an $r(\epsilon, \xi)$ such that $\sum P_{\xi}^{N}\left(\mathbf{k}_{N}\right) \leq \epsilon$ for all $N \geq 1$, where the sum is taken over N-dimensional cylinder sets \mathbf{k}_{N} such that the largest index \tilde{j} with $\omega_{\tilde{j}}(k) \neq 0$ satisfies $\tilde{j} \geq r(\epsilon, \xi)$. This implies that P_{ξ} is concentrated on finite sequences. We say that $P_{\xi}\left(\mathbb{Z}^{n}\right)=1$ for almost every ξ.

Consider $X_{j}(k)=\omega_{j}(k)$ as a sequence of random variables taking values in the digit set D_{B}, with the probability that $X_{j}=d$ given X_{0}, \ldots, X_{j-1} being

$$
M\left(\left(B^{*}\right)^{-1}\left(\xi_{j}+d\right)\right)
$$

for each $j \geq 0$ and $d \in D_{B}$, with $\xi_{0}(k):=\xi$ and $\xi_{j+1}:=\left(B^{*}\right)^{-1}\left(\xi_{j}+X_{j}\right)$ for $j \geq 0$. That P_{ξ} is concentrated on finite sequences for almost every ξ means that the sequence $\left\{X_{j}\right\}_{j \geq 0}$ converges to 0 relative to P_{ξ} for every $k \in \mathbb{Z}^{n}$ and almost every ξ. Now

$$
\begin{aligned}
P_{\xi}\left(\xi_{j+1} \| \xi_{j}, \ldots, \xi_{0}\right) & =P_{\xi}\left(\left(B^{*}\right)^{-1}\left(\xi_{j}+X_{j}\right) \| \xi_{j}, \ldots, \xi_{0}\right) \\
& =M\left(\left(B^{*}\right)^{-1}\left(\xi_{j}+X_{j}\right)\right)
\end{aligned}
$$

By construction, $P_{\xi}\left(\xi_{j+1} \| \xi_{j}, \ldots, \xi_{0}\right)=P_{\xi}\left(\xi_{j+1} \| \xi_{j}\right)$, thus $\left\{\xi_{j}\right\}_{j \geq 0}$ is a Markov process. Furthermore, since P_{ξ} is concentrated on finite sequences (for almost every ξ), $\lim _{j \rightarrow \infty} \xi_{j}=0$ almost surely, for almost every ξ.

Now consider $r(\xi):=\frac{h(\xi)}{e(\xi)}$. We wish to show that $r(\xi)=1$ for almost every ξ, so that $h(\xi)=e(\xi)$ almost everywhere. Since $e(\xi)$ and $h(\xi)$ are fixed points of $\mathcal{P}, r(\xi)$ satisfies

$$
r(\xi)=\sum_{d \in D} M\left(\left(A^{*}\right)^{-1}(\xi+d)\right) r\left(\left(A^{*}\right)^{-1}(\xi+d)\right) \quad \text { a.e. }
$$

Using this, and that the sequence $\left\{\xi_{j}\right\}$ is a Markov process with transition probabilities $P_{\xi}\left(\xi_{j+1}=d \| \xi_{j}\right)=M\left(\left(B^{*}\right)^{-1}\left(\xi_{j}+d\right)\right)$, we find that for almost every ξ,

$$
\begin{aligned}
\mathbb{E}\left[r\left(\xi_{j+1}\right) \| r\left(\xi_{j}\right), \ldots, r\left(\xi_{0}\right)\right] & =\mathbb{E}\left[r\left(\left(B^{*}\right)^{-1}\left(\xi_{j}+X_{j}\right)\right) \| r\left(\xi_{j}\right), \ldots, r\left(\xi_{0}\right)\right] \\
& =\mathbb{E}\left[r\left(\left(B^{*}\right)^{-1}\left(\xi_{j}+X_{j}\right)\right) \| r\left(\xi_{j}\right)\right] \\
& =\sum_{d \in D_{B}} M\left(\left(B^{*}\right)^{-1}\left(\xi_{j}+d\right)\right) r\left(\left(B^{*}\right)^{-1}\left(\xi_{j}+d\right)\right) \\
& =r\left(\xi_{j}\right)
\end{aligned}
$$

Thus $r\left(\xi_{j}\right)$ is a martingale. Note that $r\left(\xi_{j}\right)$ is strictly positive and bounded, and converges P_{ξ}-almost surely to $r(0)=1$ for almost every ξ, since $\xi_{j} \rightarrow 0$. Using the Lebesgue dominated convergence theorem,

$$
r(0)=\mathbb{E}\left[r(0) \| r\left(\xi_{j}\right)\right]=\mathbb{E}\left[\lim _{l \rightarrow \infty} r\left(\xi_{l}\right) \| r\left(\xi_{j}\right)\right]=\lim _{l \rightarrow \infty} \mathbb{E}\left[r\left(\xi_{l}\right) \| r\left(\xi_{j}\right)\right]=r\left(\xi_{j}\right)
$$

for every $j \geq 0$. Thus

$$
1=r(0)=r(\xi)=\frac{h(\xi)}{e(\xi)}
$$

for almost every ξ, and $e(\xi)$ is the unique fixed point of the operator \mathcal{P} in the class $D_{\infty}(\hat{\phi})$.

The proof of Lemma 5.1 relies on the following lemma.
Lemma 5.2 Let A by a dilation matrix and let $B=A^{\beta}$ for some integer $\beta \geq 1$. If $m(\xi)$ is a low-pass filter under dilation by A, then $m_{B}(\xi):=\prod_{i=0}^{\beta-1} m\left(\left(A^{*}\right)^{i} \xi\right)$ is a low-pass filter under dilation by B.

Proof Let $\hat{\phi}(\xi)$ be the Fourier transform of the scaling function associated with $m(\xi)$. Then

$$
\begin{aligned}
\prod_{j=1}^{\infty} m_{B}\left(\left(B^{*}\right)^{-j} \xi\right)= & \prod_{j=1}^{\infty} \prod_{i=0}^{\beta-1} m\left(\left(A^{*}\right)^{-j \beta+i} \xi\right)=\prod_{j^{\prime}=1}^{\infty} m\left(\left(A^{*}\right)^{-j^{\prime}} \xi\right)=\hat{\phi}(\xi) \quad \text { a.e. } \\
& \hat{\phi}(\xi)=m_{B}\left(\left(B^{*}\right)^{-1} \xi\right) \hat{\phi}\left(\left(B^{*}\right)^{-1} \xi\right) \quad \text { a.e. }
\end{aligned}
$$

Since $\phi(x)$ is a scaling function under dilation by A, we know that

$$
\sum_{k \in \mathbb{Z}^{n}}|\hat{\phi}(\xi+k)|^{2}=1 \quad \text { a.e. }
$$

Also, $\lim _{j \rightarrow \infty}\left|\hat{\phi}\left(\left(A^{*}\right)^{-j} \xi\right)\right|=1$ a.e., and thus the limit along a subsequence is the same: $\lim _{j \rightarrow \infty}\left|\hat{\phi}\left(\left(B^{*}\right)^{-j} \xi\right)\right|=1$ a.e. Since all three conditions of Theorem 2.1 are satisfied, $\phi(x)$ is a scaling function under dilation by $B=A^{\beta}$, with low-pass filter $m_{B}(\xi)$ by construction.

Proof of Lemma 5.1 Since $m_{B}(\xi)$ is a low-pass filter under dilation by B, it satisfies the relation

$$
\sum_{d \in D_{B}}\left|m_{B}\left(\left(B^{*}\right)^{-1}(\xi+d)\right)\right|^{2}=1 \quad \text { a.e. }
$$

from which the desired result follows:

$$
\sum_{\substack{k \in \mathbb{Z}^{n} \\ j(k)=0 \\ \text { for } j \geq N}} P_{\xi}^{N}\left(\mathbf{k}_{N}\right)=\sum_{d \in D_{B, N}}\left|m_{B}\left(\left(B^{*}\right)^{-N}(\xi+d)\right)\right|^{2}=1 \quad \text { a.e. } \xi .
$$

References

[1] E. Curry, Radix Representations in \mathbb{Z}^{n}. http://www.mathstat.dal.ca/~ ecurry/pub/dissert/radrep.pdf.
[2] , Radix Representations, self-affine tiles, and multivariable wavelet. Proc. Amer. Math. Soc. 134(2006), no. 8, 2411-2418.
[3] J. Belock and V. Dobric, Random variable dilation equation and multidimensional prescale functions. Trans. Amer. Math. Soc. 353(2001), no. 12, 4779-4800.
[4] V. Dobrić, R. Gundy, and P. Hitczenko, Characterizations of orthonormal scale functions: A probabilistic approach J. Geom. Anal. 10(2000), no. 3, 417-434.
[5] K. Gröchenig and W. R. Madych, Multiresolution analysis, Haar bases, and self-similar tilings of \mathbb{R}^{n}. IEEE Trans. Inform. Theory. 38(1992), no. 2, 556-568.
[6] R. Gundy, Low-pass filters, martingales, and multiresolution analyses. Appl. Comput. Harmon. Anal. 9(2000), no. 2, 204-219.
[7] X.-G. He and K.-S. Lau, Characterization of tile digit sets with prime determinants. Appl. Comput. Harmon. Anal. 16(2004), no. 3, 159-173.
[8] E. Hernández and G. Weiss, A First Course on Wavelets. CRC Press, Boca Raton, FL, 1996.
[9] J. C. Lagarias and Y. Wang, Self-Affine tiles in \mathbf{R}^{n}. Adv. Math. 121(1996), no. 1, 21-49.
[10] $\overline{83-102}$
Integral self-affine tiles in \mathbb{R}^{n}. II. Lattice tilings. J. Fourier Anal. Appl. 3(1997), no. 1, 83-102.
[11] $\xrightarrow{\longrightarrow}$ Haar bases for $L^{2}\left(\mathbb{R}^{n}\right)$ and algebraic number theory. J. Number Theory 57(1996), no. 1, 181-197.
[12] Corrigendum/Addendum: Haar Bases for $L^{2}\left(\mathbb{R}^{n}\right)$ and Algebraic Number Theory, J. Number Theory 76(1999), no. 1, 330-336.
[13] P. Wojtaszczyk, A Mathematical Introduction to Wavelets. London Mathematical Society Student Texts 37, Cambridge University Press, Cambridge, 1997.

Department of Mathematics and Statistics
Dalhousie University
Halifax, NS
B3H 3 J 5
e-mail: ecurry@mathstat.dal.ca

[^0]: Received by the editors July 6, 2005; revised March 26, 2006.
 AMS subject classification: Primary: 42C40; secondary: 60G35.
 Keywords: multivariable multiresolution analysis; low-pass filter; scaling function.
 (c)Canadian Mathematical Society 2008.

