§5. Obthocentre.

The perpendiculars to the sides of a triangle from the opposite vertices are concurrent.*

One of the earliest demonstrations occurs in Pierre Herigone's Cursus Mathematicus, I. 318 (1634). Three cases are considered, when the triangle is right-angled, acute-angled, obtuse-angled.

From the various proofs that bave been published, the following are selected.

First Demonstration. \dagger
 Figure 36.

Let AX, BY which are perpendicular to BC, CA meet at H , and $\operatorname{let} \mathrm{CH}$ be joined and produced to meet AB at Z .

Join XY.
Because $\angle A X C$ and $\angle B Y C$ are right, therefore $\mathbf{C}, \mathbf{X}, \mathbf{H}, \mathbf{Y}$ are concyclic, as well as $\mathrm{A}, \mathrm{Y}, \mathrm{X}, \mathrm{B}$;
therefore

$$
\begin{aligned}
\angle \mathrm{ACZ} & =\angle \mathrm{AXY}, \\
& =\angle \mathrm{ABY} .
\end{aligned}
$$

Now $\angle Z A Y$ is common to triangles ACZ, ABY;
therefore

$$
\begin{aligned}
\angle \mathrm{AZC} & =\angle \mathrm{AYB}, \\
& =\text { a right angle } .
\end{aligned}
$$

Second Demonstration. \ddagger

Figure 37.
Let AX, BY, CZ be the three perpendiculars from $\mathrm{A}, \mathrm{B}, \mathrm{C}$ on $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$.

Through $\mathrm{A}, \mathrm{B}, \mathrm{C}$ draw $\mathrm{B}_{1} \mathrm{C}_{1}, \mathrm{C}_{1} \mathrm{~A}_{1}, \mathrm{~A}_{1} \mathrm{~B}_{1}$ respectively parallel to $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$.

[^0]Then $\mathrm{ABCB}_{1}, \mathrm{ACBC}_{1}$ are parallelograms, and A is the mid point of $B_{1} C_{1}$. Hence also B and C are the mid points of $C_{1} A_{1}$ and $A_{1} B_{1}$. But AX, BY, CZ are respectively perpendicular to $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$; therefore they must be respectively perpendicular to $\mathrm{B}_{1} \mathrm{C}_{1}, \mathrm{C}_{1} \mathrm{~A}_{1}, \mathrm{~A}_{2} \mathrm{~B}_{1}$. If therefore it be assumed as true that the perpendiculars to the sides of m triangle from the mid points of the sides are concurrent, AX, BY, CZ are concurrent.

Third Demonstration.*

Figure 38.
Let $\mathrm{AX}, \mathrm{BY}, \mathrm{CZ}$ be the three perpendiculars from $\mathrm{A}, \mathrm{B}, \mathrm{C}$ on BC, CA, AB.

- Join YZ, ZX, XY.

Since the points A, Z, X, C are concyclic, therefore $\quad \angle B X Z=\angle B A C$.

Since the points $\mathrm{A}, \mathrm{Y}, \mathrm{X}, \mathrm{B}$ are concyclic,
therefore $\angle \mathrm{CXY}=\angle \mathrm{BAC}$;
therefore $\quad \angle B X Z=\angle C X Y$.
Now
$\angle \mathrm{BXA}=\angle \mathrm{CXA}$;
therefore
AX bisects $\angle \mathrm{ZXY}$.
Hence
BY ", -XYZ,
and
CZ , \quad YZX.
If therefore it be assumed as true that the internal angular bisectors of a triangle are concurrent
$\mathrm{AX}, \mathrm{BY}, \mathrm{CZ}$ are concurrent.

Fourth Demonstration. \dagger

" If three straight lines drawn through the vertices of a triangle are concurrent, their isogonals with respect to the angles of the triangle are also concurrent."

This theorem, which is due to Steiner, \ddagger taken along with the property, which is established in the proof of Brahmegupta's theorem, namely,

[^1]"The perpendicular from any vertex of a triangle to the opposite side and the diameter of the circumcircle drawn from that vertex are isogonal with respect to the vertical angle " furnishes a ready proof. For the diameters of the circumcircle are concurrent.

The point H, where AX, BY, CZ are concurrent, is now generally called the orthocentre* of $A B C$; and the triangle $X Y Z$ is called sometimes the orthic, \dagger sometimes the orthocentric, \ddagger and sometimes the pedal, triangle.

It may be noted that \mathbf{H} is the initial letter in English, French, and German of the names for $\mathrm{AX}, \mathrm{BY}, \mathrm{CZ}$ (Heights, Hauteurs, Höhen).
(1) If in Fig. 37 ABC be considered the fundamental triangle, $\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}$ is anticomplementary to it, and hence the orthocentre of any triangle is the circumcentre of the anticomplementary triangle.

If however $\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}$ be considered the fundamental triangle, ABC is complementary to it, and hence the circumcentre of any triangle is the orthocentre of the complementary triangle.
(2) The four points A, B, C, H, taken three by three form four triangles $\mathrm{ABC}, \mathrm{HCB}, \mathrm{CHA}, \mathrm{BAH}$; of these four triangles the fourth points $\mathrm{H}, \mathrm{A}, \mathrm{B}, \mathrm{C}$ are the respective orthocentres, and in all the four cases the orthic triangle is XYZ. "The figure is therefore a system of four points joined two and two by straight lines such that each of them passing through two of these points cuts perpen-dicularly that which passes through the two others." §

In naming the four triangles the order of the letters is such that X is the foot of the perpendicular from the vertex first named, Y the foot of that from the second named vertex, and Z the foot of that from the third. This is a matter of much more importance than appears at first sight.

It may be convenient to call a set of four points such as $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{H}$ an orthic tetrastigm.

[^2](3) The angles of the triangles $\mathrm{HCB}, \mathrm{CHA}, \mathrm{BAH}$ expressed in terms of $\mathrm{A}, \mathrm{B}, \mathrm{O}$ are
$\angle \mathrm{BHC}=180^{\circ}-\mathrm{A}, \angle \mathrm{HCB}=90^{\circ}-\mathrm{B}, \angle \mathrm{CBH}=90^{\circ}-\mathrm{C}$
$\angle \mathrm{ACH}=90^{\circ}-\mathrm{A}, \angle \mathrm{CHA}=180^{\circ}-\mathrm{B}, \angle \mathrm{HAC}=90^{\circ}-\mathrm{C}$
$\angle \mathrm{HBA}=90^{\circ}-\mathrm{A}, \angle \mathrm{BAH}=90^{\circ}-\mathrm{B}, \angle \mathrm{AHB}=180^{\circ}-\mathrm{C}$.
(4) The fundamental triangle is inversely similar to the triangles "cut off" from it by the sides of the orthic triangle.

Figure 38.
If ABC be the fundamental triangle, H is its orthocentre, XYZ its orthic triangle, and the triangles cut off from ABC and similar to it are AYZ, XBZ, XYC.

If HCB be taken as the fundamental triangle, A is its orthocentre, XYZ its orthic triangle, and the triangles "cut off" from HCB and similar to it are HYZ, XCZ, XYB.

Similarly for CHA and triangles CYZ, XHZ, XYA and for BAH " " BYZ, XAZ, XYH.
(5) ABC is the orthic triangle not only of $I_{1} I_{2} I_{3}$, but also of $\mathrm{II}_{3} \mathrm{I}_{2} \mathrm{I}_{3} \mathrm{II}_{1}, \mathrm{I}_{2} \mathrm{I}_{1} \mathrm{I}$.

Figure 28.
Hence the sides of ABC "cut off" from these four triangles four triads of triangles which are respectively similar to them. They are

To $\mathrm{I}_{1} \mathrm{I}_{2} \mathrm{I}_{3} ; \mathrm{I}_{1} \mathrm{BC}, \mathrm{AI}_{2} \mathrm{C}, \mathrm{ABI}_{3}$
, $\mathrm{II}_{3} \mathrm{I}_{2} ; \mathrm{IBC}, \mathrm{AI}_{3} \mathrm{C}, \mathrm{ABI}_{2}$
, $\mathrm{I}_{3} I \mathrm{I}_{1} ; \mathrm{I}_{3} \mathrm{BC}, \mathrm{AIC}, \mathrm{ABI}_{1}$
, $\mathrm{I}_{2} \mathrm{I}_{1} \mathrm{I}$; $\mathrm{I}_{2} \mathrm{BC}, \mathrm{AI}_{1} \mathrm{C}, \mathrm{ABI}$.
(6) The following triads of lines form by their intersections four triangles which are similar and oppositely situated to the four triangles of the orthic tetrastigm $\mathrm{II}_{1} \mathrm{I}_{2} \mathrm{I}_{3}$.

Figure 28.

Lines.
$\mathrm{E}_{1} \mathrm{~F}_{1}, \mathrm{~F}_{3} \mathrm{D}_{2}, \mathrm{D}_{3} \mathrm{E}_{3}$
EF, $\mathrm{F}_{3} \mathrm{D}_{5} . \mathrm{D}_{2} \mathrm{E}_{2}$
$\mathrm{E}_{3} \mathrm{~F}_{3}, \mathrm{FD}, \mathrm{D}_{1} \mathrm{E}_{1}$
$\mathbf{E}_{2} \mathrm{~F}_{2}, \mathrm{~F}_{1} \mathrm{D}_{1}, \mathrm{DE}$

Triangles.
$\mathrm{I}_{1} \mathrm{I}_{2} \mathrm{I}_{3}$
$\mathrm{I}_{3} \mathrm{I}_{2}$
$\mathrm{I}_{3} \mathrm{I} \mathrm{I}_{2}$
$\mathrm{I}_{2} \mathrm{I}_{1} \mathrm{I}$

Compare the subscripts in the naming of the lines with the subscripts in the naming of the triangles.
(7) The sides of the orthic triangle are respectively antiparallel* to those of the fundamental triangle with respect to the angles of the fundamental triangle.

Figure 38.
If ABC be taken as the fundamental triangle,

If HCB be taken as the fundamental triangle,
YZ is antiparallel to CB with respect to $\quad \mathrm{BHC}$

Similarly for the triangles CHA, BAH.
(8) The angles of triangle XYZ expressed in terms of A, B, C are :

$$
\begin{aligned}
& \angle X=180^{\circ}-2 A=-A+B+C \\
& \angle Y=180^{\circ}-2 B=A-B+C \\
& \angle Z=180^{\circ}-2 C=A+B-C
\end{aligned}
$$

(9) If $\mathrm{ABC}, \mathrm{XYZ}, \mathrm{X}_{1} \mathrm{Y}_{1} \mathrm{Z}_{1}, \mathrm{X}_{2} \mathrm{Y}_{2} \mathrm{Z}_{2} \ldots \ldots$ be a series of triangles such that each is the orthic triangle of the preceding, the following tabular statements of their angles may be given.*

[^3]Sect. I.

Thiangles.	Angles.		
A B C	A	B	C
X Y Z	$-\mathrm{A}+\mathrm{B}+\mathrm{C}$	A - B + C	$A+B-C$
$X_{1} Y_{1} Z_{1}$	$3 \mathrm{~A}-\mathrm{B}-\mathrm{C}$	$-\mathrm{A}+3 \mathrm{~B}-\mathrm{C}$	$-\mathrm{A}-\mathrm{B}+3 \mathrm{C}$
$\mathrm{X}_{2} \mathrm{Y}_{2} \mathrm{Z}_{2}$	$-5 \mathrm{~A}+3 \mathrm{~B}+3 \mathrm{C}$	$3 \mathrm{~A}-5 \mathrm{~B}+3 \mathrm{C}$	$3 \mathrm{~A}+3 \mathrm{~B}-5 \mathrm{C}$
$\mathrm{X}_{3} \mathrm{Y}_{3} Z_{3}$	$11 A-5 B-5 C$	$-5 A+11 B-5 C$	$-5 A-5 B+11 C$
......		

Consider the coefficients (all taken with the positive sign) of the angle A in the first column of angles. They form the series

$$
\begin{array}{rrrrrrrr}
u_{0} & u_{1} & u_{2} & u_{3} & u_{4} & u_{5} & u_{6} & u_{7} \\
1 & 3 & 5 & 11 & 21 & 43 & 85 & 171
\end{array}
$$

where the law of recurrence is

$$
u_{n+1}=u_{n}+2 u_{n-1}
$$

with the initial conditions $u_{0}=1, u_{1}=3$.

Triangles.		Avgles.	
A B C	A	B	
X Y Z	$\pi-2 \mathrm{~A}$	$\pi-2 \mathrm{~B}$	C
$\mathrm{X}_{1} \mathrm{Y}_{1} \mathrm{Z}_{2}$	$4 \mathrm{~A}-\pi$	$4 \mathrm{~B}-\pi$	$\pi-2 \mathrm{C}$
$\mathrm{X}_{2} \mathrm{Y}_{2} Z_{2}$	$3 \pi-8 \mathrm{~A}$	$3 \pi-8 \mathrm{~B}$	$4 \mathrm{C}-\pi$
$\mathrm{X}_{3} \mathrm{Y}_{3} Z_{3}$	$16 \mathrm{~A}-5 \pi$	$16 \mathrm{~B}-5 \pi$	$3 \pi-8 \mathrm{C}$
$\cdots \cdots$	$\cdots \cdots$	$\cdots \cdots$	$16 \mathrm{C}-5 \pi$

In these expressions the coefficient of A, B, or C is a power of 2 , and the coefficient of π is one term of the series $u_{0} u_{1} u_{2} u_{3} \ldots$

$$
\text { The angle } X_{2 n}=u_{2 n-1} \pi-2^{2 n+1} A \text {; }
$$

$$
" \quad, \quad \mathrm{X}_{2 n-1}=2^{2 n} \quad \mathrm{~A}-u_{2 n-2} \pi
$$

(10) The orthocentre and the vertices of the fundamental triangle are the incentre and the excentres of the orthic triangle.*

[^4]
Figure 38.

In Möllmann's demonstration of the concurrency of the perpendiculars, it was shown that, if ABC be taken as the fundamental triangle, H is the incentre of XYZ .

Now since $B C, C A, A B$ are respectively perpendicular to $A X, B Y, C Z$, therefore $B C, C A, A B$ are the bisectors of the external angles of XYZ;
therefore $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are the excentres of XYZ.
If HCB be taken as the fundamental triangle, its vertices, D, C and its orthocentre A are the excentres of XYZ, and the vertex H is the incentre.

Similarly for the triangles CHA, BAH.
(11) If from the mid points of IZ , ZI, XI perpendicultis b drawn to $1 B C, C A, A B$, these perpendiculars are concurrent.*

If $X^{\prime}, Y^{\prime}, Z^{\prime}$ be the mid points, then triangle $X^{\prime} Y^{\prime} Z^{\prime}$ is similar and oppositely situated to $X Y Z$; therefore the respective perpendiculars are the bisectors of the angles of $X^{\prime} \mathbf{Y}^{\prime} Z^{\prime}$, and consequently concurrent at the incentre of $X^{\prime} Y^{\prime} Z^{\prime}$.
(12) The perpendiculars from $\mathrm{X}^{\prime}, \mathrm{I}, \mathrm{Z}^{\prime}$ respectively to
$\left.\begin{array}{l}\mathrm{CB}, \mathrm{BH}, \mathrm{HC} \\ \mathrm{HA}, \mathrm{AC}, \mathrm{CH} \\ \mathrm{AH}, \mathrm{HB}, \mathrm{BA}\end{array}\right\}$ are concurrent i.t the $\left\{\begin{array}{l}\text { first excentre of } \mathrm{X}^{\prime} \mathrm{Y}^{\prime} Z^{\prime} \\ \text { second } \\ \text { third } \\ \text { the } \\ \hline, \\ ", \\ \hline\end{array}\right.$
These four points, the incentre and the excentres of triangle $X^{\prime} Y^{\prime} Z^{\prime}$, will be considered again, in connection with the Taylor circles.
(13) I I_{j} the perpendiculais of a tringle meet the circumeirct. again in P, S, T, then R, S, T are the images of the orthoccutice in the sides.

Figure 39.
Let $A B C$ be the triangle, H its orthocentre.
Join BR.
Then $\quad \angle \mathrm{CBY}=\angle \mathrm{CAX}=-\mathrm{CBR}$;
therefore the right-angled triangles $\mathrm{BXH}, \mathrm{BXP}$ are congruent, and $\quad H X=R X$.
Similarly $\quad H Y=S Y$ and $H Z=T Z$.

[^5]If IICB be taken as the triangle instead of $A B C$, then A is its orthocentre, HX, CY, BZ its perpendiculars. Let a circle be circumscribed about HCB , and let the perpendiculars meet it again at R_{1}, S_{3}, T_{1}.

Figure 40.
Then it may be shown as before that

$$
A X=R_{1} X, \quad A Y=S_{1} Y, \quad A Z=T, Z
$$

Similarly for the triangles CHA, BAH.
(14) The triangles $R S T, X Y Z$ are similar and similarly situated; $I I$ is their homothetic centre, and their ratio of similitude is $2: 1$.

Figure 40.
Since X, Y, Z are the mid points of HR, HS, HT, therefore the sides of XYZ are respectively parallel to those of RST, and equal to the halves of them.

In like manner the triangles $\mathrm{R}_{1} \mathrm{~S}_{1} \mathrm{~T}_{1}$, XYZ are similar and similarly situated; A is their homothetic centre, and their ratio of similitude is $2: 1$.

$$
\begin{equation*}
\mathrm{H} \text { is the incentre of } \mathrm{RST} \tag{15}
\end{equation*}
$$

$$
\mathrm{A},, \quad \text { first excentre },, \mathrm{R}_{1} \mathrm{~S}_{1} \mathrm{~T}_{1}
$$

Similarly for B and C.
(16) The circumcircle of $A B C$ is equal ${ }^{*}$ to the circumcircles of IICD, CHA, BAH.

Figure 39.
For triangle HCB is congruent to RCB ; and the circumcircle of RCB is the circumcircle of $A B C$.
(17) If O_{a}, O_{b}, O_{c} be the centres of the circumcircles of $H C B, C H A, B A H$, then triangle $O_{4} O_{l} O_{c}$ is congruent, and oppositely situated, to $A B C$.

Figure 41.
For $\mathrm{O}_{b} \mathrm{O}_{c}, \mathrm{O}_{c} \mathrm{O}_{a}, \mathrm{O}_{a} \mathrm{O}_{b}$ are perpendicular to $\mathrm{HA}, \mathrm{HB}, \mathrm{HC}$ and $\quad \mathrm{BC}, \mathrm{CA}, \mathrm{AB}$

[^6]H is the circumcentre of $O_{a} O_{b} O_{c}$,
$O " \#$ orthocentre "

Since the circles $\mathrm{O}_{b}, \mathrm{O}_{\mathrm{c}}$ are equal,
therefore $\mathrm{O}_{b} \mathrm{O}_{c}$ bisects, and is bisected by, their common chord HA perpendicularly;
therefore

$$
\mathrm{HO}_{b}=\mathrm{HO}_{c} .
$$

Similarly
$\mathrm{HO}_{\mathrm{c}}=\mathrm{HO}_{a}$.
Again, since the circles $0, O_{a}$ are equal,
therefore OO_{a} bisects, and is bisected by, their common chord BC perpendicularly;
therefore $\quad \mathrm{O}_{a} \mathrm{O}$ is perpendicular to $\mathrm{O}_{b} \mathrm{O}_{c}$.
Similarly $\quad \mathrm{O}_{b} \mathrm{O}, \quad, \quad \mathrm{O}_{c} \mathrm{O}_{a}$.
(19) The points $\mathrm{O}_{a}, \mathrm{O}_{b}, \mathrm{O}_{c}, \mathrm{O}$ form an orthic tetrastigm, congruent and oppositely situated to the orthic tetrastigm A, B, C, H.
(20) If through A any straight line be drawn meeting the circles $\mathrm{O}_{b}, \mathrm{O}_{\mathrm{c}}$ in M, N, then MC, NB will meet on the circumference of O_{a}.
(21) If any point L be taken on the circumference of O_{n}, and LC, LB meet the circumferences of O_{ν}, O_{c} again in λ, \cdots, then the points M, A, N are collinear, and triangle LMN is directly similar to ABC .
(22) Of all the triangles such as LMN whose sides pass through $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and whose vertices are situated on the circles $\mathrm{O}_{a}, \mathrm{O}_{b}, \mathrm{O}_{c 2}$ that triangle $A_{1} B_{1} C_{1}$ is a maximum whose sides are perpendicular to $\mathrm{AH}, \mathrm{BH}, \mathrm{CH}$.

Compare §2, (15) - (19).
(23) Triangle $A_{1} B_{1} C_{1}$ is the anticomplementary triangle of $A B C$: it has II for its circumcentre, and its circumcircle touches the circles O_{a}, O_{b}, O_{c} at the points A_{1}, B_{i}, C_{1}.

For A, B, C are the mid points of $B_{1} C_{1}, C_{1} A_{1}, A_{1} B_{1}$; and $\mathrm{H}, \mathrm{O}_{a}, \mathrm{~A}_{1} ; \mathrm{H}, \mathrm{O}_{b}, \mathrm{~B}_{1} ; \mathrm{H}, \mathrm{O}_{c}, \mathrm{C}_{1}$ are collinear.
(24) What has been already proved with regard to the triangle ABC , its orthocentre H , its circumcentre O , and the circles $\mathrm{O}_{a}, \mathrm{O}_{b}, \mathrm{O}_{c}$ may be applied, with the necessary modifications, to the triangle HCB , its orthocentre A , its circumcentre O_{a}, and the circles $\mathrm{O}, \mathrm{O}_{c}, \mathrm{O}_{b}$; and to the triangles $\mathrm{CHA}, \mathrm{BAH}$.

Sect. I.
(25) If $R T, R S$ meet $B C$ at $D, D^{\prime} ; S R, S T$ meet $C A$ at E, E^{\prime}; $T S, T R$ meet $A B$ at $F, F^{\prime \prime}$, then

$$
H D R D^{\prime}, H E S E^{\prime}, H F T F^{\prime} \text { are rhombi, }
$$

aud

$$
\begin{aligned}
& D, H, E^{\prime} ; E, H, F^{\prime} ; F, H, D^{\prime} \\
& D^{\prime}, I, F ; E, H, D ; F^{\prime}, H, E \text { are collinear.* }
\end{aligned}
$$

Figure 42.

Since $H R$ is bisected perpendicularly by D^{\prime},
therefore

$$
\mathrm{HD}=\mathrm{RD} \text { and } H \mathrm{D}^{\prime}=\mathrm{RD}^{\prime}
$$

But since XY, XZ make equal angles with BC , and RS, RT are respectively parallel to XY, XZ; therefore $\mathrm{RD}=\mathrm{RD}^{\prime}$, and HDRD^{\prime} is a rhombus.

Again since $D H$ is parallel to RD^{\prime}
and $\mathrm{HE}^{\prime},, \quad, \quad \mathrm{ES}$;
therefore $\mathrm{D}, \mathrm{H}, \mathrm{E}^{\prime}$ are collinear.
(26) If $R_{1} T_{1}, R_{1} S_{1}$ meet $C B$ at $D, D^{\prime} ; S_{1} R_{1}, S_{1} T_{1}$ mest BII at $E^{\prime}, . E ; T_{1} S_{1}, T_{1} R_{1}$ meet $H C$ at $F^{\prime \prime}, F$, then
$A D R_{1} D^{\prime}, A E S_{1} E^{\prime \prime}, A F T_{1} F^{\prime \prime}$ are rhombi,
and $D, A, E ; E, A, F ; F^{\prime}, A, D^{\prime}$, etc., are collinear.
Figure 40.
Two other triads of rhombi, and of collinear points may be obtained from triangles CHA, BAH.
(27) If U, V, W be the mid points of $A H, B H, C H$, then U, V, W are the orthocentres of triangles $A C^{\prime} B^{\prime}, C^{\prime} B A^{\prime}, B^{\prime} A^{\prime} C$.

Figure 43.

For the perpendicular from B^{\prime} to AC^{\prime} is parallel to CH ; and since B^{\prime} is the mid point of $A C$, this perpendicular passes through the mid point of $A H$, that is U ; and AU is perpendicular to $\mathrm{C}^{\prime} \mathrm{B}^{\prime}$.
(28) The points U, V, W, H form an orthic tetrastigm, where H is the orthocentre of $U V W$.

[^7]If the triangle UVW be translated so that U moves along UA and VW remains parallel to $B C$, it will coincide with triangle $A C^{\prime} \mathbf{B}^{\prime}$.

Similarly the triangle UVW may be made to coincide with $\mathbf{C}^{\prime} \mathrm{BA}^{\prime}$ and $\mathrm{B}^{\prime} \mathbf{A}^{\prime} \mathbf{C}$.

Figure 43.

(30) The point H may be the orthocentre of an infinite number of triangles inscribed in the circle $A B C$.

Figure 39.

For, take any point A on the circumference;
and draw the chord AHR.
Bisect HR at \mathbf{X}, and through \mathbf{X} draw the chord BC perpendicular to AR.

Then ABC is a triangle whose orthocentre is H .
(31) The point a may be the orthocentre of an infuite number of triangles inscribed in the circle MCD.

Figure 40.
For, take any point H on the circumference; and draw the secant AHR_{1}.
Bisect $\mathrm{AR}_{\mathbf{1}}$ at X , and through X draw the chord BC perpendicular to AR_{1}.

Ther HCB is a triangle whose orthocentre is A.
Similarly for B and C.
(32) The straight lines joining the circumecutre to the retiews a triangle are perpendicular to the sides of the orthic triangle; and the straight lines joining the orthocentre to the vertices are perjendicular to the sides of the complementary triangle; and conversely.

Figure 44.
Let OA meet $Y Z$ at X^{\prime};
from O draw $O B^{\prime}$ perpendicular to $C A$; from B^{\prime} draw $B^{\prime} C^{\prime}$ parallel to $B C$.

Sect. I.

Then B^{\prime} is the mid point of CA, and $B^{\prime} \mathrm{C}^{\prime}$ is a side of the complementary triangle.

Hence $\quad \therefore A O B^{\prime}=\angle A B C=\angle A Y X^{\prime}$;
therefore $\quad-A X^{\prime} Y=-A B^{\prime} O=$ a right angle ;
and HA is perpendicular to $\mathrm{B}^{\prime} \mathrm{C}^{\prime}$.
This theorem will be found to be a particular case of a more general one regarding isogonal lines.
(33) The straight lines joining the circumcentre to the vertices of a triangle are perpendicular to all straight lines which are antiparallel to the sides with respect to the opposite angles; and the straight lines joining the orthocentre to the vertices are perpendicular to all straight lines which are parallel to the sides.
(34) The straight lines $A X$ ath 10 are isogonals * with respert to angle DAC.

Figlere 44.

For	$-A B X=\angle A O B^{\prime}$,
	$-A X B=-A B^{\prime} ;$
therefore	$-A A B=\angle O A C$.

Similarly BY, BO are isogonals with respect to $\leq \mathrm{B}$.
and $\mathrm{CZ}, \mathrm{CO}, ", ", \quad \angle \mathrm{C}$.
The theorem may be stated and proved otherwise, thus:
The straight lines joining the incentre with the vertices of a triangle lisect the angles between the radii of the circumcircle draun to the vertices and the perpendiculars.

Figure 45.
Produce AI to meet the circumcircle in U , and join OU .
Because AU bisects $\angle \mathrm{BAC}$,
therefore U is the mid point of the arc BUC;
therefore OU is perpendicular to BC ;
therefore $\quad \angle \mathrm{XAU}=\angle \mathrm{OUA}=\angle \mathrm{OAU}$.

[^8](35) The straight lines joining the mid points of $A H, B C ; B H, C A ; C H, A B$
make with
$A B, \quad B C, \quad C A$
angles complementary* to
$$
C, \quad A, \quad B .
$$

Figure 43.
Let $\mathrm{A}^{\prime}, \mathrm{U}$ be the mid points of BC, AH, and O the circumcentre. Join OA.

Then $O A^{\prime}$ is equal and parallel to AC , therefore OA is parallel to $\mathrm{A}^{\prime} \mathrm{U}$.
Now OA makes with AB an angle equal to CAH , that is, an angle complementary to C ; therefore $\mathrm{A}^{\prime} \mathrm{U}$ makes with AB an angle complementary to C .
(36) The same straight lines make with $A X, B Y, C Z Z$ angles equal to $B \sim C, C \sim A, A \sim B$.

For

$$
\begin{aligned}
-A^{\prime} U X & =-O A X \\
& =-B A X--C A X \\
& =C-E
\end{aligned}
$$

(37) The angle between \dagger
$B^{\prime} Z$ and $C^{\prime} Y=3 A, \quad C^{\prime} X^{\prime}$ and $A^{\prime} Z=3 B, \quad A^{\prime} Y$ and $B^{\prime} X=3 C^{\prime}$.
Figure 46.
Produce BY to $\mathrm{B}_{\text {, }}$ so that $\mathrm{B}_{1} \mathrm{Y}=\mathrm{BY}$, and $\quad, \quad \mathrm{C} Z, \mathrm{C}_{3}, \quad, \quad \mathrm{C}_{1} Z=\mathrm{C} Z$, and join $A B_{1}, A C_{1}$.

Then $\angle B_{1} A Y$ and $-C_{1} A Z$ are each equal to A :
therefore $\quad-\mathrm{B}_{1} \mathrm{AC}_{1}=3 \mathrm{~A}$.
But since \mathbf{C}^{\prime} and Y are the mid points of BA and BB_{1}, therefore $\quad \mathrm{C}^{\prime} \mathrm{Y}$ is parallel to AB_{2}.
Similarly $\quad \mathrm{B}^{\prime} Z, \quad, \quad, \mathrm{AC}_{1}$;

[^9]
Sect. I.

therefore the angle between $B^{\prime} Z$ and $C^{\prime} Y$ is equal to the angle between AB_{1} and AC_{1}.
(38) The straight lines drawn from the orthocentre of a triangle through the mid points of the sides and terminated by the circumcircle are bisected by the sides.

Figure 47.
Let ABC be the triangle, H its orthocentre.
Draw CL parallel to HB and terminated by the circumcircle. Join BL.

Because $C L$ is parallel to $A B$,
therefore -ACL is right;
therefore $-A B L, "$;
therefore BL is parallel to HC .
Hence HBLC is a parallelogram, and its diagonals bisect each other ;
that is, HL drawn through A^{\prime}, the mid point of BC , is bisected by BC.

This corollary may be used to prove part of the characteristic property of the nine-point circle.

$$
\begin{equation*}
A^{\prime} Y=A^{\prime} Z, \quad B^{\prime} Z=B^{\prime} X, C^{\prime \prime} I^{\prime}=C^{\prime \prime} Y \tag{39}
\end{equation*}
$$

Figure 47.
For B, Z, Y, C are situated on the circumference of a circle whose centre is A^{\prime}.
(40) If on each side of a triangle as diagonal two parallelograms be constructed, the one having a vertex at the opposite angle of the triangle, the other at the centre of the circumcircle, then the straight lines which join the other vertices of these three pairs of paralleloyrams will pass through the orthocentre.*

Figure 48.

First Demonstration.
Let H be the orthocentre, O the circumcentre; and let O^{\prime} and A^{\prime} be the vertices opposite to O and A of the parallelograms of which BC is the common diagonal.

[^10]Since $\quad \triangle B H C$ is supplementary to $\angle A$,
therefore $\quad \angle B H C ", \angle A^{\prime}$;
therefore H is on the circumcircle of $\mathrm{A}^{\prime} \mathrm{BC}$.
Now $\quad \angle \mathrm{A}^{\prime} \mathrm{BH}$ is right;
therefore $\mathrm{A}^{\prime} \mathrm{H}$ is a diameter of the circle $\mathrm{A}^{\prime} \mathrm{BC}$;
therefore $\mathrm{A}^{\prime} \mathrm{H}$ passes through O^{\prime} its centre.

Second Demonstration.*

Draw AA_{1} parallel to BC ;
join $A^{\prime} O$ and produce it to meet the circumcircle in R;
join $A R$ meeting $B C$ at X.
Then $A R$ is perpendicular to $B C$,
and if we imagine the whole figure reflected in BC ,
A_{1} and O will reflect into the vertices of the two parallelograms on BC as diagonal.
Hence the line joining these vertices will meet $A X$ at the point H, the reflection of R .
But since $\quad \angle \mathrm{BHC}=\angle \mathrm{BRC}=180^{\circ}-\angle \mathrm{BAC}$;
therefore H is the orthocentre of ABC ;
therefore the straight line joining the two vertices of the parallelogram on BC as diameter passes through the orthocentre.
(41) If through A, B, C there be draun $A C_{1}, B A_{1}, C B_{1}$ making equal angles respecticely with $H A, H B, H C$, a new triangle $A_{1} B_{1} C_{1}$ is formed, which is simitar to ABC, and whose circumcentre \dagger is H.

Figure 49.
Because $\quad-\mathrm{HCB}_{1}=-\mathrm{HBA}_{\text {i }}$ therefore the points H, C, A_{1}, B are concyclic; therefore $\quad-\mathrm{A}_{1}=180^{\circ}-\mathrm{BHC}=\angle \mathrm{A}$. Similarly $\quad-B_{1}=-\mathrm{B}, \quad-\mathrm{C}_{1}=\angle \mathrm{C}$.

Join $\mathrm{HB}_{1}, \mathrm{HC}_{2}$.

[^11]Sect. I.

Because	$\therefore \mathrm{ACH}=\angle \mathrm{ABH}$,
and	$\therefore \mathrm{ACH}=-\mathrm{AB} \mathrm{B}_{1} \mathrm{H}$,
	$\therefore \mathrm{ABH}=\angle \mathrm{AC}_{1} \mathrm{H}$;
therefore	$-\mathrm{AB}_{2} \mathrm{H}=-\mathrm{AC}_{2} \mathrm{H}$;
therefore	$\mathrm{HB}_{1}=\mathrm{HC}_{1}$.
Similarly	$\mathrm{HC}_{1}=\mathrm{HA}_{1}$;
therefore H is the circuncentre of $A_{1} B_{1} C_{1}$.	

(42) Since HA, HB, HC are respectively perpendicular to $\quad \mathrm{BC}, \mathrm{CA}, \mathrm{AB}$, the theorem of the preceding corollary is equivalent to the following :

If through the vertices of a triangle straight lines be drawn making equal angles with the opposite sides, they will form by their intersection a new triangle, which is similar to the original triangle, and which has for circumcentre the orthocentre of the original triangle.

A particular ase of this theorem has already been given, that, namely, where the straight lines drawn through the vertices are parallel to the opposite sides. The triangle $A_{1} B_{1} C_{1}$ so formed, the anticomplementary triangle of ABC , is the maximum triangle that can be constructed under such conditions, and it it is equal to four times ABC.
(43) Triangle $\mathrm{IT} Z$ is the triangle of minimum perimeter* inseribed in $A B C$.

It is usually considered that this statement is proved \dagger when it is shown that $X Y$ and $X Z$ make equal angles with $B C$

$$
\begin{array}{llllllll}
" & Y Z & \text { YX } & , & " & " & ", ~ C A \\
" & Z X & \text { ZY } & " & " & " & , & \text { AB. }
\end{array}
$$

No objection can be taken to the following proof ${ }_{+}^{+}$:
Figure 50.
Produce YZ both ways, making ZX_{1} equal to $\mathrm{ZX}, \mathrm{YX}_{2}$ equal to YX ; then $\mathrm{X}_{2} \mathrm{X}_{2}$ is the perimeter of XYZ .

Join $\mathrm{BX}_{\mathrm{j}}, \mathrm{CX}_{2}$.
Because

$$
\angle X Z B=\angle A Z Y=\angle X_{1} Z B
$$

[^12]therefore triangles XZB and X, ZB are congruent.
Similarly " XYC " X X Y \quad, \quad,
If now DEF be any other triangle inscribed in ABC , and along BX_{1} there be taken BD_{1} equal to BD , and along CX_{2} there be taken CD_{2} equal to CD , and $\mathrm{FD}_{1}, \mathrm{ED}_{2}$ be joined, it may be proved that $\mathrm{FD}_{1}=\mathrm{FD}, \mathrm{ED}_{2}=\mathrm{ED}$, and that consequently the line $\mathrm{D}_{1} \mathrm{FED}_{2}$ is the perimeter of DEF.

If $D_{1} \mathrm{FED}_{2}$ is not straight, join $D_{1} D_{2}$ and join the vertex A with $\mathrm{X}, \mathrm{D}, \mathrm{X}_{1}, \mathrm{D}_{1}, \mathrm{X}_{2}, \mathrm{D}_{2}$.

Then

$$
\begin{aligned}
\mathrm{AX}_{1} & =\mathrm{AX}=A X_{2}, \\
\mathrm{AD}_{1} & =\mathrm{AD}=\mathrm{AD}_{2} ;
\end{aligned}
$$

therefore the triangles $A X_{1} X_{2}, A D_{1} D_{2}$ are isosceles. And their vertical angles $\mathrm{X}_{1} \mathrm{AX}_{2}, \mathrm{D}_{1} \mathrm{AD}_{2}$ are equal, since each is double of angle BAC; therefore the triangles $\mathrm{AX}_{1} \mathrm{X}_{2}, \mathrm{AD}_{1} \mathrm{D}_{2}$ are similar. Now $A X_{1}$ is less than $A D_{1}$, since $A X$ is less than $A D$; therefore $X_{1} X_{2}$ is less than $D_{1} D_{2}$, and consequently less than $\mathrm{D}_{1} \mathrm{FED}_{2}$.

If the triangle $A B C$ be right-angled at A, the points Y, Z coalesce with $A, X_{1} X_{2}$ and $D_{1} D_{2}$ pass through A and are respectively double of AX and AD .

If the triangle $A B C$ be obtuse-angled at A, the points Y, Z fall outside the triangle ABC (Figure 51) and $\mathrm{X}_{1} \mathrm{X}_{2}$ is now equal to $\mathbf{X Y}-\mathbf{Y Z}+\mathbf{Z X}$. If therefore the preceding statements and proof are to hold good, the side $Y Z$ must be considered negative.
(44) If $X X_{1}, X X_{2}$ le joined cutting $A B, A C$ in P, Q, then $P(Q$ is the semiperimeter* of triangle $X Y Z$.

Figures 50, al.

For \mathbf{P} is the mid point of $\mathbf{X X}$, and \mathbf{Q} the mid point of XX_{2};
therefore $\quad \mathrm{PQ}=\frac{1}{2} \mathrm{X}_{1} \mathrm{~N}_{2}=$ semiperimeter of $\mathrm{XY} Z$.
\mathbf{P} and \mathbf{Q} are the feet of the perpendiculars from X on AB and AC.

If triangle ABC be obtuse-angled, the perimeter of XYZ must be understood with the qualification of the preceding corollary.

[^13](45) If tuo triangles $A B C, A^{\prime} B^{\prime} C^{\prime}$ have their sides parallel, and one of them is circumscribed about and the other is inscribed in the same triangle $D E F$, the area of this last triangle is a mean proportional betueen the areas of the two others.*

Figure 52.
Let $A B^{\prime}, A C^{\prime}$ meet $B C$ at P and Q. Through A^{\prime} draw $A^{\prime} A^{\prime \prime}$ parallel to $\mathrm{B}^{\prime} \mathrm{C}^{\prime}$ or BC and meeting AC^{\prime} at $\mathrm{A}^{\prime \prime}$.
$J o i n A^{\prime \prime} B^{\prime}, A^{\prime}, B^{\prime} \mathbf{Q}$.
Then $A^{\prime} \mathbf{B}^{\prime} \mathbf{F}=\mathrm{A}^{\prime} \mathbf{B}^{\prime} \mathbf{A}, \mathrm{A}^{\prime} \mathbf{C}^{\prime} \mathrm{E}=\mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{A}, \mathrm{B}^{\prime} \mathbf{C}^{\prime} \mathrm{D}=\mathrm{B}^{\prime} \mathbf{C}^{\prime} \mathbf{Q}$;
therefore $\quad D E F=A B^{\prime} Q, A^{\prime} B^{\prime} C^{\prime}=A^{\prime \prime} B^{\prime} C^{\prime}$.
Now
$A^{\prime \prime} B^{\prime} C^{\prime}: A B^{\prime} Q=A^{\prime \prime} C^{\prime}: A Q ;$
and $A^{\prime \prime} C^{\prime}: A Q$ is the ratio of the altitudes of the similar triangles $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}, \mathrm{ABC}$.

Hence
$\mathrm{A}^{\prime \prime} \mathrm{C}^{\prime}: \mathrm{AQ}=\mathrm{B}^{\prime} \mathrm{C}^{\prime}: \mathrm{BC} ;$
therefore
$A^{\prime \prime} B^{\prime} C^{\prime}: A B^{\prime} Q=B^{\prime} C^{\prime}: B C$.
Again
$\begin{aligned} A B^{\prime} Q: A P Q & =A B^{\prime}: A P \\ & =B^{\prime} C^{\prime}: P Q\end{aligned}$
$A P Q: A B C=P Q: B C$;
and
$A B^{\prime} Q: A B C=B^{\prime} C^{\prime}: B C$;
therefore $\quad A^{\prime \prime} B^{\prime} C^{\prime}: A B^{\prime} Q=A B^{\prime} Q: A B C$
or
$\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}: \mathrm{DEF}=\mathrm{DEF}: \mathrm{ABC}$.
The terms inscribed and circumscribed have the following signification,

One triangle is inscribed in a second triangle when the vertices of the first are situated on the sides or the sides produced of the second; and in either case the second triangle is circumscribed about the first.

[^14](46) If $I_{1} I_{2} I_{3}$ be the fundamental triangle, $A B C$ its orthic triangle, and DEF the triangle formed by joining the points of contact of the incircle of $A B C$, then ${ }^{*}$
$$
I_{1} I_{2} I_{3}: A B C=A B C: D E F .
$$

Figure 28.

In the same way if $\mathrm{II}_{3} \mathrm{I}_{2}$ be the fundamental triangle, ABC its orthic triangle, and $D_{1} E_{1} F_{1}$ the triangle formed by joining the points of contact of the first excircle of $A B C$, then

$$
\mathrm{I}_{3} \mathrm{I}_{2}: \mathrm{ABC}=\mathrm{ABC}: \mathrm{D}_{1} \mathrm{E}_{1} \mathrm{~F}_{1} ;
$$

and so on.

$$
\begin{align*}
& A B C: D E F=2 R: r \tag{47}\\
& A B C: D_{1} E_{1} F_{1}=2 R: r_{1}
\end{align*}
$$

and so on.
For

$$
\begin{aligned}
(\mathrm{ABC})^{2}:(\mathrm{DEF})^{2} & =\mathrm{I}_{1} \mathrm{I}_{\mathrm{e}} \mathrm{I}_{2}: \mathrm{DEF} \\
& =4 \mathrm{R}^{2}: r^{2}
\end{aligned}
$$

since 2 R and r are the radii of the circumcircles of the similar triangles $\mathrm{I}_{1} \mathrm{I}_{2} \mathrm{I}_{3}$ and DEF.
(48) If $A B C$ be the fundamental triangi,: DEF the triangle formed by joining the points of contact of the incircle of $A D C$, and $X^{\prime} Y^{\prime} Z^{\prime}$ the orthic triangle of $D E F$, then

$$
A B C: D E F=D E F: X^{\prime} Y^{\prime} Z^{\prime} .
$$

Figure 53.
For
$\mathrm{BDF}=\angle \mathrm{DEF}=\angle \mathrm{DY}^{\prime} \mathrm{Z}^{\prime}$;
therefore $\quad \mathrm{Y}^{\prime} Z$ is parallel to BC .
Hence Z'X , , CA
and $\mathrm{X}^{\prime} \mathrm{Y}$., $\because \mathrm{AB}$.
In the same way if ABC be the fundamental triangle, $\mathrm{D}_{3} \mathrm{E}_{1} \mathrm{~F}_{3}$ the triangle formed by joining the points of contact of the first excircle of ABC , and the orthic triangle of $\mathrm{D}_{2} \mathrm{E}_{1} \mathrm{~F}_{1}$ be constructed, it will be found that this orthic triangle has its sides parallel to those of $A B C$, and that $D_{1} E_{1} F_{1}$ is a mean proportional between it and ABC.

[^15](49) Hence $\quad I_{1} I_{2} I_{3}, A B C, D E F, X^{\prime} Y^{\prime} Z^{\prime}, \ldots$ are a series of triangles whose areas form a geometrical progression, the alternate terms being similar.

Other series may be obtained from

$$
\begin{gather*}
\mathrm{I}_{3} \mathrm{I}_{2}, \mathrm{ABC}, \mathrm{D}_{1} \mathrm{E}_{1} \mathrm{~F}_{1}, \ldots, \text { etc. } \\
\mathrm{ABC}: \mathrm{X}^{\prime} \mathrm{Y}^{\prime} Z^{\prime}=4 \mathrm{R}^{2}: r^{2} . \tag{50}
\end{gather*}
$$

Def. If P be any point in the plane of $A B C$, and D, E, F be the projections of \mathbf{P} on $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$, then DEF is called the pedal triangle of P with respect to ABC .
(51) If
$I_{1}, \quad H_{2}, \quad H_{i}$
be the orthocentres of the triangles
$A E F, \quad B F D, C D E$
cut off from $A B C$ by the sides of the pedal triangle $D E F$ of any point P, the triangle $H_{1} H_{2} H_{3}$ is congruent and oppositely situated to $D E F$.

Figure 54.

Since $\quad \mathrm{PD}, \mathrm{FH}_{2}$ are perpendicular to BC , therefore $\quad \mathrm{PD}$ is parallel to FH_{2}.
Similarly PF , " DH_{2};
therefore $\quad \mathrm{PDH}_{2} \mathrm{~F}$ is a parallelogram,
and
Hence also
$\mathrm{PD}=\mathrm{FH}_{2}$.
$\mathrm{PD}=\mathrm{EH}_{3}$,
therefore $\quad \mathrm{EFH}_{2} \mathrm{H}_{3}$ is a parallelogram,
and

$$
\mathrm{H}_{2} \mathrm{H}_{3}=\mathrm{EF} .
$$

Figure 55.
The sides of the four triangles

$$
\text { DEF, } \mathrm{D}_{1} \mathrm{E}_{1} \mathrm{~F}_{3}, \mathrm{D}_{2} \mathrm{E}_{2} \mathrm{~F}_{2}, \mathrm{D}_{\mathbf{3}} \mathrm{E}_{3} \mathrm{~F}_{3}
$$

make with the sides of $A B C$ the following
twelve triangles
whose orthocentres are
AEF, BFD, CDE
$A E_{1} F_{1}, \quad B F_{1} D_{1}, \quad C D_{1} E_{1}$
\qquad
\qquad
$\mathrm{H}_{1}, \quad \mathrm{H}_{2}, \quad \mathrm{H}_{3}$
$\mathrm{H}_{1}{ }^{\prime}, \mathrm{H}_{2}{ }^{\prime}, \mathrm{H}_{3}{ }^{\prime}$
\qquad
.............
(52) The twelve orthocentres are situated in pairs on the six lines

$$
\mathrm{II}_{1}, \mathrm{II}_{2}, \mathrm{II}_{3}, \mathrm{I}_{2} \mathrm{I}_{3}, \mathrm{I}_{3} \mathrm{I}_{1}, \mathrm{I}_{1} \mathrm{I}_{2}
$$

(53) The four triangles
$\mathrm{H}_{1} \mathrm{H}_{2} \mathrm{H}_{3}, \quad \mathrm{H}_{1}{ }^{\prime} \mathrm{H}_{2}{ }^{\prime} \mathrm{H}_{3}^{\prime}$, and so on, are congruent and oppositely situated to

D E F, $\quad D_{1} E_{1} F_{1}$, and so on.
(54) The following figures are rhombi:

D $\mathrm{H}_{3} \mathrm{EI}, \quad \mathrm{EH} \mathrm{H}_{1} \mathrm{FI}, \quad \mathrm{FH}_{2} \mathrm{DI}$
$\mathrm{D}_{1} \mathrm{H}_{3}{ }^{\prime} \mathrm{E}_{1} \mathrm{I}_{3}, \quad \mathrm{E}_{1} \mathrm{H}_{1}{ }^{\prime} \mathrm{F}_{1} \mathrm{I}_{3}, \quad \mathrm{~F}_{1} \mathrm{H}_{2}{ }^{\prime} \mathrm{D}_{1} \mathrm{I}_{2}$
............
their sides being r, r_{1}, r_{2}, r_{3} respectively.
(55) The following figures are equilateral hexagons:
$\mathrm{DH}_{2} \mathrm{EH}_{1} \mathrm{FH}_{2}, \mathrm{D}_{1} \mathrm{H}_{3}{ }^{\prime} \mathrm{E}_{1} \mathrm{H}_{1}{ }^{\prime} \mathrm{F}_{1} \mathrm{H}_{2}{ }^{\prime}$, \qquad
their perimeters being $6 r, 6 r_{1}, 6 r_{n}, 6 r_{3}$ respectively

$$
\begin{equation*}
I, \quad I_{1}, \quad I_{2}, \quad I_{2} \tag{56}
\end{equation*}
$$

which are the circumcentres of the triangles

$$
D E F, \quad D_{1} E_{1} F_{2}, \quad \text { and so on }
$$

are the orthocentres of the triangles*

$$
H_{1} H_{2} H_{3}, \quad H_{1}^{\prime} H_{2}^{\prime} H_{3}^{\prime} ; \quad \text { and so on. }
$$

Take, for example, the triangle $\mathrm{H}_{\mathrm{i}} \mathrm{H}_{2} \mathrm{H}_{3}$.
Because $\quad H_{1} I$ is perpendicular to EF ,
therefore $\quad \mathrm{H}_{\mathrm{i}} \mathrm{I}, \quad, \quad, \mathrm{H}_{\Downarrow} \mathrm{H}_{\ddot{\prime}}$.
Similarly for $\mathrm{H}_{2} \mathrm{I}$ and $\mathrm{H}_{3} \mathrm{I}$.
(57) If $\quad H_{0}, \quad I_{6}{ }^{\prime}, \quad H_{v}{ }^{\prime \prime}, H_{0}{ }^{\prime \prime \prime}$
be the orthocentres of the triangles
$D E F, \quad D_{1} E_{1} F_{1}, \quad$ and so on,
they will be the circumcentres of the triangles*
$H_{1} H_{2} H_{\mathrm{s}}, \quad \quad I_{1}^{\prime} H_{2}^{\prime} H_{\dot{\prime}}^{\prime}, \quad$ and soon.

[^16]Figure 56.
Take, for example, the triangle $\mathrm{H}_{1} \mathrm{H}_{2} \mathrm{H}_{3}$.
Because $\quad \mathrm{DH}_{0}$ is perpendicular to EF ,
therefore $\mathrm{DH}_{0} \quad, \quad$, $\mathrm{H}_{2} \mathrm{H}_{3}$.
And since $\quad \mathrm{DH}_{2}=\mathrm{DH}_{3}$,
therefore $\quad \mathrm{DH}_{0}$ bisects $\mathrm{H}_{2} \mathrm{H}_{3}$
therefore $\quad \mathrm{DH}_{0}$ passes through the circumcentre of $\mathrm{H}_{1} \mathrm{H}_{2} \mathrm{H}_{3}$
Similarly for EH_{0} and FH_{0}.

$$
\begin{align*}
& H_{0} I I_{\mathrm{i}}=I I_{0} H_{2}=I I_{0} I I_{:} \tag{58}\\
= & I D=I \quad E=I \quad F=r
\end{align*}
$$

For H_{0} and I are the circumcentres of two congruent triangles $\mathrm{H}_{1} \mathrm{H}_{2} \mathrm{H}_{3}$ and DEF.

Similarly for $\mathrm{H}_{0}{ }^{\prime}, \mathrm{I}_{1}$, and so on.
(59) The following figures are parallelograms:

$$
\mathrm{DIH}_{1} \mathrm{H}_{v}, \mathrm{EIH}_{2} \mathrm{H}_{v}, \mathrm{FIH}_{3} \mathrm{H}_{0} ;
$$

they have a common diagonal IH_{v};
their other diagonals intersect at the mid point of $\mathbf{I H}_{0}$.
Similarly for $\mathrm{I}_{1} \mathrm{H}_{0}{ }^{\prime}$, and so on.
(60) The homothetic centre of DEF, $\mathrm{H}_{1} \mathrm{H}_{2} \mathrm{H}_{3}$ is the mid point of IH_{v}.

Similarly for $\mathrm{D}_{1} \mathrm{E}_{1} \mathrm{~F}_{1}, \mathrm{H}_{1}{ }^{\prime} \mathrm{H}_{2}{ }^{\prime} \mathrm{H}_{3}^{\prime}$, and so on.
(61) The following figures are rhombi :

$$
\mathrm{DH}_{3} \mathrm{H}_{0} \mathrm{H}_{2}, \mathrm{EH}_{1} \mathrm{H}_{0} \mathrm{H}_{3}, \mathrm{FH}_{2} \mathrm{H}_{0} \mathrm{H}_{1}
$$

and their sides are equal to r.
Three other triads of rhombi can be obtained by putting subscripts and accents to the preceding letters.
(62) If from $\quad \mathbf{H}_{1}, \quad \mathrm{H}_{2}, \quad \mathrm{H}_{3}$ perpendiculars be drawn
to
$\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$, these perpendiculars will be concurrent at H_{0}.

Since $\quad \mathrm{EH}_{1} \mathrm{H}_{0} \mathrm{H}_{3} \quad$ is a rhombus,
therefore
therefore
$\mathrm{H}_{1} \mathrm{H}_{0}$ is parallel to EH_{3} $\mathrm{H}_{1} \mathrm{H}_{0} \quad$ is perpendicular to BC .
Similarly for $\quad \mathrm{H}_{2} \mathrm{H}_{0}$ and $\mathrm{H}_{3} \mathrm{H}_{0}$.
(63) Since I and H_{0} are the circumcentre and orthocentre of DEF and the orthocentre and circumcentre of $\mathrm{H}_{1} \mathrm{H}_{2} \mathrm{H}_{3}$, these two triangles have the same nine-point circle,* and its centre is the mid point of IH_{0}.

Figure 56.

(64) In triangle DEF

(65) In triangle $\mathrm{H}_{3} \mathrm{H}_{2} \mathrm{H}$

(66) Of the perpendiculars to $B C$ from $I_{3}, H_{\text {. }} . I_{1} . I$ the firs ${ }^{\circ}$ is equal to the sum of the other three. \dagger

Figure 57.
Let the feet of the perpendiculars on BC from $\mathrm{H}_{1}, \mathrm{H}_{2,} \mathrm{H}$ be $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{\mathrm{s}}$;
$\operatorname{let} \mathrm{IH}_{1}$ meet EF at \mathbf{D}^{\prime};
from D^{\prime} draw a perpendicular to $B C$, meeting $B C$ at $D^{\prime \prime}$ and $H_{\because} H$ at L.

Then $\quad D$ is the mid point of $E F$ and IH_{1} :

Also $\quad \mathbf{L}$ ", ., \quad, :. $\mathrm{H}_{2} \mathrm{H}_{\text {; }}$;
therefore \mathbf{L}, , ".,$\quad \mathrm{DH}_{0}$,
since $\mathrm{DH}_{3} \mathrm{H}_{0} \mathrm{H}_{2}$ is a rhombus
Hence

$$
\mathrm{H}_{2} \mathrm{X}_{\mathrm{z}}+\mathrm{H}_{0} \mathrm{X}_{\mathrm{i}}=2 \mathrm{LD}^{\prime \prime}=\mathrm{H}_{0} \mathrm{X}_{1} ;
$$

and $\quad \mathrm{ID}=\quad \mathrm{H}_{0} \mathrm{H}_{\mathrm{i}}$;
therefore $H_{2} \mathrm{X}_{2}+\mathrm{H}_{3} \mathrm{X}_{5}+\mathrm{ID}=\mathrm{H}_{3} \mathrm{X}_{2}$.

* Feuerbach, $\$ 89$.
\dagger Feuerbach, $\S 80$. The mode of proof is not his.

Sect. I.
In triangle ABC , the perpendiculars $\mathrm{AX}, \mathrm{BY}, \mathrm{CZ}$ intersect at H the orthocentre, and XYZ is the orthic triangle.

Figure 58.
This figure has reference to the properties (67)-(82). The reader would find it convenient if he constructed a copy of it on a large scale.

Of the triangles let the orthocentres be

AYZ, XBZ, XYC	$\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{3}$
HYZ, XCZ, XYB	$\mathrm{H}_{1}{ }^{\prime}, \mathrm{H}_{2}{ }^{\prime}, \mathrm{H}_{3}^{\prime}$
CYZ, XHZ, XYA	$\mathrm{H}_{1}{ }^{\prime \prime}, \mathrm{H}_{2}{ }^{\prime \prime}, \mathrm{H}_{3}{ }^{\prime \prime}$
BYZ, XAZ, XYH	$\mathrm{H}_{1}{ }^{\prime \prime \prime}, \mathrm{H}_{2}{ }^{\prime \prime \prime}, \mathrm{H}_{3}^{\prime \prime \prime}$

(67) Of these H points, four pairs are collinear with X , four with Y , and four with Z , that is, through

(68) The four * triangles $\mathrm{H}_{1} \mathrm{H}_{2} \mathrm{H}_{5} . \mathrm{H}_{1}{ }^{\prime} \mathrm{H}_{2}{ }^{\prime} \mathrm{H}_{3}{ }^{\prime}$ etc., are congruent and oppositely situated to $\mathrm{XY} Z$.
(69) The three triangles $\Pi_{1}^{\prime} \Pi_{1}^{\prime \prime} \Pi_{1}^{\prime \prime \prime}, H_{2}^{\prime} H_{2}^{\prime \prime} H_{2}^{\prime \prime \prime}, \Pi_{;}^{\prime} H_{3}^{\prime \prime} H_{3}^{\prime \prime \prime}$ are congruent and oppositely situated to $A B C$; and $H_{1}, H_{3}, H_{;}$are their respectice orthocentres.

Take for example $\mathrm{H}_{3}{ }^{\prime} \mathrm{H}_{3}{ }^{\prime \prime} \mathrm{H}_{3}{ }^{\prime \prime}$.
Because $\mathrm{H}_{3}{ }^{\prime \prime} \mathrm{H}_{3}{ }^{\prime \prime \prime}$ passes through Y and is perpendicular to $\mathbf{A X}$, therefore $\quad \mathrm{H}_{3}{ }^{\prime \prime} \mathrm{H}_{3}{ }^{\prime \prime \prime}$ is parallel to BC .
Similarly $\quad \mathrm{H}_{3}{ }^{\prime \prime} \mathrm{H}_{3}{ }^{\prime}$ is parallel to CA.
Again $\mathrm{H}_{2}^{\prime}{ }^{\prime} \mathrm{H}_{3}^{\prime}$ is equal and parallel to $\mathrm{H}_{2}{ }^{\prime \prime} \mathrm{H}_{3}{ }^{\prime \prime}$;
therefore $\mathrm{H}_{3}{ }^{\prime} \mathrm{H}_{3}{ }^{\prime \prime} ", "$ ", " $\mathrm{H}_{2}{ }^{\prime} \mathrm{H}_{2}{ }^{\prime \prime}$.
Now $\quad \mathrm{H}_{2}{ }^{\prime} \mathrm{H}_{2}{ }^{\prime \prime}$ passes through X and is perpendicular to CZ ;
therefore $\quad \mathrm{H}_{3}{ }^{\prime} \mathrm{H}_{3}{ }^{\prime \prime}$ is parallel to AB .
Hence $\quad \mathrm{H}_{3}{ }^{\prime} \mathrm{H}_{3}{ }^{\prime \prime} \mathrm{H}_{3}{ }^{\prime \prime \prime}$ is similar and oppositely situated to ABC.

* Fetuerbach ($\$ 90$) proves the congruency of XYZ, $\mathrm{H}_{1} \mathrm{H}_{2} \mathrm{H}_{3}$

Because $H_{3}^{\prime} \mathrm{H}_{3}$ passes through Y and is perpendicular to BC , and $\mathrm{H}_{3}{ }^{\prime \prime} \mathrm{H}_{3} \quad$ " $\quad \mathrm{X}$ " " \quad, CA ;
therefore \mathbf{Y}, \mathbf{X} are the feet of two of the perpendiculars, and $\quad H_{3}$ is the orthocentre, of triangle $H_{3}{ }^{\prime} \mathrm{H}_{3}{ }^{\prime \prime} \mathrm{H}_{3}{ }^{\prime \prime \prime}$.

Lastly, since H, X in triangle ABC
correspond to $\quad \mathrm{H}_{3}, \mathrm{Y} " \quad$ " $\mathrm{H}_{3}{ }^{\prime} \mathrm{H}_{3}{ }^{\prime \prime} \mathrm{H}_{3}{ }^{\prime \prime \prime}$, and $\mathrm{HX}=\mathrm{H}_{\#} \mathrm{Y}$: therefore triangles $\mathrm{ABC}, \mathrm{H}_{3}{ }^{\prime} \mathrm{H}_{3}{ }^{\prime \prime} \mathrm{H}_{3}{ }^{\prime \prime \prime}$ are congruent.

$$
\begin{align*}
& H_{1}{ }^{\prime} H_{1} \text { meet } H_{1}^{\prime \prime} H_{3}{ }^{\prime \prime \prime} \text { at } X_{1} \text {, } \tag{70}\\
& H_{2}{ }^{\prime \prime} I_{2} \quad, \quad H_{2}{ }^{\prime \prime \prime} H_{2}^{\prime} \quad, \quad \Gamma_{1}^{\prime} \text {, } \\
& H_{i j}^{\prime \prime \prime} I_{i j} \quad, \quad I_{i j}^{\prime} I_{i,}{ }^{\prime \prime} \quad, \quad Z_{1} \text { : }
\end{align*}
$$

then the feot of the perpendiculars of triangle,

$$
\begin{array}{lcc}
H_{1}^{\prime} H_{1}^{\prime \prime} I_{1}^{\prime \prime \prime} & \text { are } & \mathrm{I}_{1}, Z, Y, \\
H_{2}^{\prime} I_{2}^{\prime \prime} I_{2}^{\prime \prime \prime} & " & Z, \mathrm{I}_{3}, X \\
H_{3}^{\prime} H_{3}^{\prime \prime} H_{3}^{\prime \prime \prime} & ", & Y, X, Z_{1} ;
\end{array}
$$

and the sides of triangle $X_{1} Y_{1} Z_{1}$ pass through $, \cdots, Y, Z$ and are thrre bisected.

Because triangles $\mathrm{H}_{2}{ }^{\prime} \mathrm{H}_{3}{ }^{\prime \prime} \mathrm{H}_{1}{ }^{\prime \prime \prime}$ and ABC are congruent and oppositely situated,
therefore their orthic triangles $\mathrm{X}_{1} \mathrm{ZY}$ and XYZ are congruent and oppositely situated.
Similarly $\mathrm{ZY}_{1} \mathrm{X}$ and YXZ_{1} are congruent and oppositely situated to XYZ;
therefore $Y_{1} Z_{1}$ passes through X and is bisected at X
$\mathbf{Z}_{1} \mathbf{X}_{1} \quad$. $\quad, \quad \mathbf{Y} . . \quad$. " ", \mathbf{Y}
$\mathbf{X}_{1} \mathbf{Y}_{1} \quad, \quad \because \quad Z \quad, \quad, \quad$. $\quad . \quad Z$.
(71) $A B C, X_{1} Y_{1} Z_{1}$ have the seme nine-point circle.

For $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$, the feet of the perpendiculars of $A B C$, are the mid points of the sides of $X_{1} Y_{1} Z_{2}$.
(72) If $\quad 0, \quad 0 . . \quad O_{L}, \quad 0, \quad$ be the circum-
centres of

$$
A B C, \quad H C B, \quad C H A, \quad B A H
$$

Sect. I.
then the point of concurrency of

	A H_{1},	$B H_{2}$,	CM\%	is	0	
	HH $H_{1}{ }^{\prime}$,	CH2, ,	BIM:	"	0	
	C $M_{1}{ }^{\prime \prime}$,	$1 / H_{2}^{\prime \prime}$,	A $I H 5^{\prime \prime}$	"	0	
	$B I_{1}{ }^{\prime \prime}$,		HII:"'	"		
nod	0 ,	0	O,			a
$o f$	$H_{1} H_{2} H_{3}$,	$H_{1}^{\prime} H_{2}^{\prime} H_{3}^{\prime}$,	" H_{2} " H_{a}	${ }_{1}{ }^{\prime \prime}$ ' 1		

For $\mathrm{AH}_{1}, \mathrm{BH}_{2}, \mathrm{CH}_{3}$ are respectively perpendicular
to YZ, ZA, XY;
and their concurrency is established by Steiner's theorem concerning orthologous triangles. See $\$ 6(1)$.

Since $\mathrm{AH}_{1} . \mathrm{BH}_{3}, \mathrm{CH}_{3}$ are respectively perpendicular to $\mathrm{YZ}, \mathrm{ZX}, \mathrm{XY}$, they are therefore perpendicular to $\quad \mathrm{H}_{2} \mathrm{H}_{3}, \mathrm{H}_{3} \mathrm{H}_{4}, \mathrm{H}_{1} \mathrm{H}_{2}$, and consequently concurrent at the orthocentre of $\mathrm{H}_{1} \mathrm{H}_{2} \mathrm{H}_{3}$.
(i3) If the homothetic centre of the trianyles

IYZ	and	$H_{1} H_{2} H_{3}$	be	T
IT\%	"	$H_{1}^{\prime} H_{2}^{\prime} H_{3}^{\prime}$,	T_{1}
XV\%		$H_{1}^{\prime \prime} \Pi_{2}^{\prime \prime} H_{: 3}{ }^{\prime \prime}$	"	T_{2}
ITZ	,	$M_{1}^{\prime \prime \prime} I_{1}^{\prime \prime \prime}{ }^{\prime \prime} M_{5}^{\prime \prime \prime}$		T

then $T_{1} T_{1} T_{\mathrm{j}}$ is similar and oppositely situated to $A B C$, and T, T_{1}, T_{3}, T_{3} form an orthic tetrustigm.

For $\quad \mathrm{T}_{2}$ is the mid point of $\mathrm{XH}_{1}{ }^{\prime \prime}$

$$
\mathrm{T}_{; ;}, \quad, \quad, \quad \text {, }, \mathrm{XH}_{1}^{\prime \prime \prime} ;
$$

therefore $\mathrm{T}_{2} \mathrm{~T}_{3}$ is parallel to $\mathrm{H}_{1}{ }^{\prime \prime} \mathrm{H}_{1}{ }^{\prime \prime \prime}$ and equal to half of it ; therefore $\mathrm{T}_{2} \mathrm{~T}_{3}$, ", " B C ," ", ", ,",

Again T is the mid point of XH_{1} T_{1}, , , ", " $\mathrm{XH}_{1}{ }^{\prime}$;
therefore T_{1} is parallel to $\mathrm{H}_{1} \mathrm{H}_{1}^{\prime}$ and equal to half of it; therefore T_{1} is perpendicular to $\mathrm{H}_{1}{ }^{\prime \prime} \mathrm{H}_{1}{ }^{\prime \prime \prime}$ or to $\mathrm{T}_{2} \mathrm{~T}_{3}$, and $\quad T$ is orthocentre of $T_{1} T_{2} T_{5}$.
(74) The point T is the centre of the three parallelograms

$$
Y Z H_{2} I_{3}, Z \Sigma H_{\mathrm{j}} H_{1}, \quad X Y H_{1} H_{2}
$$

For $\mathbf{Y H}_{\mathrm{z}}, \mathrm{ZH}_{3}$ intersect at T .
Similarly $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$ are each the centre of three parallelograms.
(75) If $X^{\prime}, Y^{\prime}, Z^{\prime}$ be the mid points of $Y Z, Z X, X Y$, then the noint of concurrercy of

$H_{1} X^{\prime}$,	$H_{2} I^{\prime}$,	$H_{3} Z^{\prime}$	is	$I I$
$H_{1}^{\prime} X^{\prime}$,	$H_{2}^{\prime} V^{\prime \prime}$,	$H_{3}^{\prime} Z^{\prime}$	$"$	A
$H_{1}^{\prime \prime} X^{\prime}$,	$H_{2}^{\prime \prime \prime} Y^{\prime \prime}$	$H_{3}^{\prime \prime} Z^{\prime}$	$"$	B
$H_{1}^{\prime \prime \prime} X^{\prime}$,	$H_{2}^{\prime \prime \prime} V^{\prime \prime}$,	$H_{3}^{\prime \prime \prime} Z^{\prime}$	$"$	C.

For YH_{1} and HZ are parallel, and so are $Z \mathrm{H}_{1}$ and HY :
therefore $\mathrm{HYH}_{3} Z$ is a parallelogram ;
therefore HH_{1} and YZ bisect each other, that is, $\mathrm{H}_{1} \mathrm{X}^{\prime}$ passes through H .

Again, $\mathrm{ABC}, \mathrm{H}_{1}{ }^{\prime} \mathrm{H}_{1}{ }^{\prime \prime} \mathrm{H}_{1}{ }^{\prime \prime}$ are congruent and oppositely situated, and Y in ABC corresponds to Z in $\mathrm{H}_{1}{ }^{\prime} \mathrm{H}_{1}{ }^{\prime \prime} \mathrm{H}_{1}{ }^{\prime \prime \prime}$:
therefore $\mathrm{AYH}_{1}^{\prime} Z$ is a parallelogram;
therefore $\mathrm{AH}_{1}{ }^{\prime}$ and YZ bisect each otlecr, that is, $H_{1}{ }^{\prime} \mathbf{X}^{\prime}$ passes through A .
(56) Let the incircle and excircles of XYZ be denoted by thein centres $\mathrm{H}, \mathrm{A}, \mathrm{B}, \mathrm{C}$; then the radical axes of

$$
\begin{array}{lllllll}
& \mathrm{H}, \mathrm{~A} ; & \mathrm{H}, \mathrm{~B} ; & \mathrm{H}, \mathrm{C} ; & \mathrm{B}, \mathrm{C} ; \mathrm{C}, \mathrm{~A} ; \mathrm{A}, \mathrm{~B} \\
\text { are } \quad & \mathrm{T}_{2} \mathrm{~T}_{3}, & \mathrm{~T}_{3} & \mathrm{~T}_{1}, & \mathrm{~T}_{1} \mathrm{~T}_{2}, & \mathrm{~T}_{1} \mathrm{~T}, & \mathrm{~T}_{2} \mathrm{~T}, \mathrm{~T}, \mathrm{~T} .
\end{array}
$$

For $\mathrm{T}_{2} \mathrm{~T}_{3}$ is perpendiculur to HA , and bisects $\mathrm{I} Z$.
(ন) The circles A, R. C: H, C, B; C, H, A; B, A, H
have $\mathrm{J}, \mathrm{T}_{\mathrm{i}}, \mathrm{T}$. T. for radical centres.
(78) $\quad X^{\prime}, I^{\prime \prime} Z$ are the jes of the perpendiculters of $T_{1} T_{2} T^{\prime}$

For in triangle $\mathrm{AXH} \mathrm{H}_{1}$ the mid point of $\mathrm{XH}_{1}{ }^{\prime}$ is T_{1}, and $\mathrm{T}_{2} \mathrm{~T}$ is parallel to AX ;
therefore $T_{1} T$ passes through X^{\prime}, the mid point of AH_{2}^{\prime}.
Hence T, T_{2}, T_{2}, T_{3} are the incentre and the excentres of the triangle $\mathrm{X}^{\prime} \mathrm{Y}^{\prime} \mathrm{Z}^{\prime}$. Compare $\S 5,(11),(12)$.

Sect. I.
(79) The homothetic centre of the triangles

$\mathrm{T}_{1} \mathrm{~T}_{2} \mathrm{~T}_{3}$	and	$\mathrm{H}_{1}{ }^{\prime} \mathrm{H}_{1}{ }^{\prime \prime} \mathrm{H}_{1}^{\prime \prime \prime}$	is	X
$\mathrm{T}_{1} \mathrm{~T}_{2} \mathrm{~T}_{3}$	$\prime \prime$	$\mathrm{H}_{2}{ }^{\prime} \mathrm{H}_{2}{ }^{\prime \prime} \mathrm{H}_{2}^{\prime \prime \prime}$,	Y
$\mathrm{T}_{1} \mathrm{~T}_{2} \mathrm{~T}_{3}$	$\prime \prime$	$\mathrm{H}_{3} \mathrm{H}_{3}{ }^{\prime \prime} \mathrm{H}_{3}^{\prime \prime \prime}$	$"$	Z.

For $\mathrm{T}_{2}, \mathrm{~T}_{3}$ are mid points of $\mathrm{XH}_{1}{ }^{\prime \prime}, \mathrm{XH}_{1}{ }^{\prime \prime \prime}$.
(80) Since $\mathrm{X}^{\prime} \mathrm{Y}^{\prime} \mathrm{Z}^{\prime}$ is the complementary triangle of $\mathrm{X} \mathrm{Y} \mathrm{Z}$, and T, T_{1}, T_{2}, T_{3} are the incentre and excentres of $X^{\prime} Y^{\prime} Z^{\prime}$, and H, A, B, C " " " ", "XYZ; therefore $H T, A T_{1}, B T_{2}, \mathrm{CT}_{3}$ all pass through the centroid of XYZ. See §2.

If G^{\prime} denote this centroid *
then

$$
\begin{aligned}
H G^{\prime}: T G^{\prime}=\lambda G^{\prime}: \mathrm{T}_{1} \mathrm{G}^{\prime} & =B G^{\prime}: \mathrm{T}_{2} \mathrm{G}^{\prime}=C G^{\prime}: \mathrm{T}_{3} \mathrm{G}^{\prime} \\
& =2: 1 .
\end{aligned}
$$

(81) Since H is the incentre, G the centroid, of $X Y Z$, and T the incentre of $\mathrm{X}^{\prime} \mathbf{Y}^{\prime} \mathrm{Z}^{\prime}$, if $\mathrm{HG} \mathrm{G}^{\prime} \mathrm{T}$ be produced to J^{\prime} so that $\mathrm{TJ}^{\prime}=\mathrm{HT}$, then J^{\prime} will be the incentre of $X_{1} Y_{1} Z_{1}$.

Similarly $\mathrm{J}_{1}^{\prime}, \mathrm{J}_{1}^{\prime}, \mathrm{J}_{5}^{\prime}$, situated on $\mathrm{AT}_{1}, \mathrm{BT}_{2}, \mathrm{CT}_{3}$, so that $T_{1} J_{!}^{\prime}=A T_{1}$ and so on, will be the tirst, second, and third excentres of $\mathrm{X}_{1} \mathrm{Y}_{1} Z_{1}$.

These statements follow from the first few corollaries of $\$ 2$.
(82) The tetrads of points

$$
\mathrm{H}, \mathrm{G}^{\prime}, \mathrm{T}, \mathrm{~J}^{\prime} ; A, \mathrm{G}^{\prime}, \mathrm{T}_{1}, \mathrm{~J}_{1}^{\prime} ; \mathrm{B}, \mathrm{G}^{\prime}, \mathrm{T}_{2}, \mathrm{~J}_{2}^{\prime} ; \mathrm{C}, \mathrm{G}^{\prime}, \mathrm{T}_{3}, \mathrm{~J}_{3}^{\prime}
$$

form harmonic ranges.
(83) Since triangles $I_{1} I_{2} I_{3}, A B C$ stand to each other in the same relation as $\quad A B C, X Y Z$, the second being the orthic triangle of the first, it may be convenient to state in another form some of the results already established.

The means of transliteration from the one form to the other will be afforded by the following lists of corresponding points.

[^17]\[

$$
\begin{aligned}
& \mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{H}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{s} \\
& \text { correspond to } \\
& \mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}, \mathrm{I}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{H}_{a}, \mathrm{H}_{2}, \mathrm{H}_{c}
\end{aligned}
$$
\]

and

$$
\begin{aligned}
& \mathrm{O}, \mathrm{O}_{6}, \mathrm{O}_{t}, \mathrm{O}_{\tau}, \mathrm{G}, \mathrm{~T}, \mathrm{~T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3} \\
& \quad \text { correspond to } \\
& \mathrm{O}_{0}, \mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{3}, \mathrm{G}, \mathrm{~L}, \mathrm{~L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}
\end{aligned}
$$

and

$$
\begin{gathered}
\mathbf{X}^{\prime}, \mathbf{Y}^{\prime}, Z^{\prime}, \mathbf{X}_{1}, \mathbf{Y}_{1}, Z_{1}, J^{\prime}, J_{1}^{\prime}, J_{2}^{\prime}, J_{:}^{\prime} \\
\text { correspond to }
\end{gathered}
$$

$$
\mathbf{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}, \mathrm{A}_{1}, \mathrm{~B}_{3}, \mathrm{C}_{-2}, \mathrm{~J}, \mathbf{J}_{3}, \mathrm{~J}_{2}, \mathrm{~J}_{2}
$$

Hence the following results* are cbtained:
(a) The orthocentres of the triangles $\mathrm{BCI}_{1}, \mathrm{CAI}_{2}, \mathrm{ABI}_{2}$ form
the vertices of a triangle $\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\iota} \mathrm{H}_{c}$ which is congruent to the fundamental triangle ABC , and has its sides paralle] to the corresponding sides of $A B C$.
(b) $\mathrm{AH}_{a}, \mathrm{BH}_{b}, \mathrm{CH}_{c}$ are concurrent it tha medical centre of $\mathrm{I}_{3}, \mathrm{I}_{2}, \mathrm{I}_{3}$.
(c) The radical centre bisects $\mathrm{AH}_{\alpha}, \mathrm{BH}_{b}, \mathrm{CH}$
(d) The radical axes of the I circles bisect the sides of $\mathrm{H}_{\text {" }} \mathrm{H}_{4} \mathrm{H}_{\text {. }}$
(e) O_{0} is the orthocentre of $\mathrm{H}_{a} \mathrm{H}_{\dot{6}} \mathrm{H}_{c}$.
(f) $\mathrm{AD}_{1}, \mathrm{BE}_{2}, \mathrm{CF}_{5}$ are concurrent at J the incentre of $\mathrm{H}_{n} \mathrm{H}_{\mathrm{i}} \mathrm{H}_{4}$. The points J, I, L are collinear.
(g) $\mathrm{H}_{a}, \mathrm{~A}^{\prime}, \mathrm{I} ; \mathrm{H}_{i}, \mathrm{~B}, \mathrm{I} ; \mathrm{H}_{i}, \mathrm{C}^{\prime}, \mathrm{I}$ are collinear.
(h) $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}$ bisect $\mathrm{H}_{\star} \mathrm{I}, \mathrm{H}_{i} \mathrm{I}, \mathrm{H}_{4} \mathrm{I}$.

Figure 59.

In triangle $A B C$, the points $\mathrm{H}, \mathrm{X}, \mathrm{Y}, Z$
are the orthocentre and feet of the perpendiculars;
the various I, D, E, F points are the centres and points of contact of the incircle and the excircles.

The rest of the notation will be explained as it is wanted.

* See Professor Johann Dïttl's Neue merkuürdiye Punkte des Dreicck, pp. $40-46$ (no date). The proofs given in this noteworthy pampllet are analytical.
(81) The perpendicular AX contains the intersection of

$\mathrm{D}_{2} \mathrm{E}_{2}$,	$\mathrm{D}_{3} \mathrm{~F}_{3}$	namely	X_{0}
$\mathrm{D}_{3} \mathrm{E}_{3}$,	$\mathrm{D}_{2} \mathrm{~F}_{2}$	$"$	X_{1}
DE,	$\mathrm{D}_{1} \mathrm{~F}_{1}$	$"$	X_{2}
$\mathrm{D}_{1} \mathrm{E}_{1}$,	DF	$"$	X_{3}.

The perpendicular BY contains the intersection of

$\mathrm{E}_{3} \mathrm{~F}_{3}$,	$\mathrm{E}_{1} \mathrm{D}_{1}$	namely	\mathbf{Y}_{0}
$\mathrm{E}_{1} \mathrm{~F}_{2}$,	ED	$"$	\mathbf{Y}_{1}
$\mathrm{E}_{1} \mathrm{~F}_{1}$,	$\mathrm{E}_{2} \mathrm{D}_{3}$	$"$	\mathbf{Y}_{2}
EF,	$\mathrm{E}_{2} \mathrm{D}_{2}$	$"$	\mathbf{Y}_{3}.

The perpendicular $C Z$ contains the intersection of

$\mathrm{F}_{1} \mathrm{D}_{1}, \mathrm{~F}_{2} \mathrm{E}_{2}$	namely	Z
FD, $\mathrm{F}_{5} \mathrm{E}_{\text {; }}$,,	Z_{1}
$\mathrm{F}_{3} \mathrm{D}_{3}, \mathrm{~F}$	"	Z_{2}
$\mathrm{F}_{2} \mathrm{D}_{2}, \mathrm{~F}_{1} \mathrm{E}_{1}$		Z

Figure 60.
Through A draw a parallel to BC;
let $D_{2} E_{i}$ meet $A X$ at X_{0} and the parallel at S.
Then triangles $U D_{2} E_{2}, A S E$, are similar ;
and because
$\mathrm{CD}_{2}=\mathrm{CE}_{2}$
therefore

$$
\mathrm{AS}=\mathrm{AE} \mathrm{E}_{2}=s_{3}
$$

Now triangles $A X_{v} S$, DIC have their sides respectively parallel to each other; therefore they are similar.
But
$\mathrm{AS}=\mathrm{s}_{3} \quad=\mathrm{DC} ;$
therefore

$$
\mathrm{AX}_{0}=\mathrm{DI} \quad=r
$$

Again if $\mathrm{D}_{3} \mathrm{~F}_{;}$meet the parallel through A at T , and AX at X_{0}^{\prime}, it may be proved that

$$
\mathrm{AT}=\mathrm{AF}_{3} \quad=s_{2} \quad=\mathrm{DB}
$$

and that triangles $\mathrm{AX}_{0}{ }^{\prime} \mathrm{T}, \mathrm{DIB}$ are congruent;
therefore $\quad \mathrm{AX}_{0}{ }^{\prime}=\mathrm{DI} \quad=r$,
and $\mathrm{X}_{0}, \mathrm{X}_{0}^{\prime}$ are the same point.
The other properties are proved in a manner exactly analogous.

Figure 59.

$$
\begin{align*}
& \mathrm{AX}_{0}=\mathbf{B Y _ { 0 }}=\mathbf{C Z} Z_{0}=r \tag{85}\\
& \mathrm{AX}_{1}=\mathbf{B Y _ { 1 }}=\mathrm{CZ}_{1}=r_{1} \\
& \mathbf{A X _ { 2 }}=\mathbf{B Y _ { 2 }}=\mathrm{CZ}_{2}=r_{2} \\
& \mathbf{A X _ { 3 }}=\mathrm{BY}_{3}=\mathbf{C Z}=Z_{3}
\end{align*}
$$

Attention may be directed here and later on to the way in which the various suffixes occur.

The triads of lines the triangles

$\mathrm{E}_{1} \mathrm{~F}_{1}$,	$\mathrm{F}_{2} \mathrm{D}_{2}$	$\mathrm{D}_{3} \mathrm{E}_{3}$		$\mathrm{X}_{1} \mathrm{Y}_{2} Z_{\text {\% }}$
EF ,	$\mathrm{F}_{3} \mathrm{D}_{3}$,	$\mathrm{D}_{2} \mathrm{E}_{3}$	determine	$\mathrm{X}_{0} \mathrm{Y}_{3} Z_{2}$
$\mathrm{E}_{3} \mathrm{~F}_{3}$,	F D	$\mathrm{D}_{1} \mathrm{E}_{1}$	determine	$\mathrm{X}_{3} \mathrm{Y}_{0} \mathrm{Z}_{1}$
$\mathrm{E}_{2}^{\prime} \mathrm{F}_{2}$,	$\mathrm{F}_{1} \mathrm{D}_{1}$,	D E		$\mathrm{X}_{2} \mathrm{Y}_{1} \mathrm{Z}_{\text {i }}$

(86) The four triangles

$$
X_{1} Y_{2} Z_{3}, \quad X_{0} Y_{3} Z_{2}, \quad X_{3} Y_{0} Z_{1}, \quad X_{2} Y_{1} Z_{4}
$$

are respectively similar and oppositely situated to

$$
I_{1} I_{2} I_{3}, \quad I \quad I_{3} \quad I_{2}, \quad I_{3} \quad I \quad I_{3} . \quad 1 . I_{1}
$$

and H, the orthocentre of $A B C$, is the circumcentre of the four.
Since $Y_{2} Z_{3}$ is perpendicular to $A I_{1}$,
therefore $Y_{2} Z_{i}$ is parallel to $\quad I_{2} I_{;}$.
Similarly for $Z_{i} \mathbf{X}_{1}$ and $\mathbf{X}_{1} \mathbf{Y}_{2}$.
Again
$-\mathrm{HY}_{2} Z_{i}=-\mathrm{CAI}_{1}$
because the sides of the one are perpendicular to those of the other:
and
$-\mathrm{HZ}_{2} \mathrm{Y}_{2}=-\mathrm{BAI}_{1}$, for a similar reasol:
therefore $\quad-\mathrm{HY}_{2} Z_{3}=-\mathrm{HZ}_{3} \mathrm{Y}_{3}$:
therefore $\quad \mathrm{HY}_{2}=\mathrm{HZ}_{\mathrm{s}:}$.
Similarly
$H Z_{3}=H X_{1} ;$
therefore H is the circumcentre of $\mathrm{X}_{1} \mathrm{Y}_{2} Z_{3}$.
(87) The radii of the circumcircles of

$$
\begin{array}{llll}
\mathbf{X}_{1} \mathrm{Y}_{2} Z_{3}, & \mathbf{X}_{0} \mathrm{Y}_{3} \mathrm{Z}_{2}, & \mathrm{X}_{3} \mathrm{Y}_{0} Z_{1}, & \mathrm{X}_{2} \mathrm{Y}_{1} Z_{4} \\
2 \mathrm{R}+r, & 2 \mathrm{R}-r_{2}, & 2 \mathrm{R}-r_{2}, & 2 \mathrm{R}-r_{0}
\end{array}
$$

are

Sect. I.
For

$$
\begin{aligned}
& \mathrm{HX}_{1}+\mathrm{HY}_{2}+\mathrm{HZ}_{3} \\
= & \mathrm{AX}+\mathrm{B} \mathrm{Y}_{2}+\mathrm{CZ} Z_{3}+\mathrm{HA}+\mathrm{HB}+\mathrm{HC} \\
= & r_{1}+r_{2}+r_{3}+2\left(k_{1}+k_{2}+k_{j}\right) \\
= & 4 \mathrm{R}+r+2 r+2 \mathrm{R} \\
= & 6 \mathrm{R}+3 r .
\end{aligned}
$$

$$
\begin{array}{llll}
\mathrm{X}_{0} \mathrm{D}=\mathrm{AI}, & \mathrm{X}_{1} \mathrm{D}_{1}=\mathrm{AI}_{1}, & \mathrm{X}_{2} \mathrm{D}_{2}=A I_{2}, & \mathrm{X}_{3} \mathrm{D}_{3}=\mathrm{AI}_{3} \tag{88}\\
\mathrm{Y}_{0} \mathrm{E}=\mathrm{BI}, & \mathrm{Y}_{1} \mathrm{E}_{1}=\mathrm{BI}_{1}, & \mathrm{Y}_{2} \mathrm{E}_{2}=\mathrm{BI}_{2}, & \mathrm{Y}_{3} \mathrm{E}_{3}=\mathrm{BI}_{3} \\
\mathrm{Z}_{0} \mathrm{~F}=\mathrm{CI}, & \mathrm{Z}_{1} \mathrm{~F}_{1}=\mathrm{CI}_{1}, & \mathrm{Z}_{2} \mathrm{~F}_{2}=\mathrm{CI}_{2}, & \mathrm{Z}_{30} \mathrm{~F}_{3}=\mathrm{CI}_{3}
\end{array}
$$

Because $\quad A X_{0}$ is equal and parallel to ID,
therefore AIDX $_{0}$ is a parallelogram;
therefore $\quad \mathrm{X}_{0} \mathrm{D}=\mathrm{AI}$.
(89) In the four pairs of triangles

$$
\begin{array}{cccc}
X_{1} Y_{2} Z_{3}, & X_{0} Y_{3} Z_{21}, & X_{3} Y_{0} Z_{1}, & X_{2} Y_{1} Z_{0} \\
\mathrm{I}_{1} \mathrm{I}_{2} \mathrm{I}_{3}, & \mathrm{I} I_{3} \mathrm{I}_{2}, & \mathrm{I}_{3} \mathrm{I} \mathrm{I}_{1}, & \mathrm{I}_{21} \mathrm{I}_{1} \mathrm{I}
\end{array}
$$

consider the intersections of the sides.*

$\mathrm{Y}_{8} \mathrm{Z}_{3}$	intersects	$\mathrm{I}_{1} \mathrm{I}_{2}, \mathrm{I}_{1} \mathrm{I}_{3}$	at	$\mathrm{V}_{1}, \mathrm{~W}_{1}$
$Z_{i} \mathrm{X}_{1}$	"	$\mathrm{I}_{2} \mathrm{I}_{3}, \mathrm{I}_{2} \mathrm{I}_{1}$	"	$\mathrm{W}_{2}, \mathrm{C}_{2}$
$\mathrm{X}_{1} \mathrm{Y}_{2}$	"	$I_{3} I_{1}, I_{3} I_{2}$	"	$\mathrm{U}_{3}, \mathrm{~V}_{3}$
$Y_{:} Z_{2}$	-	$\underline{I} I_{3}, \mathrm{I}_{2}$	"	$\mathrm{V}^{\prime}, \mathrm{W}^{\prime}$
$Z_{2} \mathrm{X}_{1}$	"	$I_{i j} \mathrm{I}_{2}, \mathrm{I}_{3} \mathrm{I}$	"	W_{2}, U'
$\mathrm{S}_{0} \mathrm{I}_{3}$	"	$\mathrm{I}_{2} \mathrm{I}, \mathrm{I}_{2} \mathrm{~T}_{3}$	"	$\mathrm{U}^{\prime \prime \prime}, \mathrm{V}_{\text {s }}$
$\mathrm{Y}_{\mathrm{n}} \mathrm{Z}_{1}$	"	$I_{3} \mathrm{I}, \mathrm{I}_{3} \mathrm{I}_{1}$	"	$\mathrm{V}^{\prime}, \mathrm{W}_{1}$
$Z_{1} \mathrm{X}^{\prime}$	"	$\mathrm{II}_{1}, \mathrm{II}_{3}$	"	$\mathrm{W}^{\prime \prime}, \mathrm{U}$
$\mathrm{X}_{3} \mathrm{Y}_{0}$	"	$\mathrm{I}_{1} \mathrm{I}_{3}, \mathrm{I}_{1} \mathrm{I}$	"	$\mathrm{U}_{3}, \mathrm{~V}^{\prime \prime \prime}$
$Y_{1} Z_{0}$	"	$\mathrm{I}_{2} \mathrm{I}_{1}, \mathrm{I}_{2} \mathrm{I}$	"	V_{1}, W
$\mathrm{Z}_{0} \mathrm{X}_{2}$	"	$\mathrm{I}_{1} \mathrm{I}, \mathrm{I}_{1} \mathrm{I}_{2}$	"	$W^{\prime \prime}, U_{2}$
$\mathrm{X}_{2} \mathrm{Y}_{1}$	"	$\mathrm{II}_{2}, \mathrm{II}_{1}$	"	$\mathrm{U}^{\prime \prime \prime}, \mathrm{V}^{\prime \prime \prime}$.

It will be seen that several theorems are embedded in the preceding notation.

[^18](90) The sides of the four triangles
$$
\mathrm{DEF}, \quad \mathrm{D}_{1} \mathrm{E}_{1} \mathrm{~F}_{1}, \quad \mathrm{D}_{2} \mathrm{E}_{2} \mathrm{~F}_{3}, \quad \mathrm{D}_{3} \mathrm{E}_{3} \mathrm{~F}_{3}
$$
contain each four other points of the diagram.

EF	contains	\mathbf{Y}_{3}	Z.	V^{\prime}	W^{\prime}
FD	"	Z_{1}	X_{3}	W'	$\mathrm{U}^{\prime \prime}$
D E	"	X_{2}	Y_{1}	$\mathrm{U}^{\prime \prime \prime}$	$\mathrm{V}^{\prime \prime}$
$\mathrm{E}_{1} \mathrm{~F}_{1}$	"	$\mathbf{Y}_{\text {a }}$	Z_{2}	V_{1}	W_{1}
$\mathrm{F}_{1} \mathrm{D}_{1}$	"	Z_{0}	X_{2}	W''	U_{3}
$\mathrm{D}_{1} \mathrm{E}_{1}$	"	X_{i}	Y_{0}	U_{3}	$\mathrm{V}^{\prime \prime}$
$\mathrm{E}_{6} \mathrm{~F}_{2}$	"	Y_{1}	Z_{*}	V_{1}	W'
$\mathrm{F}_{2} \mathrm{D}_{2}$	"	Z_{3}	S_{1}	$1{ }_{2}$	L.
$\mathrm{D}_{2} \mathrm{E}_{2}$	"	X_{6}	$Y_{:}$	$\mathrm{U}^{\prime \prime}$	V:
$\mathrm{E}_{5 j} \mathrm{~F}_{i j}$	"	Y_{6}	Z	${ }^{\prime \prime}$	W
$\mathrm{F}_{5} \mathrm{D}_{3}$	"	Z	X_{0}	W	U
$\mathrm{D}_{\mathfrak{i}} \mathrm{E}_{3}$	"	\mathbf{X}_{1}	Y_{2}	U	V

(91) The twelve EF, FD, DE lines detemine, by their intersections with the six lines of the orthic tetrastigm $I_{1} I_{2} I_{1}$. pairs of feet of the perpendiculars of the triangles

$I_{1} B C$,	$A I_{2} C$,	$A B I$
$I B C$,	$A I C$,	$A B I$
$I_{3} B C$,	$A I C$,	$A B I$
$I_{2} B C$,	$A I C$,	$A B I$.

The other twele feet are the various D, E, F points.
It may be useful to remember that these four triad of trimel are similar to

$$
I_{1} I_{2} I_{i j}, \quad I J_{j i} I_{2}, \quad I_{j} I I_{1}, \quad I_{2} I_{i} I .
$$

The following proof of one of these properties may be sufficient:
Because
$\mathrm{CD}_{1}=\mathrm{CE}_{1}$
therefore triangles $\mathrm{CD}_{1} \mathrm{~V}_{1}, \mathrm{CE}_{1} \mathrm{~V}_{1}$ are congruent
and

$$
\begin{aligned}
\therefore \mathrm{CD}_{1} \mathrm{~T}_{1}=-C E_{j} \mathrm{~V}_{1} & =\frac{1}{2}(B+C) \\
& =-I_{3} \mathrm{AB} .
\end{aligned}
$$

Sect. I.

Now triangle $I_{1} B C$ is similar to $I_{1} I_{2} I_{;}$,
the sides $I_{1} B, I_{1} C, B C$ being homologous to

$$
\# \quad, \quad I_{1} I_{2}, I_{1} I_{3}, I_{2} I_{3}
$$

and $I_{1} D_{1}$ being homologous to $I_{1} A$,
so that D_{1} and A are homologous points;
therefore $V_{1}, B, "$,
since $\quad \angle \mathrm{CD}_{1} \mathrm{~V}_{1}=\angle \mathrm{I}_{3} \mathrm{AB}$.
But $\quad B$ is the font of the perpendicular on $I_{1} \mathrm{I}_{3}$ from I_{2};
therefore $V_{1}, ", ", ", I_{1} C, \quad$ B.
(92) The following quartets of points form orthic tetrastigms:

$$
\begin{array}{lll}
\mathrm{X}_{i 1} \mathrm{X}_{1} \mathrm{D}_{2} \mathrm{D}_{3} ; & \mathrm{Y}_{n} Y_{2} \mathrm{E}_{3} \mathrm{E}_{1} ; & Z_{0} Z_{23} F_{1} \mathrm{~F}_{2} \\
\mathrm{X}_{2} \mathrm{X}_{3} \mathrm{D} \mathrm{D}_{1} ; & \mathrm{Y}_{3} \mathrm{Y}_{1} E \mathrm{E}_{2} ; & Z_{1} Z_{2} \mathrm{FF}_{3} F_{3}
\end{array}
$$

(93) Through the mid point of

$$
\begin{array}{lcllll}
\mathrm{BC} & \text { pass } & \mathrm{X}_{0} \mathrm{I}, & \mathrm{X}_{1} \mathrm{I}_{1}, & \mathrm{X}_{2} \mathrm{I}_{2}, & \mathrm{X}_{3} \mathrm{I}_{3} \\
\mathrm{CA} & " & \mathrm{Y}_{6} \mathrm{I}, & \mathrm{Y}_{1} \mathrm{I}_{1}, & \mathrm{Y}_{2} \mathrm{I}_{2}, & \mathrm{Y}_{3} \mathrm{I}_{3} \\
\mathrm{AB} & ", & \mathrm{Z}_{0} \mathrm{I}, & Z_{1} \mathrm{I}_{1}, & \mathrm{Z}_{2} \mathrm{I}_{2}, & \mathrm{Z}_{3} \mathrm{I}_{3} .
\end{array}
$$

Take* for example $\mathrm{X}_{1} \mathrm{I}_{1}$.
Triangles $\mathrm{X}_{1} \mathrm{D}_{2} \mathrm{D}_{3}, \mathrm{I}_{2} \mathrm{BC}$ are similar and oppositely situated; therefore $X_{1} I_{1}$ passes through their centre of similitude.
But

$$
\mathrm{D}_{i} \mathrm{C}
$$

therefore if $X_{1} I_{1}$ cut $D_{3 i} C$ at A^{\prime}, the centre of similitude is A^{\prime}.
Hence

$$
\begin{aligned}
\frac{A^{\prime} \mathrm{B}}{A^{\prime} \mathrm{C}} & =\frac{A^{\prime} \mathrm{D}_{2}}{\mathrm{~A}^{\prime} \mathrm{D}_{2}} \\
& =\frac{A^{\prime} \mathrm{B}+\mathrm{A}^{\prime} \mathrm{D}_{2}}{\mathrm{~A}^{\prime} \mathrm{C}+\mathrm{A}^{\prime} \mathrm{D}} \\
& =\frac{\mathrm{BD}_{2}}{\mathrm{CD}}=\frac{s}{s}
\end{aligned}
$$

therefore A^{\prime} is the mid point of BC.
A shorter demonstration of this would be obtained if (95) were proved before (93).
*This method of proof is due to Professor Neuberg.
For $\mathrm{X}_{1} \mathrm{U}_{3} \mathrm{I}_{1} \mathrm{U}_{2}$ is a parallelogram;
therefore
therefore
(94) The four centres of homology of the four pairs of triangles $X_{1} Y_{2} Z_{3}, I_{1} I_{2} I_{3}$, and so on, are the symmedian points of these pairs of triangles.

For $I_{1} X_{1}$ bisects $B C$, and $B C$ is antiparallel to $I_{2} I_{3}$ with respect to $\angle I_{1}$; therefore $I_{1} X_{1}$ is a symmedian of $I_{1} I_{2} I_{3}$.

Since $X_{1} I_{1}$ bisects $B C$, it must also bisect $D_{2} D_{3}$.
Now $D_{2} D_{3}$ is antiparallel to $Y_{2} Z_{3}$ with respect to $\angle X_{1}$; therefore $X_{1} I_{1}$ is a symmedian of $X_{1} Y_{2} Z_{3}$.
(95) All the U points are on a line parallel to BC

$$
\begin{align*}
\mathrm{U}_{2} \mathrm{U}_{:} & =\mathrm{V}_{:} \mathrm{V}_{1}=W_{2} W_{2}=s \tag{90}\\
\mathrm{C}^{\prime \prime} \mathrm{C}^{\prime \prime \prime} & =\mathrm{V}_{:} \mathrm{V}^{\prime}=\mathrm{W}^{\prime} W_{2}=s_{1} \\
\mathrm{U}^{\prime \prime} \mathrm{U}_{3}^{\prime} & =\mathrm{V}^{\prime \prime \prime} \mathrm{V}^{\prime}=W_{1} W^{\prime \prime}=s_{2} \\
\mathrm{U}_{2} \mathrm{U}^{\prime \prime \prime} & =\mathrm{V}^{\prime \prime \prime} \mathrm{V}_{1}=W^{\prime} W^{\prime \prime}=s_{3} .
\end{align*}
$$

Because $\quad \mathrm{D}_{2} \mathrm{U}_{2}$ is parallel to $\mathrm{B} \mathrm{U}_{3}$,
and
and
C C $2, \quad, \quad, D_{0}$,
$\mathrm{CD}_{2}=s_{1}=\mathrm{BD}_{: ~}^{:} ;$
therefore $\mathrm{D}_{2} \mathrm{C}_{2}=\mathrm{BC}_{\mathrm{O}}$:
therefore $\mathrm{U}_{2} \mathrm{U}_{4} \mathrm{BD}_{2}$ is a parallelogram;
therefore $\mathrm{C}_{2} \mathrm{U}_{2}$ is parallel and equal to ED_{2}, that is to ε.
Similarly the other UU lines are parallel to BC ; therefore the U points are collinear.

The U points lie on the line $\mathrm{B}^{\prime} \mathrm{C}^{\prime}$.

Sect. I.
(97) The following sets of six points are concyclic

$$
\begin{array}{llllll}
\mathrm{U}_{2}, & \mathrm{U}_{3}, & \mathrm{~V}_{3}, & \mathrm{~V}_{1}, & \mathrm{~W}_{1}, & \mathrm{~W}_{2} \\
\mathrm{U}^{\prime \prime}, & \mathrm{U}^{\prime \prime \prime}, & \mathrm{V}_{3}, & \mathrm{~V}^{\prime}, & \mathrm{W}^{\prime}, & \mathrm{W}_{2} \\
\mathrm{U}^{\prime \prime}, & \mathrm{U}_{3}, & \mathrm{~V}^{\prime \prime \prime}, & \mathrm{V}^{\prime}, & \mathrm{W}_{1}, & \mathrm{~W}^{\prime \prime} \\
\mathrm{U}_{2}, & \mathrm{U}^{\prime \prime \prime}, & \mathrm{V}^{\prime \prime \prime}, & \mathrm{V}_{1}, & \mathrm{~W}^{\prime}, & \mathrm{W}^{\prime \prime} .
\end{array}
$$

Because $\mathrm{D}_{2} \mathrm{~V}_{:}, \mathrm{D}_{i}, \mathrm{~W}_{2}$ are two of the perpendiculars of $\mathrm{X}_{1} \mathrm{D}_{2} \mathrm{D}_{: ;}$; therefore $W_{2} V_{:: ~}$ is antiparallel to $D_{2} D_{2}$ with respect to $-\mathrm{X}_{1}$; therefore $W_{2} V_{:}$is antiparallel to $\mathrm{U}_{2} \mathrm{U}_{5}$;
therefore $W_{3}, V_{2}, U_{n}, U_{2}$ are concyclic.
Similarly $\mathrm{C}_{0}, \mathrm{~W}_{1}, \mathrm{~V}_{\mathrm{i}}, \mathrm{V}_{!}$, , ,
and $\mathrm{V}_{\mathrm{i}}, \mathrm{C}_{3}, \mathrm{~W}_{2}, \mathrm{~W}_{1}, \quad$,
Hence all the six points are concyclic.
The four circles are the Taylor circles of the orthic tetrastigm

$$
\mathrm{I}_{1} \mathrm{I}_{2} \mathrm{I}_{3} .
$$

(98) If the centres of these circles be denoted by

$$
\mathrm{O}_{0}, \mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{;} ;
$$

then these four points form an orthic tetrastigm.
They are the incentre and the excentres of the complementary triangle $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$.
(99) The six II lines of the orthic tetrastigm $\mathrm{II}_{1} \mathrm{I}_{2} \mathrm{I}_{3}$ are the radical axes of the circles $\mathrm{O}_{0}, \mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{3}$ taken in pairs ; and the four I points of the same tetrastigm are the radical centres of the circles $\mathrm{O}_{i}, \mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{i}$, taken in threes.
(100) The following are symmetrical trapeziums:

$$
\begin{array}{lll}
W_{2} V_{3} W_{1} V_{1} ; & U_{3} W_{1} U_{2} W_{2} ; & V_{1} U_{2} V_{3} U_{3} ; \\
W_{2} V_{3} W^{\prime} V^{\prime} ; & U^{\prime \prime \prime} W^{\prime} U^{\prime \prime} W_{2} ; & V^{\prime} U^{\prime \prime} V_{3} U^{\prime \prime \prime} ; \\
W^{\prime \prime} V^{\prime \prime \prime} W_{1} V^{\prime} ; & U_{3} W_{1} U^{\prime \prime} W^{\prime \prime} ; & V^{\prime} U^{\prime \prime} V^{\prime \prime \prime} U_{3} ; \\
W^{\prime \prime} V^{\prime \prime \prime} W^{\prime} V_{1} ; & U^{\prime \prime \prime} W^{\prime} U_{2} W^{\prime \prime} ; & V_{1} U_{2} V^{\prime \prime \prime} U^{\prime \prime \prime} .
\end{array}
$$

Professor Fuhrmann gives the following property, but his proof is too long for insertion here :

The axis of homology of the triangles

$$
A B C \text { and } X_{1} Y_{2} Z_{3}
$$

is perpendicular to HI .

Of the last seventeen properties, (84), (85), (91) are given by W. H. Levy of Shalbourne in the Lady's and Gentlcman's Diary for 1857, pp. $50-1$, in his answer to a question proposed by him the previous year.

At the Concours d'agreqution des sciences mathe'matiques (Paris, 18;3) the follow. ing question was proposed:

The points of contact of the cxcircles of a triangle $A B C$ which arc situct,1 on the sides produced are joincd, and a netc triangle $A^{\prime} B^{\prime} C^{\prime}$ is formed. (1) Find the auyles of $A^{\prime} B^{\prime} C^{\prime}$. (2) Prorc that $A A^{\prime}, B B^{\prime}, C C^{\prime}$ are the altitudes of $A B C$. (3) Detcrmine the centrc and the radius of the circumcircle of $A^{\prime} B^{\prime} C^{\prime}$.

In the Nourelle Correspondence Mathématique, I. $50-3$ (1874), Professor Neuberg gives a geometrical sulution of the question, in which (confining limseli to triangle $\mathrm{X}_{1} \mathrm{Y}_{2} Z_{i 3}$) he proves (85), (86), (87), (91), (92), (93), (94) and one or two other properties. Professor Neuberg in the Gth edition of Caweys Scyucl to Euchid, p. 27 s (1892) and Professor Fuhrmann in his Synt alische Bete isc plaminetwis-m, Sitze, p. 89 (1890), give the first part of (97).

The seventeen properties were communicated to the Edinbmaglı Mathematical Society in 1889.

[^0]: *This theorem occurs without proof in the fifth of the Leminuas ascribed to Archimedes, and also in Pappus's Mathematical Collection, VII. 62. In Com. mandino's editions of Pappus, which were published after his death, the pronf supplied is erroneous. The mistake has been noticed by several mathematical writers.
 † Robert Simson's Opera Quaedam Reliqua, p. 171 (1776).
 \ddagger This mode of proof is given by F. J. Servois in his Solutions peu connues de diffirens problèmes de Gtométrie-pratiquc, p. 15 (1804). It was also given by Gauss, and will be found in Schumacher's translation into German of Carnot's Geomictric de Position, 11. 363 (1810).

[^1]: * Mr Bernh. Möllmann in Grunert's Archiv, XVII., 376 (1851).
 + Dr James Booth's New Geometrical Methods, II. $260-1$ (1877).
 \ddagger Gergonne's Annales, XIX. 37.64 (1828), or Steiner's Gesammelte Werke, I. 193 (1881).

[^2]: * This useful expression was suggested by Dr Ferrers and Dr W. H. Besant in 1866-7. It is introduced in Dr Besant's Conic Sections, $\S 138$ (1869).
 + Mr Emile Vigarié in Mathesis, VII. 61 (1887).
 \ddagger Dr James Booth in his New Geometrical Methods, II. 261 (1877).
 § Carnot, Correlation des Figures de Geométrie, §143 (1801).

[^3]: * Carnot's Geometrie de Position, § 151 (1803). The term antiparallel was first used by Antoine Arnauld. See Nourcaux Éléments de Gémuetric, par Messrs de Port-Royal, p. 212, or livre onzième (1667). Further information regarding the use of the word will be found in two letters from Mr E. M. Langley to Naturc, XL., $460-1$ (1889), and XLI., $104-5$ (1889).
 * These are taken from an article by Mr H. Brocard in the Nourcllc Corre. spondance Mathematique, VI. 145-151 (1880).

[^4]: * Feuerbach, Eigenschaften...des... Dreiecks, § 24 (1822).

[^5]: * Édouard Lucas in Nouvelle Correspondance Mathématiquc, II. 95, 218 (1876).

[^6]: * Carnot's Correlation des Figures de Geometrie, §146 (1801), or Gtométrie de Position, $\S 130$ (1803).

[^7]: * Nouvelles Annales, 2nd series, XIX. 176 (1880) and 3rd series, I. 186-9 (1882).

[^8]: *This corollary is established in the proof of the theorem known as Brabmegupta's.

[^9]: * Dr C. Taylor in Mathenutical Questions from the Educational Timce, XVIII. 65 (18:2).
 + This property and the demonstration of it art due to Professor R. E. Allardice.

[^10]: * Mr W. J. C. Miller in the Lady's and Gontloman's Diary for $1 \leqslant 62$, p. 74.

[^11]: * "Conic" of St John's Colitge, Cambridge, in the Ladys and Gentimaris Diary for 1863, p. 51.
 + C. F. A. Jacobi, Dc Trianguloruin Ractilintorum Proprittatilus, p. 34 (1820).

[^12]: * J. F. de Tuschis a Fagnano in Norc Acta Eruditorum anni 17io, p. 206.
 + See Prof. R. E. Allardice's paper "On a property of odd and even polygons" in the Proceedinys of the Edinburgh Mathematical Society, VIII. 23 (1850).
 \ddagger Marsano, Considerazioni sul Trianyolo Rettilineo, pp. 18, 19 (1863).

[^13]: * Lhuilier, Eltimens d'Analyse, p. 231 (1809). The proof in the text is given by Feuerbach, Eigenscheften ..des... Dreiccks, Section VI., Theorem 8 (1822.

[^14]: * This theorem is due to Mr Rochat of Saint-Brieux, and is thus stated in Gergonne's Annales de Mathématiques II. 93 (1811-2).

 If to any triungle T there be circumscribed another $T^{\prime \prime}$, and to T a third $T^{\prime \prime}$ haring its sides respectively parallel to those of \boldsymbol{T}; then to $T^{\prime \prime}$ a new triangle $T^{\prime \prime \prime}$ having its sides respectively parallel to those of T^{\prime}, and so on: the trianyles $\boldsymbol{T}, \boldsymbol{T}^{\prime}, \boldsymbol{T}^{\prime \prime}, \boldsymbol{T}^{\prime \prime \prime}$ will be similar in pairs and form a geometrical progression.

 The demonstration in the text is given by Mr Leion Anne, in the Nourelles Annales, III. 27 (1844).

[^15]: * The theorems (46)-(4s) are given by Feuerbach, Eigenschaftch...dc...Drciecki, §§ 61, 8, 63 (1822).

[^16]: * The first parts of (56) and (57) are given by Feuerbach, Eiyensekaften...des .. Dreiechs, E § 8 , 88 (1822).

[^17]: * G^{\prime} would naturally denote the centroid of triangle $A^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$, but G is the centroid both of $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$.

[^18]: * The notation here is somewhat complicated, but it could not well be otherwise. I have made various attempts to simplify it, but with little success; what is gained in one respect is lost in another.

