CORRECTIONS TO MY PAPER "ON KRULL'S CONJECTURE CONCERNING VALUATION RINGS"

MASAYOSHI NAGATA

The proof of Theorem 1 in the paper "On Krull's conjecture concerning valuation rings" (vol. 4 (1952) of this journal) is not correct.¹⁾ We want to give here a corrected proof of the theorem: From p. 30, l. 14 to p. 31, l. 7 should be changed as follows.

Further we observe that if $w(a-b) > 2\alpha$, then (x+a)/(x+b) is unit in 0. Hence we may assume that $w(a_i - b_j) < 2\alpha$ for any (i, j).

Next, we will show two lemmas concerning the valuations w_{λ} and w_e :

LEMMA A. Set $d = \prod_{1}^{n'} (x + a_i) / \prod_{1}^{m'} (x + b_j)$ and assume that $w(a_i) = w(b_j)$ = $\sigma (a < \sigma < 2\alpha)$ for any *i* and *j*. Let *e* be any element of K such that w(e)= σ . Then either $w_e(d) \ge w_o(d)$ or there exists one b_j such that $w_e(d) \ge w_{b_j}(d)$.

Proof. We may use the induction argument on m' + n'. Obviously $w_e(x + a_i) = \min(w(a_i - e), 2\alpha), w_e(x + b_j) = \min(w(b_j - e), 2\alpha)$: Let σ' be the maximum of these values. We renumber a_i and b_j so that $w_e(x + a_i) = w_e(x + b_j) = \sigma'$ if and only if $i \leq r, j \leq s$. Now it must be observed that $w_e(x + a_i) = w(a_j - a_1)$ or $w(a_i - b_1)$ for i > r, according to $r \neq 0$ or $s \neq 0$, and that similar fact holds for b_j .

1) When r = n', s = m' and $r \ge s$, we have obviously $w_e(d) \ge w_o(d)$.

2) When r < s and $r + s \neq m' + n'$: Set $d' = \prod_{i=1}^{r} (x + a_i) / \prod_{i=1}^{s} (x + b_i)$. Then $w_e(d') > w_\sigma(d')$ and therefore there exists on b_j $(j \leq s)$ such that $w_e(d') \ge w_{b_j}(d')$. Since the values of factors of d other than those of d' are invariant under the replacement of w_e by w_{b_j} , we have $w_e(d) \ge w_{b_j}(d)$.

3) When r = n', s = m' and r < s: Let σ^* be the minimum of values $w(a_i - a_{i'})$, $w(a_i - b_j)$ and $w(b_j - b_{j'})$ and let e^* be an element of K such that $w(a_i - e^*) = w(b_j - e^*) = \sigma^*$ for any i, j.²⁾ Then since $w_e(d) \ge w_e^*(d)$, we

Received May 22, 1955.

¹⁾ Prof. P. Ribenboim has communicated to the writer that the proof is not correct. The writer is grateful to him for his kind communication.

²⁾ Such elements e^* , e'' and so on exist because K is algebraically closed and therefore the residue class field of the valuation ring of w is algebraically closed (and contains infinitely many elements).

may replace e by e^* . Next, let $\sigma^{**} > \sigma^*$ be the next smallest value among $w(a_i - a_{i'})$, $w(a_i - b_j)$ and $w(b_j - b_{j'})$ if they are not all equal; otherwise, we have obviously $w_{b_j}(d) \leq w_e(d)$ for any b_j and we have nothing to prove in this case.³⁾ We separate a'_{is} and b'_{js} to equivalent classes modulo the ideal of the valuation ring v of w generated by an element e^{**} of K such that $w(e^{**}) = \sigma^{**}$. Since r < s, there exists a class $C = \{a_{i_1}, \ldots, a_{i_l}, b_{j_1}, \ldots, b_{j_u}\}$ such that t < u. Let e'' be an element of K such that $w(a_{i_k} - e'') = w(b_{j_l} - e'') = \sigma^{**}$ ($k \leq t, l \leq u$).²⁾ Then for other a'_{is} , $w(a_i - e'') = \sigma^{*}$; for other b'_{js} , $w(b_j - e'') = \sigma^{*}$. Hence we have $w_{e''}(d) < w_e(d)$. Applying the observation in 2) to $w_{e''}$, we have the required result.

4) Now we have only to treat the case when $r + s \neq m' + n'$ and $r \ge s$. Let σ'' be the maximum of values $w_e(x + a_i)$ (i > r) and $w_e(x + b_j)$ (j > s)and renumber a_i and b_j so that $w_e(x + a_i) = w_e(x + b_j) = \sigma''$ if and only if $r < i \le r', s \le j \le s'$. Further let e' be an element of K such that $w(a_i - e')$ $= w(b_j - e') = \sigma''$ for any $i \le r', j \le s'$.²⁾ Since $r \ge s$, we have $w_{e'}(d) \le w_e(d)$ and we may replace e by e'. If we are still in the case 4) with $w_{e'}$, we repeat the similar process and we reach after a finite number of steps to one of the cases 1), 2), 3). Thus the lemma is proved completely.

LEMMA B. Assume, in Lemma A, further that $m' \ge n'$ and $m' \ne 0$. Then there exists one b_j such that $w_{bj}(d) < w_{\sigma}(d)$.

Proof. Let e be an element of K such that $w(e) = w(a_i - e) = w(b_j - e)$ $= \sigma$ for any i and j.²⁾ Then we have $w_e(d) = w_o(d)$. By virtue of Lemma A, we have only to show that there exists an element e''' ($w(e''') = \sigma$) such that $w_{e'''}(d) < w_e(d)$. If m' > n', then by the same process in 3) above, we see the existence of e'''. Assume that m' = n' and we will make use of induction argument on m'. We apply the same process in 3) above. Then either there exists one class C as above, which contains more b'_{js} than a'_{is} , or any such classes have the same number of a'_{is} and b'_{js} . In the former case, take the element e'' as above (with respect to this class C). Then $w_{e''}(d) < w_e(d)$ and the assertion is proved in this case. On the other hand, let, say, $C = \{a_i, b_i \ (i \le r'')\}$ be an equivalent class in the latter case. Then since r'' < m', we see the

³⁾ If we take σ^{**} , in this case, to be any number in G which is greater than σ^* , then we see also the proof by the same way as below.

existence of an element e''' of K sucht that $w_{e'''}(d'') < w_e(d'')$, where $d'' = \prod_{1}^{r''}(x+a_i)/\prod_{1}^{r''}(x+b_i)$. Since there exists one b_j such that $w(b_j - e''')$ is greater than some $w(a_i - e''')$ $(i, j \leq r'')$, we see that $w(a_{i'} - e''')$ and $w(b_{j'} - e''')$ are all equal for i', j' > r''. Therefore we have $w_{e'''}(d) < w_e(d)$ and the assertion is proved.

Now we will return to the proof of the theorem.

First we assume that $w_{\lambda_0}(c) = 0$ for some λ_0 ($\alpha \leq \lambda_0 \leq 2\alpha$). Let i_0, r, j_0 and s be such that $w(a_i) = \lambda_0$ if and only if $i_0 < i \leq i_0 + r$, $w(b_j) = \lambda_0$ if and only if $j_0 < j \leq j_0 + s$. Set $\lambda_1 = \max(\alpha, w(a_{i_0}), w(b_{j_0})), \lambda_2 = \min(2\alpha, w(a_{i_0+r+1}), w(b_{j_0+s+1}))$. Then

$$\begin{split} w_{\lambda_1}(c) &= w(c_0) + \sum_{i \equiv i_0} w(a_i) - \sum_{j \equiv j_0} w(b_j) + (n - i_0)\lambda_1 - (m - j_0)\lambda_1 \ge 0, \\ w_{\lambda_0}(c) &= w(c_0) + \sum_{i \equiv i_0} w(a_i) - \sum_{j \equiv j_0} w(b_j) + (n - i_0)\lambda_0 - (m - j_0)\lambda_0 = 0, \\ w_{\lambda_2}(c) &= w(c_0) + \sum_{i \equiv i_0} w(a_i) - \sum_{j \equiv j_0} w(b_j) + r\lambda_0 + (n - r - i_0)\lambda_2 - s\lambda_0 \\ &- (m - s - j_0)\lambda_1 \le 0. \end{split}$$

Hence we have

$$w_{\lambda_1}(c) = w_{\lambda_1}(c) - w_{\lambda_0}(c) = (n-i_0)(\lambda_1 - \lambda_0) - (m-j_0)(\lambda_1 - \lambda_0) \ge 0.$$

Hence, if $\lambda_0 \neq \alpha$, we have $\lambda_1 < \lambda_0$ and $n - i_0 \leq m - j_0$.

Similarly we have

$$w_{\lambda_2}(c) = w_{\lambda_2}(c) - w_{\lambda_0}(c) = (n - r - i_0)(\lambda_2 - \lambda_0) - (m - s - j_0)(\lambda_2 - \lambda_0) \ge 0.$$

Hence, if $\lambda_0 \neq 2\alpha$, we have $n - r - i_0 \ge m - s - j_0$. Thus in the case when λ_0 is equal to neither α nor 2α , we first have $r \le s$. If $s \ne 0$, then Lemma B shows that there exists one b_j $(j_0 < j \le j_0 + s)$ such that $w_{\lambda_0}(c) > w_{b_j}(c)$, which is a contradiction. Hence r = s = 0. Therefore we have further that $n - i_0 = m - j_0$. In the case when $\lambda_0 = \alpha$ or $\lambda_0 = 2\alpha$, we see easily that r = s = 0 and $n - i_0$ $= m - j_0$ because $\alpha \notin G$. If $\lambda_1 \ne \alpha$, then there exists one a_i or b_j such that $w(a_i)$ or $w(b_j)$ is equal to λ_1 , which is a contradiction because $w_{\lambda_1}(c) = 0$ by the above equality. Hence $\lambda_1 = \alpha$. Similarly we have $\lambda_2 = 2\alpha$. From $\lambda_1 = \alpha$, we have $i_0 = j_0 = 0$, whence m = n; from $\lambda_2 = 2\alpha$, we have $a_i = b_j = 0$ for all *i* and *j*. Hence we have $c = c_0 \in K$ and $w_{\lambda}(c) = 0$ for any λ . This proves (1). Next we assume that $w_{\alpha}(c) > 0$. Let us consider $w_{\lambda}(c)$ as a function of variable λ ($\alpha \le \lambda \le 2\alpha$); it is obviously a continuous function and it takes the smallest

M. NAGATA

and the largest values ε_1 and δ_1 in $\alpha \leq \lambda \leq 2\alpha$. By virtue of (1), we see that ε_1 is positive. Then (2) follows easily from the fact that $w_e(c) \neq w_{w(e)}(c)$ occurs only when w(e) is one of $w(a_i)$ or $w(b_j)$; by the symmetricity of the assertion in Lemma A, we see that these values $w_e(c)$ are bounded by the maximum and minimum of values $w_{w(e)}(c)$, $w_{a_i}(c)$ and $w_{b_j}(c)$.

Since $w_{b_j}(c) \notin G$, the minimum is not zero and (2) is proved.

Mathematical Institute Kyoto University