CORRECTIONS TO MY PAPER "ON KRULL'S CONJECTURE CONCERNING VALUATION RINGS"

MASAYOSHI NAGATA

The proof of Theorem 1 in the paper "On Krull's conjecture concerning valuation rings" (vol. 4 (1952) of this journal) is not correct. ${ }^{1)}$ We want to give here a corrected proof of the theorem: From p. 30, l. 14 to p. 31, l. 7 should be changed as follows.

Further we observe that if $w(a-b)>2 \alpha$, then $(x+a) /(x+b)$ is unit in \mathfrak{D}. Hence we may assume that $w\left(a_{i}-b_{j}\right)<2 \alpha$ for any (i, j).

Next, we will show two lemmas concerning the valuations w_{λ} and w_{e} :
Lemma A. Set $d=\Pi_{1}^{n^{\prime}}\left(x+a_{i}\right) / \Pi_{1}^{m^{\prime}}\left(x+b_{j}\right)$ and assume that $w\left(a_{i}\right)=w\left(b_{j}\right)$ $=\sigma(a<\sigma<2 \alpha)$ for any i and j. Let e be any element of K such that $w(e)$ $=\sigma$. Then either $w_{e}(d) \geqslant w_{o}(d)$ or there exists one b_{j} such that $w_{e}(d) \geqslant w_{b_{j}}(d)$.

Proof. We may use the induction argument on $m^{\prime}+n^{\prime}$. Obviously $w_{e}(x$ $\left.+a_{i}\right)=\min \left(w\left(a_{i}-e\right), 2 \alpha\right), w_{e}\left(x+b_{j}\right)=\min \left(w\left(b_{j}-e\right), 2 \alpha\right): \quad$ Let σ^{\prime} be the maximum of these values. We renumber a_{i} and b_{j} so that $w_{e}\left(x+a_{i}\right)=w_{e}(x$ $\left.+b_{j}\right)=\sigma^{\prime}$ if and only if $i \leqq r, j \leqq s$. Now it must be observed that $w_{e}\left(x+a_{i}\right)$ $=w\left(a_{j}-a_{1}\right)$ or $w\left(a_{i}-b_{1}\right)$ for $i>r$, according to $r \neq 0$ or $s \neq 0$, and that similar fact holds for b_{j}.

1) When $r=n^{\prime}, s=m^{\prime}$ and $r \geqslant s$, we have obviously $w_{e}(d) \geqslant w_{o}(d)$.
2) When $r<s$ and $r+s \neq m^{\prime}+n^{\prime}$: Set $d^{\prime}=\Pi_{1}^{r}\left(x+a_{i}\right) / \Pi_{1}^{s}\left(x+b_{j}\right)$. Then $w_{e}\left(d^{\prime}\right)>w_{\sigma}\left(d^{\prime}\right)$ and therefore there exists on $b_{j}(j \leqq s)$ such that $w_{e}\left(d^{\prime}\right)$ き $w_{b_{j}}\left(d^{\prime}\right)$. Since the values of factors of d other than those of d^{\prime} are invariant under the replacement of w_{e} by $w_{b_{j}}$, we have $w_{e}(d) \geqslant w_{b_{j}}(d)$.
3) When $r=n^{\prime}, s=m^{\prime}$ and $r<s$: Let σ^{*} be the minimum of values $w\left(a_{i}-a_{i^{\prime}}\right), w\left(a_{i}-b_{j}\right)$ and $w\left(b_{j}-b_{j^{\prime}}\right)$ and let e^{*} be an element of K such that $w\left(a_{i}-e^{*}\right)=w\left(b_{j}-e^{*}\right)=\sigma^{*}$ for any $i, j^{2,} \quad$ Then since $w_{e}(d) \geqslant w_{e}{ }^{*}(d)$, we

[^0]may replace e by e^{*}. Next, let $\sigma^{* *}>\sigma^{*}$ be the next smallest value among $w\left(a_{i}-a_{i}\right), w\left(a_{i}-b_{j}\right)$ and $w\left(b_{j}-b_{j}\right)$ if they are not all equal; otherwise, we have obviously $w_{b_{j}}(d) \leqq w_{e}(d)$ for any b_{j} and we have nothing to prove in this case. ${ }^{3)} \quad$ We separate $a_{i}^{\prime} s$ and $b_{j}^{\prime} s$ to equivalent classes modulo the ideal of the valuation ring \mathfrak{v} of w generated by an element $e^{* *}$ of K such that $w\left(e^{* *}\right)=\sigma^{* *}$. Since $r<s$, there exists a class $C=\left\{a_{i_{1}}, \ldots, a_{i_{i}}, b_{j_{1}}, \ldots, b_{j_{u}}\right\}$ such that $t<u$. Let $e^{\prime \prime}$ be an element of K such that $w\left(a_{i_{k}}-e^{\prime \prime}\right)=w\left(b_{j_{l}}-e^{\prime \prime}\right)=\sigma^{* *}(k \leqq t, l$ $\leqq u)^{2)} \quad$ Then for other $a_{i}^{\prime} s, w\left(a_{i}-e^{\prime \prime}\right)=\sigma^{*}$; for other $b_{j}^{\prime} s, w\left(b_{j}-e^{\prime \prime}\right)=\sigma^{*}$. Hence we have $w_{e^{\prime \prime}}(d)<w_{e}(d)$. Applying the observation in 2) to $w_{e^{\prime \prime}}$, we have the required result.
4) Now we have only to treat the case when $r+s \neq m^{\prime}+n^{\prime}$ and $r \geqslant s$. Let $\sigma^{\prime \prime}$ be the maximum of values $w_{e}\left(x+a_{i}\right)(i>r)$ and $w_{e}\left(x+b_{j}\right)(j>s)$ and renumber a_{i} and b_{j} so that $w_{e}\left(x+a_{i}\right)=w_{e}\left(x+b_{j}\right)=\sigma^{\prime \prime}$ if and only if $r<i \leqq r^{\prime}, s \leqq j \leqq s^{\prime} . \quad$ Further let e^{\prime} be an element of K such that $w\left(a_{i}-e^{\prime}\right)$ $=w\left(b_{j}-e^{\prime}\right)=\sigma^{\prime \prime}$ for any $i \leqq r^{\prime}, j \leqq s^{\prime} .{ }^{2)} \quad$ Since $r \geqq s$, we have $w_{e^{\prime}}(d) \leqq w_{e}(d)$ and we may replace e by e^{\prime}. If we are still in the case 4) with $w_{e^{\prime}}$, we repeat the similar process and we reach after a finite number of steps to one of the cases 1), 2), 3). Thus the lemma is proved completely.

Lemma B. Assume, in Lemma A, further that m^{\prime} き n^{\prime} and $m^{\prime} \neq 0$. Then there exists one b_{j} such that $w_{b j}(d)<w_{\sigma}(d)$.

Proof. Let e be an element of K such that $w(e)=w\left(a_{i}-e\right)=w\left(b_{j}-e\right)$ $=\sigma$ for any i and $j^{2)}$ Then we have $w_{e}(d)=w_{\sigma}(d)$. By virtue of Lemma A, we have only to show that there exists an element $e^{\prime \prime \prime}\left(w\left(e^{\prime \prime \prime}\right)=\sigma\right)$ such that $w_{e^{\prime \prime}}(d)<w_{e}(d)$. If $m^{\prime}>n^{\prime}$, then by the same process in 3) above, we see the existence of $e^{\prime \prime \prime}$. Assume that $m^{\prime}=n^{\prime}$ and we will make use of induction argument on m^{\prime}. We apply the same process in 3) above. Then either there exists one class C as above, which contains more $b_{j}^{\prime} s$ than $a_{i}^{\prime} s$, or any such classes have the same number of a_{i}^{\prime} s and $b_{j}^{\prime} s$. In the former case, take the element $e^{\prime \prime}$ as above (with respect to this class C). Then $w_{e^{\prime \prime}}(d)<w_{e}(d)$ and the assertion is proved in this case. On the other hand, let, say, $C=\left\{a_{i}, b_{i}\left(i \leqq r^{\prime \prime}\right)\right\}$ be an equivalent class in the latter case. Then since $r^{\prime \prime}<m^{\prime}$, we see the

[^1]existence of an element $e^{\prime \prime \prime}$ of K sucht that $w_{e^{\prime \prime \prime}}\left(d^{\prime \prime}\right)<w_{e}\left(d^{\prime \prime}\right)$, where $d^{\prime \prime}=$ $\Pi_{1}^{\gamma^{\prime \prime}}\left(x+a_{i}\right) / \Pi_{1}^{\gamma^{\prime \prime}}\left(x+b_{i}\right)$. Since there exists one b_{j} such that $w\left(b_{j}-e^{\prime \prime \prime}\right)$ is greater than some $w\left(a_{i}-e^{\prime \prime \prime}\right)\left(i, j \leqq r^{\prime \prime}\right)$, we see that $w\left(a_{i}-e^{\prime \prime \prime}\right)$ and $w\left(b_{j}\right.$, $-e^{\prime \prime \prime}$) are all equal for $i^{\prime}, j^{\prime}>\boldsymbol{r}^{\prime \prime}$. Therefore we have $w_{e^{\prime \prime \prime}}(d)<w_{e}(d)$ and the assertion is proved.

Now we will return to the proof of the theorem.
First we assume that $w_{\lambda_{0}}(c)=0$ for some $\lambda_{0}\left(\alpha \leqq \lambda_{0} \leqq 2 \alpha\right)$. Let $i_{0}, \boldsymbol{r}, j_{0}$ and s be such that $w\left(a_{i}\right)=\lambda_{0}$ if and only if $i_{0}<i \leqq i_{0}+r, w\left(b_{j}\right)=\lambda_{0}$ if and only if $j_{0}<j \leqq j_{0}+s . \quad$ Set $\lambda_{1}=\max \left(\alpha, w\left(a_{i_{0}}\right), w\left(b_{j_{0}}\right)\right), \lambda_{2}=\min \left(2 \alpha, w\left(a_{i_{0}+r+1}\right), w\left(b_{j_{0+s+1}}\right)\right)$. Then

$$
\begin{array}{r}
w_{\lambda_{1}}(c)=w\left(c_{0}\right)+\sum_{i \leqq i_{0}} w\left(a_{i}\right)-\sum_{j \equiv j_{0}} w\left(b_{j}\right)+\left(n-i_{0}\right) \lambda_{1}-\left(m-j_{0}\right) \lambda_{1} \geqq 0, \\
w_{\lambda_{0}}(c)=w\left(c_{0}\right)+\sum_{i \leqq i_{0}} w\left(a_{i}\right)-\sum_{j \equiv j_{0}} w\left(b_{j}\right)+\left(n-i_{0}\right) \lambda_{0}-\left(m-j_{0}\right) \lambda_{0}=0, \\
w_{\lambda_{2}}(c)=w\left(c_{0}\right)+\sum_{i \leqq i_{0}} w\left(a_{i}\right)-\sum_{j \leqq j_{0}} w\left(b_{j}\right)+r \lambda_{0}+\left(n-r-i_{0}\right) \lambda_{2}-s \lambda_{0} \\
-\left(m-s-j_{0}\right) \lambda_{1} \leqq 0 .
\end{array}
$$

Hence we have

$$
w_{\lambda_{1}}(c)=w_{\lambda_{1}}(c)-w_{\lambda_{0}}(c)=\left(n-i_{0}\right)\left(\lambda_{1}-\lambda_{0}\right)-\left(m-j_{0}\right)\left(\lambda_{1}-\lambda_{0}\right) \geqq 0
$$

Hence, if $\lambda_{0} \neq \alpha$, we have $\lambda_{1}<\lambda_{0}$ and $n-i_{0} \leqq m-j_{0}$.
Similarly we have

$$
w_{\lambda_{2}}(c)=w_{\lambda_{2}}(c)-w_{\lambda_{0}}(c)=\left(n-r-i_{0}\right)\left(\lambda_{2}-\lambda_{0}\right)-\left(m-s-j_{0}\right)\left(\lambda_{2}-\lambda_{0}\right) \geqq 0 .
$$

Hence, if $\lambda_{0} \neq 2 \alpha$, we have $n-r-i_{0} き m-s-j_{0}$. Thus in the case when λ_{0} is equal to neither α nor 2α, we first have $r \leqq s$. If $s \neq 0$, then Lemma B shows that there exists one $b_{j}\left(j_{0}<j \leqq j_{0}+s\right)$ such that $w_{\lambda_{0}}(c)>w_{b_{j}}(c)$, which is a contradiction. Hence $r=s=0$. Therefore we have further that $n-i_{0}=m-j_{0}$. In the case when $\lambda_{0}=\alpha$ or $\lambda_{0}=2 \alpha$, we see easily that $r=s=0$ and $n-i_{0}$ $=m-j_{0}$ because $\alpha \notin G$. If $\lambda_{1} \neq \alpha$, then there exists one a_{i} or b_{j} such that $w\left(a_{i}\right)$ or $w\left(b_{j}\right)$ is equal to λ_{1}, which is a contradiction because $w_{\lambda_{1}}(c)=0$ by the above equality. Hence $\lambda_{1}=\alpha$. Similarly we have $\lambda_{2}=2 \alpha$. From $\lambda_{1}=\alpha$, we have $i_{0}=j_{0}=0$, whence $m=n$; from $\lambda_{2}=2 \alpha$, we have $a_{i}=b_{j}=0$ for all i and j. Hence we have $c=c_{0} \in K$ and $w_{\lambda}(c)=0$ for any λ. This proves (1). Next we assume that $w_{\alpha}(c)>0$. Let us consider $w_{\lambda}(c)$ as a function of variable $\lambda(\alpha \leqq \lambda \leqq 2 \alpha)$; it is obviously a continuous function and it takes the smallest
and the largest values ε_{1} and δ_{1} in $\alpha \leqq \lambda \leqq 2 \alpha$. By virtue of (1), we see that ε_{1} is positive. Then (2) follows easily from the fact that $w_{e}(c) \neq w_{w(e)}(c)$ occurs only when $w(e)$ is one of $w\left(a_{i}\right)$ or $w\left(b_{j}\right)$; by the symmetricity of the assertion in Lemma A, we see that these values $w_{e}(c)$ are bounded by the maximum and minimum of values $w_{w(e)}(c), w_{a_{i}}(c)$ and $w_{b_{j}}(c)$.

Since $w_{b_{j}}(c) \notin G$, the minimum is not zero and (2) is proved.

Mathematical Institute

Kyoto University

[^0]: Received May 22, 1955.
 ${ }^{1)}$ Prof. P. Ribenboim has communicated to the writer that the proof is not correct. The writer is grateful to him for his kind communication.
 ${ }^{2}$) Such elements $e^{*}, e^{\prime \prime}$ and so on exist because K is algebraically closed and therefore the residue class field of the valuation ring of w is algebraically closed (and contains infinitely many elements).

[^1]: ${ }^{3)}$ If we take $\circ^{* *}$, in this case, to be any number in G which is greater than σ^{*}, then we see also the proof by the same way as below.

