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Fuzzy machines in a category

Michael A. Arbib and Ernest G. Manes

"Fuzzy theories" and "distributive laws" are .used to define

"fuzzy systems" in an arbitrary category. The resulting minimal

realization theory provides new insights even in classical cases

(so that, for non-deterministic sequential machines, the minimal

realization problem is reformulated in terms of the structure of

join-irreducibles in finite lattices). The definition of "fuzzy

theory" is of independent interest and meshes well with

philosophical aspects of fuzzy set theory.

1 . Introduction

Whereas an ordinary sequential machine has dynamics (state-transition

function)

QxXQ •+ Q ,

where Q is the set of states and X is the set of inputs; a

nondeterministic sequential machine has dynamics

(1) 6 : Q*XQ ->• 2
Q ,

where we interpret <5(<7, x) c Q as the set of possible successors to q

when acted upon by input x . Again, a stochastic sequential machine (of a

restricted type) has dynamics

(2) Q*XQ -* QP ,

where QP is the set of probability distributions on Q ; while
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170 M i c h a e l A . A r b i b and E r n e s t G. Manes

Schutzenberger [7 7] studies what we call semiring automata with dynamics

(3) Q*XQ -* i? ( 5 ) = {/ : Q ->• R | supp(/) is finite}

for some fixed semiring1 R .

In previous papers [7, 4], we saw that the formation of Q x Xn from

Q could be generalized by considering any category K and any functor

X : K -*• K ; we f o r m e d a c a t e g o r y Vyn(X) , w i t h o b j e c t s K-morph isms

6 : QX •*• Q , w h i l e a m o r p h i s m h : ( 6 , Q) -*•(&', Q') was a (C-morphism

h : Q -*• Q' preserving the dynamics

hX\ I h

Q'X-p+Q'

(we cal l such an h a dynamorphism).

We then saw that if the forgetful functor Vyn{x) •*• K has a left

adjoint (we then call X an input process), forming for each K-object Q

a free dynamics Qvn '• {QA )X •* QX with 'insertion of the generators'

§QT\ : Q •*• QX , we could provide a reachability theory broad enough to

encompass sequential machines, linear and group machines, and tree

automata. The reachability map2 of an ^-dynamics {Q, 6) equipped with

initial state map x : J -»• Q is the unique dynamorphic extension

r : IX® + Q of x :

7". .

I - ^ j / IX® X
s. I

( U ) T \ \r r
\ +

e QX -y-^ e
On the other hand, i f %n(X) -» K has a right adjoint (we call X an

output process) forming for each K-object Y a cofree dynamics

YL • {yXg)x -* ¥XB with 'evaluation' M : 1X& •* 1 , we could provide an

1 A semiring is unitary and satisfies a l l the ring axioms save that i t
need not»have additive inverses.
2 For convenience, we use 'map' and 'morphism' as synonyms in this paper.
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Fuzzy machines in a c a t e g o r y 171

observability theory broad enough to emcompass sequential machines, and

linear and group machines. The observability map of an /-dynamics (Q, 6)

equipped with output map B : Q -*• Y i s the unique dynamorphic coextension

O : Q -• YXQ of 6 :

YXQ

In particular, we know that if X is an adjoint process - that is, X

has a right adjoint while K has countable products and coproducts - then

it is both.an input and output process. Since this includes the case where

K is a closed category with countable products and coproducts and

X = - ® X for some fixed object X of K , we recapture the theory of

Goguen [7 0] and Ehrig et al. [8].

In this paper, we undertake the analogous task for the right hand

sides of (l), (2), and (3), asking for conditions on a functor T which

will enable QT to serve as an "object of fuzzy states", so that we may

give a general theory of nondeterministic automata as systems with dynamics

QX + QT

where X i s an input or output process, and T i s an appropriate functor.

In [&, Chapter 6 ] , the theory of pseudoclosed categories i s advanced as the

setting for nondeterministic machines with process - ® X ; and we shall

see in Section 3 that our general theory does indeed include the Ehrig

approach.

It would be aesthet ical ly appealing to subsume dynamics QX + QT in

the form QX ^ Q of the theory of [/, 4 ] , To do t h i s , we need a new

category Kj with the same objects as K , but with a K_-morphism

f : A ~- B (note the single-headed arrow) being in r ea l i t y a K-morphism

/ : A •* BT , so that a fuzzy dynamics i s given by a Ky-morphism QX ~* Q .

To be a category, K.j- must be equipped with identities and composition.

Now, in each of our examples ( l ) , (2 ) , and (3) , we have a map which allows

to regard a 'pure' state as a 'fuzzy' s t a te :
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Q -> 2Q : q i-* {q} ,

Q -*• QP : q \—*• e where e (q') = 1 if q' = q and is otherwise 0 ,

Q -»• R : q *-* e where eo(<7*) = 1 if <7' = <7 and is otherwise 0 .

Each of these is of the form Qe : Q -- Q , and we require, then, that the

ident i ty morphisms Qe of K-j- generalize th is role of le t t ing us

interpret pure s ta tes as particular examples of fuzzy s ta tes . Then for a

collection of maps

K(A, BT) x K(B, CT) ->- K(A, CT) : [A -SL- B, B

to be composition for K̂- i t must satisfy the usual rules

(Y°B) o a = Y ° (6°a) ,

a o A e = a = S e ° a .

However, we require one more condition to make e consistent with our

interpretation - namely

6 » / = 6 ' / for f : A -* B , g : B - C ,

where we adopt the notation

(6) A - J —' B = A - ^ B - ^ * BT

for / : A •* 5 "viewed as a relation" A ̂  5 .

With t h i s , we may give a formal definition and check i t for QT = 2 ,

leaving the other cases to the reader.

DEFINITION 7. Let T be a mapping Obj(K) -»• Obj(K) , and write

a : A ->• B for a : A -* BT . Let, then, o be an associative "composition

of fuzzy re la t ions"; and l e t Ae : A -*• AT for each A in K. satisfy

B o / = B'/

as well as

Ce ° g = 3

for each f : A ̂  B (where /^ = Be*/ ) and each 3 : B ̂  C . Then we
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call T = {T, °, e) a fuzzy theory over K . ( i t is a consequence

(Observation 3, Section 2) of these axioms that I can be made into a

functor K + K .)

The Kleisli category Kj of T has the same objects as K ,

"relations" A """• B as morphisms, ° for composition, and the 4e : 4 """• 4

as identi t ies . That JC- is a category follows from the axioms since

a o Ae = a o (id.) = a*id. = a .

(Note: We will use "id" exclusively for K identit ies since Kj

identit ies are easily denoted with e . J

The concept of "monad" or "tr iple" is well-established in category

theory (LI 3, Chapter V; 2, Chapter 10]) and is entirely coextensive with

our notion of fuzzy theory (as is proved in [74, 1.3.18]). If S is the

monad corresponding to the fuzzy theory T , fw is the well-known

"Kleisli category of S " f i rs t defined by Kleisl i [7Z]. While a knowledge

of monad theory is certainly relevant, i t is in no way essential to

comprehension of this paper.

We further develop the concept of a fuzzy theory in Section 2. In

the remainder of the present section, we develop the theory of

nondeterministic sequential machines in such a way as to motivate the

general theory of the subsequent sections.

EXAMPLE 8. The theory of nondeterministic sequential machines

corresponds to T = 2 with

Qe : q i—• {q} ,

Q

while for a : A -~ B , 3 : B - C , we have 6 ° a : A •+ 2 defined by

(9) 6 ° a(a) = U{B(Z>) | b « a(a)} .

The reader may check the category axioms. Here we verify B o f = Q-f :

3 o (Be-f){a) = {0(6) | b € Be'f(a)}

= 6 (/(a)) since Be'f(a) = {/(a)}

= B\f(a) •
10. Consider a nondeterministic sequential machine with initial

https://doi.org/10.1017/S0004972700024412 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700024412


174 Michael A. Arbib and Ernest G. Ma n e s

" s t a t e " T in 2 , with dynamics 6 : QXX •* 2 , and with output map

6 : Q -*• {0, 1} . I t is usual [!5] to simulate such a nondeterministic

sequential machine by a deterministic sequential machine with state-space

Q2 , and with

Qi n i t i a l s ta te map T : I •*• 2 , for some one-element set I ,

dynamics S" : 2Sx* + 2Q , (p, x) >-* U 8(q, x) ,
qip

and

output map B# : 2Q •* {0, 1} , where B#(p) = 1 w &(q) = 1

for some q € p .

We can express this in a more algebraic way:

~&(p, x) = U{6(q, x) | q € p}

= U{6(r) | r = (c?, a:) for some q € p}

= 6 o <5A(p, x) ,

w h e r e we r e c a l l t h e form o f o from ( 9 ) , and d e f i n e QX : 2 *X ~* QXX by

QX : 2**XQ •* 2 U , (p, x) i— {(«?, x) | q Z p} .

11 . Thus the passage from the fuzzy 6 to the corresponding

determinist ic 6 may be expressed both in terms of the fuzzy theory

composition and the map QX . In Section 3, we shall establ ish the

propert ies X must sat isfy to play th i s role for a given process X and

fuzzy theory T _ suitable X's are called distributive laws.

To analyze B more carefully, we f i r s t reca l l

DEFINITION 12. A complete semilattice i s a pa r t i a l ly ordered set in

which every subset has a supremum. A finite semilattice is a complete

semilat t ice whose underlying set i s f i n i t e . A semilattice homomorphism is

a supremum-preserving map.

We now observe that the output set {0, 1} of our machine is a

complete semilatt ice under the supremum operation max , while the state
Q

set 2 of our deterministic simulator i s a complete semilattice under the
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supremum operation of union. We now note the commutativity of

{0, 1}

In fact , i t is easily seen tha t :

13. 3 i s the unique homomorphic extension [z , u) •* ({0, l } , max)

of 3 . In Section 4, we introduce T-deciders (Q, £) as the

generalization for a fuzzy theory T of the complete semilattices

associated with T = 2 ' , whereas for T as in (2) , (Q, £) i s a

'generalized' convex set . QT i s i t s e l f always a decider via the canonical

map Qm : QTT •*• QT defined by

(lit) Qm = \QT ii±- QT\ o \QTT — ^ ^ ^ QTT\ .

For example, for T as in ( l ) , [S, u) = [S, Qm) since Qm : 2*-2 ' •+ 2®

assigns to each family i t s union, as i s routinely checked.

This special case of free T_deciders - {QT, Qm) - (see Theorem 7,

Section 4) has been implicit in the l i t e r a tu r e of nondeterministic and

stochastic automata theory. I t i s the contribution of t h i s paper to show,

in Section 7, how more general T-deciders a r e used to formulate the fuzzy

minimal real izat ion problem.

Returning to our nondeterministic dynamics 6 , we note on taking
_ a
Q = 2 that i t provides an example of:

DEFINITION 15. A complete semilattice with, operators indexed by Xn

(we write fSO for a f in i te such structure) i s a complete semilattice

(Q, £) together with a function 6 : SX^Q •* Q such that for each x in

XQ , <5(-> x) : Q ->• Q preserves suprema.

16. I t is t h i s notion of an object which supports both a T-decider

structure (semilat t ice, in t h i s case) and a dynamic structure in a

compatible way which motivates the theory of X-algebras to be developed in

Section 5.
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17. The nondeterministic machine

•T : I -• 2Q, 6 : QxXQ •+ 2Q, & : Q "> { 0 , 1 }

will yield the notion of a \-tmchine in Section 5; while the expanded

machine T : J •> 2 , 6 : Q*X •* Q, 3 : Q + {0, 1} - in which 6 is a

complete semilattice with operators indexed by X (that i s , a X-algebra)

while 3 is a homomorphism - will yield the notion of an implicit

X-machine. It is a major observation of this paper that fuzzy machine

theory supports two distinct kinds of automaton (which coincide in the

deterministic case).

18. In Section 7, we shall give the general theory of minimal

realization of suitably defined response functions / . We shall find that

each f has a minimal implicit A-machine which realizes i t uniquely up to

isomorphism, but that nonisomorphic A-machines may be minimal and yet

realize the same f . To illustrate this distinction, we shall give

examples from, and an outline of, the theory of minimal realization for

nondeterministic sequential machines.

2. Fuzzy theories

Much has been written about fuzzy set theory ([/£], [9]; see also

[''] and the extensive bibliography there). From this point of view, the

fuzzy theories of Definition 7, Section 1, provide very general categories

of fuzzy relations. Our heuristics for the fuzzy category concepts are as

follows: AT is the "cloud of fuzzy states over A ". A morphism

a : A " B = a : A •*• BT is "a fuzzy relation from A to B ". Ae is the

"pure state" map.

Now fix a fuzzy theory T = (T, e, °) over K . We establish a few

general properties, and then provide several examples of fuzzy theories.

(For further properties and examples, see ['4, 1».3].)

CONTRACTION PRINCIPLE 1. i d ^ : AT ̂  AT may be regarded as the

"relation" i d ^ : AT - A .

OBSERVATION 2. Each morphism a : A -*• BT admits a canonical

extension a. .
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A -J^-* AT

\ ' §
a\ i a

BT

ft #
defined by a = a ° i d . {cf. 1 3 , Sect ion ! ) . , such that a 'Ae = a .

Proof. By the fuzzy theory axioms we have

§ r \ A f Al
a ' A e = ( a o i d . _ J ° (Ae) = a ° i d . _ o ( 4 e ) \ = a ° A e = a . 0

Al [ Al )

OBSERVATION 3. T : K * K becomes a functor when, for f : A -* B ,

we define fT : AT -*• BT by fT = (^)# ; that is,

fT = / o id = (Be-f) o id .
ri.-L ri-L

Proof. ( i ) i d . T = Ae ° id.™ = id^_ .

( i i ) Given g : B •*• C ,

(g'f)T = ( f f ' / ) A o id^y = [gL'f] ° i&AT = gL ° f* ° i d ^ = gh o fT =

= g ° [idj.-'fr] = g ° id R ° (fT) = gT ° (fT) = gT'fT . D

OBSERVATION 4 . Given a : A - B , 6 : B - C , g o c t = 6#-a . In

particular, for a : A •* B and f : B ->• C , f ° a = fT'a .
P r o o f . 6 o a = 6 ° i d ° a = 6 ° a = B ' a . •

Dl

With these sample propert ies , we now turn to a number of examples, in

each of which we l e t K be the category Stt of sets and functions. We

f i r s t summarize our observations in Section 1 on the ' c l a s s i c ' case:

EXAMPLE 5. Let AT = "d so that a : A ^ B i s the familiar concept

of relation via a a b <s=> b ^ a.(a) • The singleton map Ae , a •—»• {a} ,

represents the equality re la t ion , g ° a i s the usual composition,

(6°a)(a) = {c € C | there exis ts b in B with fc € cc(a)

and c '

K- is then the usual category of sets and relations.
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id.™ , as in Contraction Principle 1, i s the elementhood re la t ion:

S ±dAT a ^ a i S .

J{S) = U{a(s) | s € S} .

fT : AT ->• BT is the direct image map, S i—»• {/(a) | a € S] .

Am : ATT •* AT (as in 13, Section 1) is the union map.

S i-s- US = {a € A | a € 5 for some S € S} .

The same constructions work if AT is res t r ic ted to "f ini te subsets",

"non-empty subsets", or " f i n i t e , non-empty subsets".

EXAMPLE 6. Let AT = AP as in (2) , Section 1. a : A -* B

corresponds to an .A-by-B column-stochastic matrix (we think of A as

indexing columns and B as indexing rows). {Ae)(a) i s the stochastic

column vi th entry 1 in i t s ath place. & ° a i s the usual matrix

product.

EXAMPLE 7. Let AT = R^A' as in (3) , Section 1. Then a : A ~* B

i s a column-finite matrix of entries from R and a fuzzy theory is

constructed in the same way as in Example 6. The "f in i te subsets" version

of Example 5 i s recovered by taking R to be a two-element semiring (not a

r ing!) with the usual mod 2 addition but with conjunction as

mult ip l ic at io n.

EXAMPLE 8 ( [9 , Section 6]) . Let L be a complete l a t t i c e which is

completely distributive in the sense that for each x in L , x v (-)

preserves infima and x A (-) preserves suprema. Set AT = L . Ae i s

the "crisp singleton map"; that i s , (Ae)(a) maps a' to the greatest

element of L when a' = a and to the leas t element otherwise, a : A ~* B

i s Goguen's L-fuzzy r e l a t ion . 6 ° a i s defined by

[(B°a)(a)](c) = v{[B(i)](o) A [a(a)]{b) \ b € B}

and the proof that ° i s associative requires complete d i s t r ibu t iv i ty .

Example 5 (with a l l subsets) i s recovered by taking L to be the two-

element l a t t i c e . With L the unit in terval , Kj i s Zadeh's category of

fuzzy re la t ions [ ' # ] .

EXAMPLE 9. Let M be an arbi t rary monoid "of c red ib i l i ty values",
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and take AT = A * M . If a : A "- B , "a(a) = b with c redib i l i ty x "

if a(a) = (b, x) . (Ae){a) = {a, 1) . If a(a) = (Z>, x) and

B(b) = (e, j/) then (B°a)(a) = (e , aa/) .

EXAMPLE 10. Let AT = A* , the free monoid of a l l strings in A .

If a : A -"• B , a(a) = i>, ... b expresses a "voting preference for

choice a ". The empty word represents "abstention". (Ae){a) = a , the

string of length 1 . If a{a) = b± ... bn , (B°a)(a) = B ^ ) . . . B(&n) .

3 . D i s t r i b u t i v e l a w s

We motivated the construction of the Kleis l i category Kj of

Definition 7, Section 1, by suggesting that nondeterministic dynamics

QX -*• Q^F in the category K be viewed as normal dynamics

QX- Q

in Kj . Now while the functor X : K -*• K gives us an object function

Q i—>• QX in Kj , i t does not give us a map on morphisms in K_ , since

(A •* BT)X i s not of the form AX ~* BX = AX •* BXT . Our task, then, i s to

find a " l i f t ing" J of X:

t-* AX -&L BX .

OBSERVATION 1. K may be viewed as a subcategory of K̂- via "a

morphism is a relation"; that is, f *—*• J .

Proof. We have (id^) = &e a n d
s given f : A -*• B and g : B •*• C ,

we further have (g'f)' = g •/" = g ° J . D

DEFINITION 2. By a lifting of a functor X : K -»• K to KT we mean

a functor J : K̂  ->• Kj such that

)A

K~r
is a commutative square of functors.
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Note now that if X is such a l i f t ing , we have

aX = [idBT-a)I

o a X since X is a functor

A

by Definition 2

Summarizing, then:

LEMMA 3. If X is as in Definition 2, then for all a : A - B ,

aX : AX -* BX is given by

aX = AX -^->- BTX - ^ + BXT ,

where

B\ : BTX - BX = idg^F . D

NOTE. B(TX) means (BT)X , not (BX)T , in accordance with our

notation for the action of functors.

The lemma raises the question: "Under what conditions on X does

aJ = BX'aX define a l i f t i n g of X ?" The appropriate definition and

proposition are:

DEFINITION 4. A distributive law of X over T i s an assignment to

each object A of K of a morphism A\ : ATX •* AXT such that the

following two diagrams commute for a l l A and a : A •* B .

• " '"" ATX - ^ AXT

# 1 I ft
a"x\ \{B\-aX)

BTX —-T-* BXT

This definition can be shown to be coextensive with the distributive

laws between monads of [61 - where the terminology is motivated by the

distributive law of ring theory.

PROPOSITION 5. The correspondence, Lemma 3, establishes a bisection
between liftings X as in Definition 2 and distributive laws as in
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Definition h .

Proof. If F is a lifting and X is defined by BX = id J , then

AX'AeX = id^-AeX = id^^F o (AeX)^ = id^yF ° {Ae)L~X

since X preserves identities. Moreover,

d . ™

A i -
) \X = {Ae)X = AXe

)

(BX'aX) 'AX = (oiFoid.™) • (id.yF) by the argument preceding Lemma 3 and

Observation 2, Section 2

= a x o i d A x T o ( i d A r F j A = a F o ( i d 4 2 J j = ( ) F

Now le t X be a dis t r ibut ive law and define X by aX = BX'OLX .

That 4eJ = AX'AeX = AXe is immediate. The second diagram in Definition h

reduces to

ATX — > AXT

BXT

Since B o a = 8 *a by Observation 2, Section 2, we have

(Boa)F= CX'(B#«a)* = CX'^X'oX = $§X-aX = ($X)§'AX'aX

= (BF)#-(aF) = (BF) O (aF) .

Thus X is indeed a functor. For X thus defined from X we have

(id4y)F= AX-{i.iAT)x = AX ,

which does indeed recover X .

To see that X i s a l i f t i n g of X , we note that

a F = BTX-cAr = BTX-BTeX-aX = BTXe-aX = (aX)A . D

In the future we shall write .X, (rather than X ) for the lifting

corresponding to X .
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The following proposition is sensibly stated now although its proof

relies on results to be independently established below.

PROPOSITION 6. Let T be a fuzzy theory over Szt and let

X = - x xQ : Szt •* Set . Then

(p, x) H- (in T)(p)

[where in : Q •* Q*X , q *-+ (q, x) ) is a distributive Icao of X over

T .

Proof. The proof that AXe = AX'AeX i s clear since e : id •*• T is a

natural transformation (see (2), Section 6 below). To prove the second

dis t r ibu t ive law axiom i t suffices to prove that ( I I ) commutes for every x

in XQ ;

u
Ae> n

A — *• AT >• BT

in I in T II in T

I always commutes ( ( 2 ) , Section 6 ) . Using Observation 2, Section 2, and

the definit ion of X , the outer rectangle commutes; that i s , ( I I )

commutes preceded by Ae . I t follows from Theorem 7» Section 4, that ( I I )

commutes. D

The value of d i s t r ibu t ive laws for machine theory i s given by the

following:

PROPOSITION 7. Let X be a distributive law and let \AX , 4u ; Ar\\

be a free X-dynamics over A . Then \AX , [A\iQ) ; (An) is a free

X, -dynamics over A . Thus if X is an input process, so is each X-, .

Proof. Let {Q, 6 : QX, ^ Q) be an X-.-dynamics and l e t a : A -- Q .

Not surprisingly, we use the associated X-dynamics as in 10, Section 1 -

r eca l l the formula 6" = 6 o QX = 6#-QX : QTX •* QT . Specifically, for
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: AX """• Q compare

(8)

AX X

QT QTX

with

(9)

Since

and

6 o tyx, = 6 o
A

= 6

we have "(8) commutes, for unique \jj , in K " if and only i f "(9)

commutes, for unique ijj , in Kj " . •

EXAMPLE 10. As a special case of Proposition 6, A as in 10,

Section 1, is a distr ibutive law.

EXAMPLE 11. Let Q be the operator domain with one binary operation

and le t AX = A x A be the corresponding tree automaton input process in

Set (see [?])• Let T be as in Example 5, Section 2. Then

is a distr ibutive law. This example generalizes easily to arbitrary

operator domains.

We can now sketch the approach to fuzzy machine theory of [S]. (The
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reader unfamiliar with closed and monoidal categories may consult [2].)

Ehrig et al. work only in a closed category K with countable products and

coproducts, and use only the adjoint process - ® X . Then, rat*her than

construct a KLeisli category Ky as we did in (2) , Section 1, they

consider any category L which is pseudoolosed with respect to K ; that

i s :

(1) L has the same objects as the closed category K and is

structured with a pair of functors

A

L ,

where B is right adjoint to ( ) ;

(2) L is a monoidal category and ( ) is a monoidal functor;

that is

The condition (l) is equivalent to our conditions defining a fuzzy theory

T . Given ( l ) , define KT = KR and let e and o te induced by the

identity and composition of L ; L may then be identified with Kj .

Conversely, given T , set B R = BT ; the desired adjointness is

A •* BT •

The point of (2) is to ensure that - ® X lifts to a functor on L .

This, then, corresponds to our distributive laws, in view of our

Proposition 5- In short:

OBSERVATION 12. The Ehrig theory [S, Chapter 6] is a special case of

ours, applying when X : K ->• K has the special form - ® X in a closed

category.

4 . D e c i d e r s

For the balance of this paper, T denotes a fuzzy theory in an
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arbi t rary category K .

Our task now is to define a T-decider as the generalization of the

complete semilattices which, in 13, Section 1, we associated with the

' c l a s s i ca l ' fuzzy theory T , with T = 2 ' , of Example 5, Section 2.

Clearly, the supremum £({<?)) of a one-element subset of a complete

semilattice Q is simply q - and we may rewrite t h i s equality as

E,'Qe = idg . More subtly, recal l that in Example 5, Section 2, we had

n

a (S) = U{a(s) | s ( S) . The crucial property of suprema that
"£(Sa) = C ( 5 j for each a in A implies that £(USj = ^(USj " may

n
then be re-expressed by s tat ing that if a, 6 : A -»• 2 satisfy

£*oi = C-6 , then we have £-a# = £-0# .

This yields the general definit ion:

DEFINITION 1. A T-decider i s a pair (Q, £) with E, : QT + Q a

K—morphism subject to the conditions

( i ) £'#e = id~ ; and

( i i ) whenever a, B : A •*• QT are such that £*a = C'S , then

The heurist ic meaning of the f i r s t axiom i s clear . The second axiom

asserts that the structure of T imposes some 'determinis t ic ' ways of

building fuzzy s ta tes from other fuzzy s ta tes which must be respected by

£, ; further intui t ion may be inferred from the following examples:

EXAMPLE 2. Let T be as in Example 10, Section 2. If M i s a

monoid, the map £ : M* •* M which real izes formal multiplication is a

decider and, conversely, every decider i s a monoid with multiplication

(x, y) •—»• £(xz/) ; the two concepts are the same. Axiom ( i i ) may be

formulated as "whenever (u , . . . , w ) , [w , — , W ) are rc-tuples of

elements of Q* such that £(«•) = £(^-) . then
Is Is

£.{wx . . . wn) = £(»! . . . wj ."

EXAMPLE 3. For T as in Example 9 , Sec t ion 2 , ( i i ) a s s e r t s t h a t " i f

£(<?, a:) = £{q, y) then £(<7, xs ) = E,(q, yz) for a l l z . " A T-decider
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i s an M-set: t h e more s t a n d a r d e q u i v a l e n t ax ioms b e i n g ( i ) a n d

" € ( < ? , xy) = £ ( S ( < 7 , x ) , y) ."

EXAMPLE 4. Let T be as in Example 6, Section 2. Every convex

subset of a real linear space is a decider, where £ converts elements of

QT (thought of as formal convex combinations) into actual convex

combinations. The arbitrary stochastic decider is not of this form since

(x if X / 0 ,

y if X = 0 ,

satisfies the axioms. Axiom (ii) asserts that

for any (X , . . . , A J ( a l l nonnegative and summing to 1 ) , so long as

In the language of monads, deciders are the well-known algebras over a

monad. Deciders, then, are coextensive with universal algebra (see [2,

Chapter 10], 113, Chapter 6 ] , and 114]).

DEFINITION 5. If (Q, £) , (i?, 6) are T-deciders, a morphism

f : Q -*• R i s a T-homomorphism f : (Q, £) ->• {R, 0) just in case we have

QT —^ Q

(6) A \f

Since T i s a functor, id- : (Q, £) •* {Q, C) i s a T-homomorphism

and the composition of T-homomorphisms is again a T-homomorphism. Let

K denote the category of T-deciders and T-homomorphisms.

The following fundamental resul t establishes a canonical free decider

over any object . Recall (( lU), Section 1) that

Am = \AT — ^ U A\ o \ATT — ^ - ~ AT

n

(which equals (id._) in the sense of Observation, Section 2) .
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THEOREM 7. {AT, Am) is a decider. Moreover, given any decider

{Q, £) and morphism f : A •* Q there exists a unique T-homomorphism

/ : {AT, Am) •* (Q, £) >

A J£+ AT JS^ ATT

Q *~£— QT

such that / 'Ae = f . The formula for f is

(8) / = AT -££+ QT -£+ Q .

The notation is not ambiguous since, given {BT, Bm) and any

d.™a : A -*• BT , a. = a ° id.™ , as in Observation 2, Section 2, is equal to

Bm-aT .

Proof. First, to check consistency of the § notation, we have for

a : A •* BT ,

A r \ #

a o id.™ = i d ™ o a o i d . _ = id_™ o off = U d R J '&T = BnraT .

We next show t h a t {QT, Qm) i s a d e c i d e r . For axiom ( i ) , we have

Qm'QTe = [idQT)ff'QTe

For ( i i ) , if Qm-a = Qm'ft ,

Qnra = (id^yj *a = id™, ° a = id^y ° a ° id^y = {Qm-a) o a

Next, we must show t h a t j as in (8) i s a T-homomorphism. Since

C"idn_ = £, = i d n ' £ = C*C^ by Def in i t i on 1 ( i ) , we may use Def in i t ion 1
QI Q

(ii) to deduce that

Therefore ,
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f'Am = E,'fT'Am = £• [f^°Am) ( r e c a l l Observation It, Sect ion 2)

= E.'^T-fTT = £,'f^T .

Moreover, /'Ae = E,'fT-Ae = £-(/A)#vle = ^.j^ = g-Qe-f = / .

I t only remains to verify -uniqueness. Suppose g : (AT, Am) -*• (Q, E,)

i s a T-homomorphism - g'Am = £,'gT - such that g'Ae = / . Then

g = g-{AeoidAT) = g-

= g'{±d ) 'AeT = g-Am'AeT = t,-gT>AeT

g-fT = / . •

By Theorem 7, KT , the Kleisli category of "fuzzy relations" is

Drphic to t

(AT, Am) , for

isomorphic to the full subcategory of K comprising al l free deciders

= id.™ and (B°a) = 3 *oi

(since both T-homomorphisms are 0 ° a when preceded by Ae ). As will

be clarified in the remainder of the paper, many automata-theoretic

constructions operating on objects in Kj cannot be defined in fw but

can be defined in the larger - and much better behaved - universe K

5. Fuzzy machines

For the res t of the paper, fix a functor X : K -*• K and a

dis t r ibut ive law X : TX -> XT of X over T . We now fu l f i l l the promise

of 16, Section 1.

DEFINITION 1. A X-algebra i s a t r i p l e (Q, 6, £) with (Q, 6) an

X-dynamics and (Q, E,) a T-decider in such a way that £ is an

X-dynamorphism (QT, &T'Q\) -*• (Q, 6) ; that i s , in such a way that we have
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QTX -&+ QXT -^* QT

QX 5 • Q .

B y a X - h o m o m o r p h i s m f : i Q , S, £ ) -*• i Q ' , 6', E,') b e t w e e n X - a l g e b r a s w e

mean a simultaneous dynamorphism and T-homomorphism.

FXAMPLE 2. Set AT = A , Ae = id^ , and 6 ° a = B-a . Then T i s

a fuzzy theory in K , the identity theory. Clearly Kj = K . Moreover,

if iQ, C) i s a T-decider for th i s theory, then axiom ( i ) of Definition

1, Section 4, s t ipula tes that C = id,, . Thus we also have K = K

Finally, AX = id. : ATX •* AXT i s a d is t r ibut ive law of X over T , and

the category of X-algebras i s just Vyn[X) .

If K has an i n i t i a l object 0 (for example, the empty set in SeX. )

then for arbi t rary T and X defined by AX = 0 , fX = id , the X

defined by AX = id i s a dis t r ibut ive law of X over T and the

category of X-algebras may be identified with K

EXAMPLE 3. When X = - x X : Set •*• Set and X is as in 10,

Section 1, [Q, 6", £) sa t i s f ies Definition 1 if and only i f

6 = &(-, x) : (Q, E,) -*• (Q, E,) i s a T-homomorphism for every x in X .

Thus the semilattices with operators discussed in Definition 15, Section 1,

are X-algebras.

For the dis t r ibut ive law QX : (p, x) •*• in T'p of Proposition 6,
sc

Section 3, the diagram of Definition 1 says that

6J(p) = C'6T'in Tip)
JJ X

t h a t i s , each 6 i s a T-homomorphism (Q, E,) •*• iQ, E.) .

LEMMA 4 . Let K = SeX . Then the image of a X-homomorphism is a

X-subalgebra. More precisely, let f : iQ, 6 , E,) -*• iQ', 6 1 , E,') be a
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X-homomorphism with image I = {/(<?) | q € Q} and with i : I •* Q' the

inclusion. Then if p : Q -*• I has p(q) = /(<?) , there exist unique

S" : IX •+ I , g" : IT -* I such that p : {X, 6 , £) -»• ( J , 6" , C") and

i : {I, 6", £,") -*(Q', 8', £ ' ) are X-homomorphisms. Atoreouer, given any

other diagram of X-homomorphisms

f •

with p, surjective, i infective, there exists a unique X-isomorphism

r as shown below:

Proof. As p i s onto, there exis ts d : I -*• Q with pd - id . As

T i s a functor, pT dT = i d ^ ,

I —7+ Q • I —r+ Q'
d p i ,

and pT is onto. We leave the remainder of the proof to the reader with

the following three hints: E," as above exists uniquely because pT is

onto, i is injective and the perimeter commutes; the two decider axioms

and the X-law of Definition 1 follow from the principle that to prove

f,g • A -> I are equal i t suffices to prove i'f = i'g ; F is defined by

T{p(q)) = p±(q) . •

With the motivation provided by 17, Section 1, we may immediately give

the defini t ions of X-machine and implicit X-machine:

DEFINITION 5. A X-maohine i s a 7-tuple M = (Q, 6, I, T, Y, 6, B)

where (Y, 9) i s a T-decider and

I - ^ QT , QX - ^ - QT , Q -£-* Y
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are K-morphisms (the initial state, dynamics, and output map,

respectively) .

While this definition is independent of which X relates X and T ,

the way such machines "run" - as described in Sections 6 and 7 - is not.

A similar definition was presented by Burroni in [7].

DEFINITION 6. An implicit X-machine is an 8-tuple

M = (Q, I, X, I, 7 , y, 6, f) where

(§, 6, C) is a X-algebra,

T : I -*• Q is a K-morphism, and

6 : (Q, C) "* (•i'j 9) is a T-homomorphism.

Observe that both definitions collapse to the usual one in the

deterministic case where T is the identity theory as in Example 2. The

difficulties encountered in fuzzy minimal realization theory are a direct

consequence of the fact that the algebraic machinery producing unique

reachable-observable realizations depends on Definition 6, whereas what we

really want are "states" which require Definition 5- The proof that these

two types of machine can simulate each other is given in Section 7.

Recall that in the classic case, 10-13, Section 1, we passed from a

nondeterministic sequential machine (that i s , X-machine)

T € S ; 6 : Q*XQ -»• 2Qi & • Q * { 0 , 1}

to a deterministic sequential machine which is an implicit X-machine

T : I ->• 2Q; J = SoQ\ : 2Q*XQ •*• 2Q; 6 # : 2Q - { 0 ,

We now show that [QT, 6 >Q\ = 8°Q\, Qm) i s a X-algebra for general X,

T, X , and any Af-dynamics (Q, X) . We know (Theorem 7, Section 4) that

we can always pass from an output map $ : Q -*• Y with a T-decider
u

structure (Y, 9) on I to the unique T-homomorphism g = B-$T which

extends (3 .

LEMMA 7. For any QX - ^ QT , {QT, Sff'QX, Qm) is a X-algebra.

https://doi.org/10.1017/S0004972700024412 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700024412


192 M i c h a e l A . A r b i b a n d E r n e s t G . M a n e s

Proof.

QTTX
QmX = ( i d , J * *

QTXT

QXm

QXTT •

->- QTX

ex

QXT

.#

QTT
Qm

-»• QT

The top piece is an instance of the square of 3.^ with a = id.,

s i n c e Qm = [±dQT)ff and (QX)# = QXm'QXT .

The bottom piece j u s t says t h a t 6 i s a T-homomorphism. D

Our next r e s u l t general izes the observation tha t any sequential

machine dynamics 6 : gives rise to a nondet ermini stic dynamics

2 X ° -§-«• 2Q : (p, x) , x) | ? € p} .

Moreover, t h i s construction l i f t s dynamorphisms B to X-homomorphism B

THEOREM 8. For each X-dynamias {Q, 6) , we have that

(QT, 6T-QX, Qm) is a \-algebra. Moreover, given any \-algebra

( J , y, 6) and dynamorphism (5 : (Q, 6) ->• (Y, y) J we have that 6 = 6'gT

i s a \-homomorphism (QT, &T-QX, Qm) -*• (Y, y, 9) .

Proof. The f irst claim is just Lemma 7» with 6 replacing 6 .

To establish the second statement, we next observe that A : TX -*• XT

is a natural transformation; that i s ,

(9)

ATX

fix\

BTX
BX

AXT

\fXT

BXT
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commutes for all f : A •*• B . This follows from Definition h, Section 3,
it

with a = f" since 7 * = fXT . Now use the diagram

QTX - ^ YTX

YX

YXT

1
YX

QX\

QXT

6T\

QT • YT •Y

f
D

6 . R e a c h a b i l i t y a n d o b s e r v a b i l i t y

To define reachability for A-machines we need to use a free
A-dynamics; that i s , a free A-algebra. Given the free ^-dynamics

a )
IX , iUn 9 we may apply the construction of Theorem 8, Section 5, to

( a a a \

obtain the A-algebra \IX T, I\l T-IX X, IX m\ . We now show that i t , too,

is free.

THEOREM 1. If X is an input process, then the X-algebra

( a a a 1

IX T, lyJT'IX X, IX m\ is the free X-algebra over I with "inclusion of
a

the generators" IX^e-Ir\ .
Proof. We must show that if {Q, 6, £) i s any A-algebra and

f : I -*• Q i s any K-morphism,

then there exists a unique A-homomorphism /* with f*'IX e'Ir\ - f • We
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wil l show that f* = <JJ where \p i s the unique dynamorphism from

LOT, Iu to (Q, 6) such that I|CJTI = / . ty i s a X-homomorphism by

Theorem 8, Section 5.

To prove that f* i s unique i t suffices to observe that IX e i s a

dynamorphism, and t h i s i s seen at once from the diagram

as soon as we note that e : id •*• T is a natural transformation; that i s

Ae,
A AT

( 2 ) f

Be

holds for a l l / : A •+ B ; for fr-Ae = KAe = / = Be.f . D

With t h i s machinery, we may now define the reachabil i ty map for a

A-machine.

DEFINITION 3. The reachability map of the A-machine M of

Definition 5, Section 5, is the A-morphism

, I\iQT'IX®\, IX®m , Qm) .

Notice that the same map arises as the "deterministic" X,-reachability map
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More generally, the reachability map of the implicit A-machine M of

Definition 6, Section 5, i s the A-homomorphism

T* : \lX@T, I\iQT-l/\, IX®m) •> (Q, I, £) .

We now construct the machinery which l e t s us build the observability

map.

THEOREM 4. If X is an output proaess then, for each decider

(I, 6) , [YX*, YL, §) is a \-algebra where 8 is the unique

dynamorphic

n

coextension of (JA) , [where (llgl1, YLT'YXQX, YX^n) is a X-algebra as

in Theorem 8, Section 5). Moreover, for each X-algebra (Q, 6, 5) and

7'-homomorphism f : (Q, £) -*• (Y, 8) , the unique dynamorphic aoextension

î i : (Q, S) •*• [YXQ, YL~] is a X-homomorphism.

Proof. We must f i r s t show that [YXQI §) i-s a decider. Since we

proved that Y%ne i s a dynamorphism in proving Theorem 1, the diagram

YXae
* YXrT

(Yhf YXR

4i d
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shows that the dynamorphisms %'YXne and idv v are equal followed by

YA , and hence equal. In a similar vein, from the diagram

YXnT • YXn

(YAV

we see f i rs t that the T-homomorphisms (YA) and (YA) •62' are

equal preceded "by YXaTe and hence a r e equa l . We next observe t h a t 67,

YX m a r e dynamorphisms; for use Theorem 8 , Sect ion 5 , with g = (6) ,

i d v v „ r e s p e c t i v e l y . F i n a l l y , t h e dynamorphisms Q'QT, Q'YXtfn a re equal
YX&T «

followed by YA , and so are equal. Axiom 1, Section 5, is clear since 6

is a dynamorphism:

For the second statement, consult the diagram

using Theorem 8, Section 5, to see that tyT is a dynamorphism.

DEFINITION 5. The observability map of the A-machine M of

Definition 5> Section 5, is the X-homomorphism

0 : , 6§-Q\, Qm) * [YX@, YL, §)

which is the unique dynamorphic coextension of the T-homomorphism
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B# : (QT, Qn) - (Y, 9) .

More generally, the observability map of the implicit A-machine M

of Definition 6, Section 5, is the A-homomorphism

a : (Q, I, c) ->- {YX@, YL, e)

which is the unique dynamorphic coextension of the T-homomorphism

B" : (Q, E,) -* (Y, 9) .

The total response map of M (or M ) i s the A-homomorphism

, I\iQT-l/\, j A J a'T*> [YX@, YL, 9) .

7. M in ima l r e a l i z a t i o n

In this section we will always assume X is an input process. A

imorphism of the form f : IX •* Y may be the response of either a

A-machine or an implicit A-machine. Indeed, given either machine, we

shall see (Theorem 10) that there exists a suitable machine of the other

sort so that both have the same response. We shall see that while the

familiar algebraic construction of the minimal deterministic realization

generalizes easily to implicit A-machines (Proposition k), the associated

A-machine need not have the "minimal number of states".

Let us first dispatch the generalities. In the minimal realization

theory for state-behavior machines [4], one factorizes Vynix)-morphisms

IF •* YG ,

where the left and right adjoints F and G of the forgetful functor

IX , JuJ and YG = (YXa, Yl) .

In the present study, our total response maps (Definition 5, Section

6) have the form of K ^norphisms

IF + YG ,

where i t i s the l e f t and r igh t ad jo in t s F and G of the forgetful

A f 9 0 3 1
functor U •• K ->• K t ha t y ie ld IF = \lX T, lu T'JX A, IX m\ (by Theorem

1, Section 6) and GY = [YX&, YL, d) (by Theorem k, Section 6 ) .
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In both cases, then, we have a minimal realization theory for

A-morphisms

IF •* YG ,

where U : A •*• 8 is a functor with left adjoint F and right adjoint G .

This then suggests a general axiomatic treatment of minimal realization

(which is in fact implicit in the work of Bainbridge [5] - see [3 , p. 58]

for further references).

DEFINITION 1 • Let A be a category equipped with a functor

U • A -*" B • Then an A-maehine is {D, x, 8) , where

T : I •*• DU is a B-morphism called the input map; and

8 : W •* Y is a B-morphism called the output map .

A homomorphism of A-machines, [D , x , 8 ) •* [D X 8 ) with the

same I and Y is an A-morphism T : D -*• D such that

With th i s definition, such machines form a category Mach(A, I, Y) .

DEFINITION 2- If £/ : A + B has left adjoint F , we define the

reaohabitity map of M = {D, x, 6) to "be the unique A-morphism

r : IF + D satisfying

IPV

If U has right adjoint G , we define the observability map of M

to be the unique A-morphism O : D -*• YG satisfying
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If U has both lef t and right adjoints , we cal l (j> = O'r : IF •* YG

the total response map of M . We ca l l M a realization of <J> .

Given a f a c t o r i z a t i o n system3 (E, M) for 8 , we say M i s

reachable if rU is in E , observable if aU is in M .

We immediately have the:

AXIOMATIC MINIMAL REALIZATION THEOREM 3. Let U : A •+ 8 be a

functor with left adjoint F , and right adjoint G . Let (E, M) be a

factorization system for B with the property

IF Given any k-morphism f : A •*• A~ , and an E - M

factorization

A±U -£+ B - 2 * A2U

°f fV i there exists a unique k-object A and unique

k-morphisms p : A -*• A and a : A -* A such that pU = p

and aU = a ;

THEN for every k-morphism

<j> : IF •* YG

there exists an k-machine M which is a reachable and

observable realization of <j) ; moreover M is unique up to

isomorphism in Mach(A, I, Y) .

Proof. We simply use the diagram

3 At this level of axiomatic treatment, we do not need an image
factorization system - al l we require is that each map factorizes into an
E followed by an M , and that this factorization is unique up to
i somorphi sm.
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IFU YGU

t o de f ine T and ft i n terms of t h e (E, M) f a c t o r i z a t i o n of ((>£/ . Let

then p : IF •*• A and a : A -*• IG s a t i s f y pU = p and all = a . Then

p and a are the reachability and observability maps of (A, T, 8) ,

which is thus a reachable and observable realization of <J> . Uniqueness up

to isomorphism is immediate. D

Stripped to i t s essentials like th i s , minimal realization seems

rather dull!

If we specialize a l l this to K -+ K. , with K = S t ,

X = - x X : Set -> Set , X as in Proposition 6, Section 3, (Y, 9) a

T-decider and J a one-element set so that IX = X* , we use Lemma h,

Section 5 to immediately obtain

PROPOSITION 4. For every X-homomorphism <j> : X*T •* Y , there

exists an implicit \-maohine M, which is a reachable and observable
(J)

realization of (f> ,• moreover, M, is unique up to isomorphism. D

We now turn to the relationship between X-machines and implicit

X-machines. For this we only require that X be an input process, and so

study the response map _/\, :

A . TxT -+ YY

Y rather than the total response map

DEFINITION 5. The response fM of the X-machine M of Definition

5, Section 5 is the response of the deterministic X-machine

J
QT , QTX QXT QT , QT X i

that i s , fM is the K-morphism
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where r» is the reachability map of (h), Section 1; that is, the unique

dynamorphic extension of x .

Since x*'IX e is a dynamorphism and (T**J^ e)'Ir) = T ,

T**I3Te = r . We then have the following relationships (delete YA'O if

X is not output):

(6) ix%\

a
-+ Y

Thus the total response map a»x* is the unique T-homomorphic
u

extension of the dynamorphic coextension O'r of fM = £5 •*• .

DEFINITION 7. The response jfc of the implicit X-machine of

Definition 6, Section 5, is the composition

where r is the unique dynamorphic extension of x .

It is clear from the definitions that if M is a X-machine, then i t s

associated deterministic machine {QT, 5 'QX, Qm, I, x, Y, 0 ) is an
implicit X-machine whose response is / . We now set out to establish an

appropriate converse:

DEFINITION 8. If (Q, %) is a T_decider, a scoop of (Q, J) is a
triple {Q, i, a) where

Q - ^ Q -2- QT

u a

are such that i >a = id^- [where i = ^,'i-T J .

The terminology is due to Ehrig et at. [S, 10.3] and our definition is
a variation of theirs. Notice, however, that (Q, id, Qe) is always a
scoop.
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PROPOSITION 9. Given an implicit X-maahine M then any scoop

(Q, i , c) of (Q, C) provides the state object Q for a \-machine M

with f = f— ; M is defined by

6 = QX QX - ^ - Q QT ,

Y .

Proof. We prove that the diagram

commutes. I commutes since A i s a natural transformation. I I commutes

since i = E.'iT . I l l just says that (Q, <5, ?) is a X-algebra. Since

i ' = icbr by "the definition of 'scoop1, we have

I QX —

iX

QX

I

QX

r
QT -

https://doi.org/10.1017/S0004972700024412 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700024412


Fuzzy machines in a category 203

Noting that the two paths of IV yield T-homomorphisms, we recal l

Theorem 7> Section 4, to see that they are equal since, when preceded by

QXe , both equal I'iX :

"by the l a s t diagram while

= S-iX

= g-[(J-iX)Tt:'°QXe)

= 6'iX .

Since (3 i s a T-homomorphism we also have

QT

T.

I

Thus i# : [QT, Sff-QX, I, x, Y, 3#) -»• (Q, 6, I, x, I, B) i s a homomorphism

of /-machines and, in par t icu lar , / , , = /— . 0

We immediately have

THEOREM 10. Let there be given f : IX -»• Y , a 1'-decider structure

(7, 6) and an object Q of K . Then a X-machine M with state object

Q and response / , . equal to f exists iff there exists an implicit

X-machine M with f— = f and whose decider (Q, £) admits a scoop

', i, c) with Q and Q' isomorphio in K .

Proof. [Q, Qe, id™) is a scoop of (QT, Qm) . •

In the next section, we characterize scoops in terms of extremal

elements.

8. Examples

We now relate the scoops of Definition 8, Section 7 to extremal
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elements; and then give examples of realization by nondeterministic
automata. Throughout this section we restrict K to be Szt .

If [Q, C) is a T-decider and Q is a subset of Q , let < Q>
u

denote the image of i in Q where i : Q -*• Q is the inclusion
function. In the context of Examples 2, 3, h of Section 4, < Q) i s ,
respectively, the submonoid generated by fi , the union of all A/-orbits
intersecting Q , and the set of al l 'convex combinations' of elements in
Q . For T as in (5), Section 2, <Q> is the set of all suprema of
elements of Q .

Q generates (Q, £,) i f <Q> = Q ; tha t i s , (Q, i , a) i s a scoop

for some 0 . q in ~Q i s an isolated element of (Q, £) i f

q f <<2\{<?}> . [Q, C) is extremal if {Q, £,) is generated by i t s isolated
elements (in which case the isolated elements are contained in every set of
generators and so constitute the unique minimal set of generators), and T
is extremal if every finitely-generated T-decider is extremal.

The T of Example 10, Section 2, is not extremal (the 3-element
group is generated by either of i t s non-units) even though free monoids
are.

Isolated elements of convex sets are the well-known extreme points and
thus finitely-generated convex sets are extremal. We do not know if all
finitely-generated stochastic deciders are extremal, but this is true for
a l l doubly-generated stochastic deciders (classified in [14, k.3, Exercise
l ] ) which, incidentally, would appear to be an intriguing generalization of
Zadeh's unit interval as a universe for "assigning weights to two truth
values consistent with the laws of probability theory".

With respect to T as in (5), Section 2, an extremal element of a
complete semi-lattice is more conventionally called a join-i.rreduoi.ble.
This T is extremal:

PROPOSITION 1 . Every finite (equals finitely-generated complete)
semilattice Q is extremal.

Proof. Let Q. be the set of minimal elements of Q\{0} (0 denotes

t h e empty supremum; tha t i s , the l e a s t element) and l e t (J be the set

of minimal elements of Q\ (.Q u . . . u Q > (where (A) denotes the set of
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suprema of elements of A ) , cont inuing u n t i l Q = (QV...\JQ). I t

su f f i ces t o prove t h a t each Q c o n s i s t s of j o i n - i r r e d u c i b l e s . This i s

c l e a r for n = 1 . Suppose q £ Q and q = q V . . . v q , with no

q. = q . S i n c e q k ( Q u . . . u Q ) , k ? 0 . S i n c e e a c h q. < q , we
% 1 n I*

must have q. £ ( Q. u . . . u { > , the desired contradiction. •

Recalling the conventions stated just before Definition 7, Section 7,
we have

DEFINITION 2. A finite-state minimal realization of f : X* •+ Y i s

an implicit A-machine M = (Q, 6, E,, T, 6) and a scoop (Q, i , o) of

(Q, C) satisfying

( i i ) Q i s f i n i t e ,

( i i i ) subject to ( i ) , ( i i ) the number of elements of Q i s as

small as possible.

In t h i s context, Theorem 10, Section 7 asser ts

THEOREM 3. To find a nondeterministic minimal realization of f it
is necessary and sufficient to find an implicit nondeterministic
realization of f having fewest possible join-irredueibles. Q

In the deterministic case, T = id , Q = Q is the only scoop and the
notion is the usual one and coincides with the unique reachable and
observable realization. The following example shows, however, that
'minimal' need not even imply 'reachable'.

EXAMPLE 4. We now present an example due to Ehrig et al. [S, 10.6]
of a response whose nondeterministic minimal realization has fewer join-
irreducibles than the realization of Proposition k, Section 7. Let
X~ = {x} have one element, let Y be the semilattice of subsets of

{a, b, c, d} and let / : X* -*• Y be the sequence

f = alblcldllablacladll

(that i s , f[x°) = a , f(x ) = f[x^) = {a, b) ; II denotes cycling).
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As is well known, the state space Qr. of the deterministic minimal

realization of / may be constructed as the closure under the left-shift
X*Q

of f in y . Wr i t ing fti for fl , we r e a d i l y compute

fx = b/a/dl/ab/aa/adll ,

fx = oI dl IabIaaIadl I ,

fx3 = dllablaoladll ,

fxk+3k = I lab lac IadlI ,

fx5+3k = l/aalad/ab/l ,

fx6+3k = lladlablacll ,

so that Q. has the seven states: Q~ = {/, . .., fx } . Set Q to be the

X0subset of y of al l suprema (that i s , pointwise unions) of elements of
Qr. . Then Q is closed under left shift and is easily seen to be an
FSO . Moreover, Q becomes an implicit nondeterministic realization of /
with x = / and S(<?) = <?(A) where A is the empty word in X* . It is

clear from the earlier discussion of isolated elements that the join-
irreducibles of Q are just those elements of Q~ which cannot be

expressed as suprema of other elements of Q. . In this case, the only

such relation is fx = f V fx , so that Q has six join-irreducibles.
The state-graph of the corresponding nondeterministic sequential machine as
in the proof of Proposition 9> Section 7 (notice that we only use the
values of a on elements of form x or 6(q, x) and that on these values
a i s unique in this particular example) is
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X0Let a € Y be constantly a . Then R = Q u {a} is an FSO

containing 6 as a sub-RSO . However, R has only the five join-

r 2 3 ~i
i r r e d u c i b l e s R = { / , fx, f x , f x , a\ owing t o t h e r e l a t i o n s h i p s

fx V a = fx , fx V a = fx^ , fx = f V fx^ V a . The corresponding

nondetenninistic sequential machine is

fla

It i s obvious that no nondetenninistic realization of / can have only

four states, so th is realization is minimal. The image of the reachability

map T* : 2 -*• R (as in Theorem 3, Section 7) does not contain a .

EXAMPLE 5. We present a simple example of a response possessing two

minimal realizations corresponding to non-isomorphic implicit realizations

(only one is reachable and observable). Let X = {x} have one element,

let Y be the semilattice of subsets of {a, b} and let / : X* ->• Y be

the sequence

qn= f : alblallabll

(for notations see Example h). Then

q± = fx = blallabll ,

q2 = fx2 = allabll ,

q3 = fx3+k = llabll .

Then q~ = q^ V q = q v q giving r ise to two possible scoops and the

following two X^nachines

The X-algebra structure in both cases is
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q0/a ) ~*\ ql'b ) ~*V q2/a

Dynamic Structure

0

Semilattice Structure

It is easy to check that f cannot be realized using only two states, so

this implicit realization is minimal. Now consider the following three-

state X-machine which realizes f .

The corresponding implicit X-̂ nachine is shown below:

Dynamic structure

012

Semilattice structure

Both implicit realizations are reachable "but only the first is

observable.
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