
Appendix B

Algebraic topology

Having established the necessary background for integration on real and com-
plex manifolds in Appendix A, we now move on to the topological results that
allow us to manipulate these integrals in order to derive asymptotics. A differ-
ential form ω is said to be a closed form if dω = 0 and an exact form if ω = dτ
for some form τ. Many of the forms we care about are closed, for instance if ω
is any holomorphic n-form in Cn then ∂ω vanishes by holomorphicity and ∂ω
vanishes because there are no holomorphic (n + 1)-forms, hence ω is closed. A
chain C is called a cycle if ∂C = 0 and a boundary if C = ∂D for some chain
D. The boundaries form a subset (in fact, a sub-vector space) of the cycles
because ∂2 = 0.

By the same reasoning as our proof of Theorem A.27 in the last appendix,
the integral of any closed form over a boundary is zero. Thus, by linearity of
the integral, if C is a cycle, then

∫
C
ω depends only on the equivalence class

of C in the quotient space of cycles modulo boundaries. Homology theory
is the study of this quotient space, which may be thought of simultaneously
as a topological invariant and as classifying contours of integration for closed
forms. After studying various forms of homology, we dualize our constructions
and define cohomology of differential forms. Just as

∫
C
ω depends only on the

homology class of the chain C, it also depends only on the cohomology class
of the form ω.

B.1 Chain complexes and homology theory

Instead of working only with cycles of integration, we develop homology in a
more general setting. This approach better illustrates underlying structure, and
allows us to reuse results in different contexts. We therefore introduce the fol-
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B.1 Chain complexes and homology theory 463

lowing abstract definitions, which generalize some of the properties discussed
above.

(i) A chain complex is a collection C = {Cn : n = 0, 1, 2, . . .} of com-
plex vector spaces, not necessarily finite dimensional, together with a
boundary operator ∂, which for all n is a linear map ∂n from the space
of n-chains Cn to the space of (n − 1)-chains Cn−1 that satisfies ∂2 = 0
(meaning ∂n ◦∂n+1 = 0 for all n, so that “a boundary has no boundary””).
By definition, ∂ = 0 on C0.

(ii) The vector space of n-cycles Zn ⊆ Cn of a chain complex C is the kernel
of ∂n, and the group Bn ⊂ Cn of n-boundaries of C is the image of ∂n+1.

(iii) The nth homology group of C is the vector space quotient

Hn(C) := Zn/Bn .

The notation H∗(C) is used to refer collectively to Hn(C) for all n. Cycles in
the same equivalence class are called homologous.

Remark. Because we work with complex vector spaces, H∗(C) is sometimes
called homology with coefficients in C to distinguish it from the analogous
construction with integer coefficients. While the theory with integer coeffi-
cients is richer, taking coefficients in a field better suits the purposes of com-
puting integrals. With integer coefficients, the spaces of chains, cycles, and
boundaries are Z-modules, and their quotients are abelian groups, hence “ho-
mology group” rather than “homology vector space.”

To discuss the homology of a manifold, we must define an appropriate chain
complex. One natural candidate is the chain complex defined by smooth chains
together with the boundary map discussed in Section A.3 of Appendix A. For
many purposes, however, it is convenient to relax our smoothness condition.
IfM is any Hausdorff topological space then a singular n-simplex inM is a
continuous (not necessarily smooth) map σ : ∆n → M from the standard n-
simplex ∆n toM, and a singular n-chain inM is a complex linear combination
of singular n-simplices inM. Just as for smooth chains, we may use the natural
ordering of the faces of ∆n to define a canonical boundary map through (A.3.1),
taking a singular n-simplex to a singular (n−1)-simplex and extending linearly
to singular chains. It is a foundational result in homology theory that the ho-
mology of a manifold is unchanged whether one studies smooth or singular
chains.

Proposition B.1. LetM be a differentiable manifold, let C be the chain com-
plex whose chains are linear combinations of singular simplices on M, and
let C′ be the chain complex whose chains are linear combinations of smooth
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464 Algebraic topology

simplices onM. Then for any n ∈ N the homology groups Hn(C) and Hn(C′)
are isomorphic.

Proof See [Eil47]. �

We write C(M) for the chain complex defined by the singular n-chains inM.
The homology group Hn(C(M)) is written Hn(M) and called the nth singular
homology group of M. One can think of the rank of the homology group
Hn(M) – i.e., the minimum size of a generating set of the group – as indicating
how many unique cycles inM don’t bound anything.

Example B.2. The rank of H1(M) represents the number of nonequivalent
circles that can be drawn onM without bounding something inM. The rank
of H1(M) for a connected space M is thus zero if M is simply connected,
however the converse does not hold. Homology with coefficients in C cannot
detect the presence of a cycle γ such that γ does not bound anything but k times
γ does (homology with integer coefficients is more discerning but typically
more complicated to compute). /

Topological invariance of homology
The first crucial property of homology is that it is a topological invariant. A
topological map (or simply map) between two topological spaces is a continu-
ous function between them, while a chain map between two chain complexes
is a function between them that commutes with their boundary operators. More
precisely, if (A, ∂A) and (B, ∂B) are two chain complexes then a chain map be-
tween them can be considered to be a collection of functions f = ( f0, f1, . . . )
with fn : An → Bn mapping from the n-chains ofA to the n-chains of B, such
that ∂B

n ◦ fn = fn−1 ◦ ∂
A
n for all n.

A topological map from X to Y induces a chain map from the singular chain
complex of X to the singular chain complex of Y . A map f : A → B between
chain complexes in turn induces a homomorphism f∗ on homology groups
by applying the map to representatives for the equivalence classes of cycles
modulo boundaries. Both of these induced maps are functorial.

Proposition B.3. If the topological spaces X and Y are homeomorphic then
the singular homology groups Hn(X) and Hn(Y) are isomorphic for all n.

Proof A homeomorphism between topological spaces is a topological map
whose inverse is also a topological map. Hence, a homeomorphism between
two spaces induces an isomorphism between the homology groups of the spaces.

�
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Homology groups are preserved under more than just homeomorphism. If
X and Y are topological spaces then two maps f , g : X → Y are said to be
homotopic maps if there is a continuous map H : X × [0, 1] → Y , called a
homotopy, such thatH(x, 0) = f (x) andH(x, 1) = g(x) for all x. A topological
map f : X → Y is called a homotopy equivalence if there is a topological map
g : Y → X such that f ◦ g is homotopic to the identity on Y and g ◦ f is
homotopic to the identity on X. If f : X → Y is a homotopy equivalence then
we say that X and Y are homotopic spaces.

We claim that homotopic maps induce equal maps on homology, hence
homotopy equivalent spaces have naturally identical homology. To see this
one proves, on the chain level, that a homotopy equivalence between topo-
logical spaces induces a chain homotopy equivalence between the singular
chain complexes, which in turn induces an isomorphism between the homol-
ogy groups.

Proposition B.4. If a topological map f : X → Y is a homotopy equivalence
then the singular homology groups Hn(X) and Hn(Y) are isomorphic for all n,
with f∗ inducing one such isomorphism.

Proof See Theorem 2.10 and Corollary 2.11 of [Hat02]. �

Exercise B.1. Explain why a homeomorphism is always a homotopy equiva-
lence.

Suppose H : X × [0, 1] → X is a homotopy with H(x, 0) = x for all X, and
Y ⊆ X is a subspace such that H(x, 1) ∈ Y for all x. If H(y, t) ∈ Y for all y and
t (so that X ends in Y and Y stays in Y) then we call H a weak deformation
retract and say Y is a weak deformation retract of X. If H(y, t) = y for all y and
t then we call H a strong deformation retract (or simply deformation retract)
and say that Y is a strong deformation retract of X.

Exercise B.2. Prove that if Y is a weak deformation retract of X then X and Y
are homotopy equivalent.

Remark. Imagine looking at a space X that starts deforming in a continuous
manner, with points allowed to collide and pass through each other, ultimately
ending up in a different space Y . The space Y can be smaller, even a single
point, but Exercise B.2 implies that as long as every point that starts in Y stays
in Y then the homology of X is isomorphic to the homology of Y .

Various homologies and their equivalence
Working with the homology of smooth chains is nice because they are what we
integrate over, but this approach has some disadvantages. Most prominently,
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466 Algebraic topology

the large amount of freedom involved means the collection of chains on a man-
ifold is huge (not having a countable basis) even though the homology groups
are finite dimensional. Because of this we introduce new types of spaces with
more structure.

• A cell complex or CW-complex X is a Hausdorff space defined using a spe-
cific inductive procedure. Let X0 be a discrete collection of points and for
any n ≥ 0 let Xn be the quotient space, with quotient topology, defined by the
disjoint union Xn−1 tα ∆n

α of Xn−1 with a collection of standard n-simplices
∆n
α, where we identify each x ∈ ∂∆n

α with some φα(x) ∈ Xn−1 using gluing
maps φα : ∂∆n

α → Xn−1. The set Xn is the n-skeleton of X, and contains its
k-cells ∆k

α for k ≤ n. We consider finite dimensional cell complexes, mean-
ing X = Xn for some natural number n and the smallest such n is called the
dimension of the cell complex X. Each simplex ∆n

α corresponds to a map
σn
α : ∆n

α → X defined by embedding ∆n
α into Xn−1 tα ∆n

α and then taking the
quotient by the gluing maps.

• A ∆-complex is a cell complex X where the gluing map φα for any simplex
∆n
α maps each (n−1)-dimensional face F of ∆n

α homeomorphically to one of
the (n − 1)-simplices in X, preserving the ordering of vertices and agreeing
with the previously defined gluing map φF on ∂F. A ∆-complex X may be
viewed as a collection of maps σα : ∆nα → X such that the restriction of
σα to the interior of ∆nα is injective, each point of X lies in exactly one such
restriction, and the restriction of σα to a face of ∆nα is another one of the
maps σβ : ∆nα−1 → X in the collection defining X.

• A simplicial complex is a ∆-complex where each gluing map is injective
(so that distinct faces in the boundary of each simplex are glued to distinct
lower-dimensional simplices) and each n-simplex is uniquely determined by
its vertices. A simplicial complex X may be viewed as a set of simplices such
that every face of a simplex in X is also in X and the nonempty intersection
of any two simplices ∆1,∆2 ∈ X is a face of both ∆1 and ∆2.

We say that a space S is represented by a cell complex, ∆-complex, or
simplicial complex X if S and X are homeomorphic. The representation of a
space by a simplicial complex is called a triangulation of the space. Figure B.1
shows some examples representing a sphere and a circle.

The CW approximation theorem [Hat02, Proposition 4.13] states that any
Hausdorff space X can be approximated by a cell complex X̃ meaning, among
other things, that X and X̃ have the same singular homology groups. We are
most interested in algebraic varieties, or their complements, which are exam-
ples of semi-algebraic sets and can therefore be triangulated [BPR03, Theo-
rem 5.43].
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Figure B.1 Top left: The sphere S 2 can be represented as a cell complex with one
0-cell and one 2-cell whose boundary is mapped to the 0-cell, but this is not a
∆-complex. Top right: A representation of S 2 as a ∆-complex containing three 0-
cells, three 1-cells, and two 2-cells. Bottom left: The circle S 1 can be represented
as a ∆-complex with one 0-cell and one 1-cell whose boundary is identified with
the 0-cell, but this is not a triangulation. Bottom right: A triangulation of S 1 with
three 0-cells and three 1-cells.

The difficulties with singular homology for general topological spaces still
arise for ∆ and simplicial complexes. However, the additional structure present
allows us to define a more rigid notion of homology. If X is a simplicial com-
plex then the simplicial homology of X is the homology defined by the chain
complex C whose n-chains are complex linear combinations of the n-simplices
in X, with the boundary map again defined by (A.3.1). Simplicial homology is
crucial for calculation, due to the following result.

Proposition B.5. If X is a simplicial complex then the nth singular homol-
ogy group of X is isomorphic to the nth simplicial homology group of X. The
simplicial homology groups of X are algorithmically computable.

Proof See [Hat02, Theorem 2.27] for the statement on the equivalence of
the homologies, and [Mun84, Theorem 11.5] for an algorithm to determine
simplicial homology by representing the linear boundary maps of X as matrices
and computing their Smith normal forms. �

Among other corollaries, Proposition B.5 implies that a space which can
be represented by a ∆-complex with a finite number of simplices has finitely
generated homology groups. Although simplicial complexes have more struc-
ture than ∆-complexes, it can often be more efficient to represent a space as a
∆-complex compared to representing it as a simplicial complex.

Example B.6. We compute the homology of the circle S 1 by representing it
as the ∆-complex X with one point X0 = {p} and one line segment X1 = {`}

with both endpoints of ` glued at p. The 0-chains in this representation are

https://doi.org/10.1017/9781108874144.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781108874144.020
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the complex multiples of p, while the 1-chains are the complex multiples of `.
Any 0-chain is trivially a cycle, and the only boundary is ∂` = p − p = 0, so
H0(S 1) = C. This computation also shows that every 1-chain is a cycle, and
there are no non-trivial boundaries because there are no 2-cycles, so H1(S 1) =

C while Hk(S 1) = 0 for k ≥ 2. /

Exercise B.3. Compute the homology of the circle by triangulating it, veri-
fying you get the same result as Example B.6. Compute the homology of the
sphere S 2 using similar techniques.

B.2 Tools for homology

Although we can compute the homology of a variety, or the complement of a
variety, by triangulating the space and computing simplicial homology, this can
be very expensive (such algorithms are generally considered efficient if they
run in single-exponential instead of doubly-exponential time; see [Bas08] for
a survey of complexity results in this area). Furthermore, instead of computing
the entire set of homology groups of a singular variety, we often only need
some partial information in our integral manipulations, for instance throwing
away topological information that does not affect dominant asymptotics.

Because of such considerations, it is useful to have additional tools to com-
pute homology. One of the most effective approaches is to work recursively,
studying a space X using a subspace A ⊂ X and the quotient space X/A. The
relationship between the homology groups of X, X/A, and A is explicit but
intricate, with the homologies fitting into a type of nesting structure. We thus
require some additional algebraic constructions to describe precisely what is
going on.

An exact sequence of abelian groups (and in particular, complex vector
spaces) is a sequence of maps

· · · → Xn+1
fn+1
−−−→ Xn

fn
−→ Xn−1 → . . . ,

where the image of each map is equal to the kernel of the next. For instance, an
exact sequence of the form 0

ε
−→ A

α
−→ B says 0 = Image(ε) = Kernel(α), so α

is injective, while an exact sequence of the form A
α
−→ B

ε
−→ 0 says Image(α) =

Kernel(ε) = B, so α is surjective. A short exact sequence is an exact sequence
of the form

0→ X → Y → Z → 0 ,

meaning the map from X to Y is injective and the map from Y to Z is surjective.
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Remark B.7. When X,Y, and Z are finite dimensional complex vector spaces
of dimensions k, `, and m, respectively, then a short exact sequence 0 → X →
Y → Z → 0 implies ` = k + m and Y = X ⊕ Z as a direct sum. However,
this splitting is not natural: X embeds naturally into Y but there is no canonical
choice of coset representatives for Y/Z.

A short exact sequence of chain complexes is a map of chain complexes
which is a short exact sequence on the n-chains for all n. One very useful fact
about short exact sequences of chain complexes is that they give rise to long
exact homology sequences.

Theorem B.8 (Zig-Zag Lemma). Let 0 → A
α
−→ B

β
−→ C → 0 be a short exact

sequence of chain complexes. Then there is an exact sequence

· · · → Hn+1(C)
∂∗
−→ Hn(A)

α∗
−−→ Hn(B)

β∗
−→ Hn(C)

∂∗
−→ Hn−1(A)→ . . . , (B.2.1)

where α∗ and β∗ are the homology maps induced by the chain maps α and β.

Proof See [Mun84, Lemma 24.1]. �

The exact sequence (B.2.1) in Theorem B.8 is known as the long exact se-
quence on homology. The homology map ∂∗ has a natural but unwieldy defi-
nition; instead of defining it in general we describe it explicitly in the situation
most relevant to us in Corollary B.11 below.

Relative homology and excision
Our goal is to apply Theorem B.8 to a short exact sequence of chain complexes
related to embedding a subspace A into a space X and then taking the quotient
to map into X/A. In fact, we consider a slightly more general setting which is
also useful for our asymptotic calculations.

A pair of spaces (X, A) is any pair of topological spaces with A a subspace
of X. A pair map f : (X, A) → (X′, A′) between pairs of spaces is any (topo-
logical) map f : X → X′ such that f (A) ⊂ A′. The inclusion A ↪→ X induces
an inclusion of chain complexes C(A) ↪→ C(X), and we let C(X, A) denote the
pair complex whose n-chains are the quotient group Cn(X)/Cn(A). The rela-
tive homology of the pair (X, A) is the homology H∗(X, A) = H∗(C(X, A)) of
the pair complex.

One may think of relative homology roughly as the homology of X if the
subspace A were to be shrunk to a point: Hn(X, A) contains relative cycles
γ ∈ Cn(X) with ∂γ ∈ Cn−1(A) modulo relative boundaries β = ∂ζ + α, where
ζ ∈ Cn+1(X) and α ∈ Cn(A). We thus search for cycles that do not bound, but
are willing to count a chain as a cycle if its boundary is in A; see Figure B.2.
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X

Y

γ

Figure B.2 γ is a relative cycle in C(X,Y).

We often use relative homology to “ignore” regions that do not contribute to
dominant asymptotics in our integral manipulations.

The concept of homotopy equivalence is defined for pairs of spaces simi-
larly to the definition for spaces, and homotopy equivalent pairs have the same
relative homology.

Example B.9. Let X be the unit ball in Rn and A be the unit sphere S n−1. To
compute the homology of the pair (X, A) we consider the unit n-simplex ∆n

and its boundary: topologically (∆n, ∂∆n) and (Bn, S n−1) are homeomorphic,
so their relative homologies are the same. The simplicial chain complex for ∆n

contains all faces of ∆n, hence it has simplices in dimensions 0 through n. The
complex of the pair is non-trivial only in dimension n because every face of
dimension less than n is supported on ∂∆n. Proposition B.5 (that simplicial and
singular homology coincide) extends to pairs composed of a simplicial com-
plex and a subcomplex. Therefore, the singular homology of the pair (Bn, S n−1)
is computed by this rather small chain complex, leading to Hk(Bn, S n−1) � C

when k = n and 0 otherwise. /

Exercise B.4. What is the relative homology of (S 2, S 2
−), where S 2 is the 2-

sphere and S 2
− is the closed southern hemisphere?

Relative homology is useful for approximating integrals due to the following
result.

Proposition B.10 (asymptotics depend only on relative homology class). Let
X be a manifold of dimension n with submanifold Y also of dimension n, and
let φ be a smooth complex-valued function on X satisfying<{φ} ≤ β on Y for
some β ∈ R. Suppose that ω = ωλ = exp(λ φ(z)) η for some closed k-form η on
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X with k ≤ n. If C and C′ are k-chains on X with C ≡ C′ in Hk(X,Y) then, as
λ→ ∞, ∫

C

ωλ =

∫
C′
ωλ + O

(
eλβ

)
.

Proof By definition, the difference between C and C′ is a relative boundary
C − C′ = ∂D + C′′ with C′′ supported on Y . Using Stokes’s Theorem (Theo-
rem A.24), ∣∣∣∣∣∣

∫
C

ω −

∫
C′
ω

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
∂D

ω +

∫
C′′
ω

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
D

dω +

∫
C′′
ω

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
C′′
ω

∣∣∣∣∣∣ ≤
∫
C′′

eλβ|η| ≤ Keλc′ ,

where K =
∫
C′
|η| and the appearance of |η| in an integral means that when η is

pulled back to integrate, we integrate the modulus of the result. �

Let (X, A) be a pair for which A is a strong deformation retract of an open
neighborhood in X. It can be shown [Mun84, Ex. 39.2] that for all n ≥ 1
the relative homology group Hn(X, A) is isomorphic to the singular homol-
ogy group Hn(X/A) of the quotient X/A, obtained from X by shrinking A to a
point. This gives a way of computing the homology of a quotient X/A: apply-
ing Theorem B.8 to the short exact sequence of chain complexes 0→ C(A)→
C(X) → C(X, A) → 0 gives a long exact sequence computing H∗(X, A), and
hence H∗(X/A), from H∗(X), H∗(A) and some knowledge of the maps in the
long exact sequence.

Corollary B.11. Let A be a subspace of X. Then there is a long exact sequence
of the pair (X,Y),

· · · → Hn+1(X, A)
∂∗
−→ Hn(A)

i∗
−→ Hn(X)

j∗
−→ Hn(X, A)

∂∗
−→ Hn−1(A)→ · · · ,

where i∗ and j∗ are the maps induced by the inclusions of A into X, and X
into (X, A), respectively, and ∂∗ is the map induced by taking a relative cycle
γ ∈ Cn(X) to its boundary ∂γ ∈ Cn−1(A). When A is a deformation retract of
an open neighborhood in X then this long exact sequence holds with Hn(X, A)
replaced by H̃n(X/A), where the reduced homology group H̃n is the same Hn

when n > 0, and has dimension one less when n = 0.

Exercise B.5 (computing homology of S n−1). Let X = ∆n and let Y be the
subcomplex of cells with dimension strictly less than n. Use the long exact
sequence for the pair (X,Y) to determine Hn−1(Y).

One important feature of relative homology is the excision property.
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X

Y

γ

U

Figure B.3 (X \ U,Y \ U) ↪→ (X,Y) is a homology isomorphism.

Proposition B.12 (excision theorem). Given subspaces U ⊂ Y ⊂ X such that
U ⊂ int(Y), the inclusion (X \ U,Y \ U) ↪→ (X,Y) induces an isomorphism
H∗(X \ U,Y \ U) � H∗(X,Y).

Proof See [Hat02, Theorem 2.20]. �

Informally, Proposition B.12 says that the relative homology of (X,Y) can-
not see the interior of U; Figure B.3 gives an illustration. Relative homology
can also be used to define another important homology theory for cell com-
plexes. If X = Xn is a cell complex then the cellular chain complex of X is the
complex

· · · → Hn+1(Xn+1, Xn)
∂n+1
−−−→ Hn(Xn, Xn−1)

∂n
−→ Hn−1(Xn−1, Xn−2)→ · · · ,

where we define X−1 = ∅ and ∂n is the composition of the boundary opera-
tor mapping Hn(Xn, Xn−1) to Hn−1(Xn−1) with the inclusion of Hn−1(Xn−1) into
Hn−1(Xn−1, Xn−2). The homology groups of this cellular chain complex form
the cellular homology groups of X. Cellular homology is homology of (rela-
tive) homology, and can be surprisingly useful. Although its definition might
seem technical and contrived, Hn(Xn, Xn−1) can be interpreted easily as linear
combinations of the n-cells in X. The following result makes cellular homol-
ogy a tool for computation.

Proposition B.13. If X is a cell complex then the nth singular homology group
of X is isomorphic to the nth cellular homology group of X.

Among other things, Proposition B.13 implies that if X can be represented
by a cell complex with no n-cells then Hn(X) = 0. See [Hat02, Section 2.2] for
a full discussion of cellular homology, its implications, and a proof of Propo-
sition B.13.
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The homology of a union
Instead of decomposing a space X using a subspace and the corresponding
quotient space, we can instead represent X as a union X = A∪ B for subspaces
A, B ⊂ X such that X = int(A) ∪ int(B) and describe the homology of X in
terms of the homologies of A, B, and A ∩ B. In particular, there is a short
exact sequence of chain complexes defined by the short exact sequence in each
dimension,

0→ Cn(A ∩ B)
p
−→ Cn(A) ⊕Cn(B)

s
−→ Cn(A) + Cn(B)→ 0,

where p(a) = (−a, a) and s(a, b) = a+b, with Cn(A)+Cn(B) ⊆ Cn(X) denoting
a sum inside the space of chains on X. The corresponding long exact sequence
is known as the Mayer–Vietoris sequence.

Theorem B.14 (Mayer–Vietoris sequence). Let A, B ⊂ X be such that X is
the union of the interiors of A and B. Then the inclusion of the chain complex
C∗(A) + C∗(B) ↪→ C∗(X) induces an isomorphism in homology. It follows that
there is a long exact homology sequence

· · · → Hk(A ∩ B)→ Hk(A) ⊕ Hk(B)→ Hk(X)→ Hk−1(A ∩ B)→ · · · .

Proof See [Hat02, Proposition 2.21] or [Mun84, Theorem 33.1]. �

Exercise B.6. Use the Mayer–Vietoris sequence to re-compute the homology
of S n by decomposing it as the union of two hemispheres, expanded a little so
their interiors cover S n. How does the result of this computation relate to a geo-
metric understanding of two balls glued along their boundary? Try visualizing
in dimensions one and two for greatest intuition.

Attachments and the homology of a product
Relative homology is useful for our asymptotic computations because it allows
us to “ignore” points that are asymptotically negligible. In practice, to study
complex integrals whose domains of integration are allowed to vary in some set
Mwe describeM by attaching different spaces together as needed. In essence,
we expressM on-the-fly as a cell complex until we have enough information
to perform the necessary asymptotic computations (much more information on
this approach is given in the next appendix on Morse theory). This section, our
final on the basics of homology, describes product complexes, attachments,
and products of pairs.

Let C′ and C′′ be chain complexes with boundary maps ∂′ and ∂′′. The
tensor product complex (or simply product complex) of C′ and C′′ is the chain
complex C = C′ ⊗ C′′ whose n-chains Cn are defined by the direct sum Cn =⊕n

k=0 C′k ⊗ C′′n−k, where a basis for the tensor product C′k ⊗ C′′n−k is given by
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elements σk⊗τn−k as σk ranges over a basis for C′k and τn−k ranges over a basis
for C′′n−k. The boundary operator ∂ of C is defined by ∂(σk ⊗ τn−k) = (∂′σk) ⊗
τn−k + (−1)kσk ⊗ (∂′′τn−k). The product Z = X ×Y of two simplicial complexes
X and Y is naturally a cell complex, and this definition is constructed so that
the product chain complex C(X)⊗C(Y) is isomorphic [Mun84, Theorem 57.1]
to the cellular chain complex of Z.

Example B.15. Consider C = ∆1 as a cell complex with two 0-cells {[0], [1]}
and one 1-cell σ1 = [0, 1] oriented from 0 to 1, meaning that ∂σ1 = [1] −
[0]. Then C × C has four 0-cells {(0, 0), (1, 0), (0, 1), (1, 1)}, four 1-cells {σ1 ×

[0], σ1 × [1], [0] × σ1, [1] × σ1}, and one 2-cell σ1 × σ1. /

Exercise B.7. Write the circle S 1 as a cell complex, then describe the product
cell complex S 1×S 1. Compute the homology of S 1×S 1 from this cell complex.

The homology of a product is given by the Künneth formula. Because we
study homology with complex coefficients, the formula is relatively simple.

Theorem B.16 (Künneth product formula). IfC′ andC′′ are the singular chain
complexes for two cell complexes then there is a natural isomorphism⊕

p+q=n

Hp(C′) ⊗ Hq(C′′)→ Hn(C′ ⊗ C′′) .

Proof See [Mun84, Theorem 58.5]. �

Exercise B.8. Use the Künneth formula to compute the homology of S 1 × S 1

and verify it is the same as you computed in Exercise B.7.

Generalizing the attaching maps for cell complexes, the attachment of a
space Y to a space X along a closed subset Y0 ⊆ Y by the map φ : Y0 → X is
the topological quotient (X t Y)/φ obtained from the disjoint union of X and
Y by identifying each y ∈ Y0 with φ(y) ∈ X. The triple (Y,Y0, φ) is known as
attachment data.

Remark. When φ is one-to-one, attachments are more or less the same as
unions; that is, both X and Y naturally embed in the attachment and their union
covers the attachment. In general, an attachment can be thought of as a union of
a space X with a quotient Y/φ, where points y1, y2 ∈ Y0 are identified if φ(y1) =

φ(y2). While the two spaces in a union play symmetric roles, the attachment
of a space Y to a space X is described asymmetrically. This coincides with the
framework of filtered spaces built up by successive attachments, described in
the next appendix. Thus attachments, while not entirely new, provide a useful
way to build up a space.
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Finally, we define a product on pairs by

(X′,Y ′) × (X′′,Y ′′) =
(
X′ × X′′, X′ × Y ′′ ∪ Y ′ × X′′

)
.

One nice property of this definition is that the singular chain complex C(X,Y)
for a pair (X,Y) = (X′,Y ′) × (X′′,Y ′′) turns out to be isomorphic to a tensor
product of the singular chain complexes for the pairs (X′,Y ′) and (X′′,Y ′′). The
Künneth product formula for chain complexes results in a homology formula
for products of pairs.

Corollary B.17 (Künneth formula for pairs). For pairs (X′, X′′) and (Y ′,Y ′′),

Hn(X′ × X′′, X′ × Y ′′ ∪ Y ′ × X′′) = Hn((X′,Y ′) × (X′′,Y ′′))

�
⊕
p+q=n

Hp(X′,Y ′) ⊗ Hq(X′′,Y ′′) .

B.3 Cohomology

Given a chain complex

· · · → Cn+1
∂n+1
−−−→ Cn

∂n
−→ Cn−1 → · · ·

we may replace each vector space Cn by its dual Cn consisting of linear maps
from Cn to C. As for homology, we consider cohomology with complex co-
efficients. The elements of Cn are called n-cochains and the boundary map
∂n : Cn → Cn−1 on n-chains induces a dual map δn : Cn−1 → Cn on n-cochains:
if f ∈ Cn−1 is a linear map from Cn−1 to C then δn( f ) ∈ Cn is the linear map
f ◦ ∂n from Cn to C. It can be verified that δn ◦ δn−1 = 0 for all n, so we have a
cochain complex

· · · ← Cn+1 δn

←− Cn δn−1

←−−− Cn−1 ← · · · .

The quotient of the kernel of δn (the n-cocycles) by the image of δn−1 (the n-
coboundaries) is called the nth cohomology group of C and is denoted Hn(C).
The value of an n-cocycle ν evaluated at an n-cycle σ depends only on the
cohomology class [ν] of ν and the homology class [σ] of σ, so this evaluation
defines a product 〈ω, η〉 for ω ∈ Hn(C) and η ∈ Hn(C). If C = C(X) is the
singular chain complex (or smooth chain complex) of a topological space X,
then we use the notation Cn(X) = Cn for the singular n-cochains of X and
Hn(X) = Hn(C) for the nth singular cohomology group of X. If X is a cell
complex then Hn(X) is the dual space of Hn(X).
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The functor taking a topological space to its singular or smooth chain com-
plex is covariant, as is the functor from a chain complex to its homology
groups. Hence, as noted above, any map f : X → Y of topological spaces
induces maps f∗ : C(X) → C(Y) and f∗ : H∗(X) → H∗(Y). Conversely, the
singular or smooth cochain complex of a space is a contravariant functor, so a
map f : X → Y induces a map f ∗ : H∗(Y)→ H∗(X).

On a manifold we may identify a p-form ω with the smooth p-cochain de-
fined by α 7→

∫
α
ω. Using the definition of the coboundary δ and Stokes’s

Theorem,

δω(C) = ω(∂C) =

∫
∂C

ω =

∫
C

dω = dω(C) .

In other words, δω = dω, so cocycles correspond to closed forms and we have
the following.

Theorem B.18 (integral depends only on homology class). Let ω be a closed
p-form holomorphic on an embedded complex manifoldM ⊆ Cn (if p = n then
ω is always closed). Let C be a singular p-cycle on M. Then

∫
C
ω depends

on C only via the homology class [C] of C in Hp(M) and on ω only via the
cohomology class [ω] of ω in Hp(M). �

This theorem is one reason for our detour into topology. Another is the de
Rham Theorem. Let ι be the map that takes the smooth p-form ω and maps it
to the p-cochain C 7→

∫
C
ω as C varies over p-chains. This map is in general

not a bijection: there may be linear maps on chains that are not represented by
integrals of smooth forms. Nevertheless, the induced map ι∗ will be an isomor-
phism from the singular cohomology ofM with coefficients in R or C to the
cohomology H∗DR of the de Rham complex of smooth p-forms with cobound-
ary given by the differential operator d.

Theorem B.19 (de Rham Theorem). Let X be a real manifold. The identifica-
tion of p-forms with cochains induces an isomorphism H∗DR(X) � H∗(X) .

Proof See [Lee03, Theorem 18.7]. �

Remark. A product called the cup product may be defined on cochains, sat-
isfying a product rule with respect to the d operator. The cup product endows
cohomology with the structure of a graded C-algebra, and the isomorphism
in the de Rham Theorem is in fact a ring isomorphism, mapping the wedge
product to the cup product.
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B.4 Topology of complex manifolds

For us, complex manifolds usually arise as (subsets of) varieties or the comple-
ments of varieties in Cd

∗ , with ACSV requiring the integration of holomorphic
forms over chains of real dimension p contained in complex p-manifolds. This
final section shows how the complex structure of a complex p-manifold makes
it behave in several ways like a real p-manifold, even though it actually has
real dimension 2p.

Proposition B.20 (Andreotti–Frankel Theorem). If X is a complex p-manifold
embedded in Cn for some n ≥ p then X is homotopy equivalent to a CW
complex of dimension at most p. It follows that the singular homology groups
Hk(X) and singular cohomology groups Hk(X) vanish for all k > p.

Proof Andreotti and Frankel [AF59] proved this for smooth algebraic (and
analytic) varieties using Morse theory. A sketch is given at the end of Ap-
pendix C. �

Remark B.21. The complex projective space CPk is a complex manifold hav-
ing nonvanishing homology in all even dimensions up to 2k. Therefore it vi-
olates the conclusions of the Andreotti–Frankel Theorem, and cannot be em-
bedded in Cn for any n. This contrasts to the real case, where the Whitney
embedding theorem states that any real k-manifold can be embedded into R2k.

In fact, we can compute homology by considering only holomorphic forms.
If M is a complex p-manifold then the operator ω 7→ dω preserves holo-
morphicity, so the holomorphic forms on M define a sub-cochain complex
Cn,holo of the de Rham complex Cn, called the holomorphic de Rham com-
plex. The inclusion Cn,holo ↪→ Cn does not, in general, induce an isomorphism
on cohomology, but once again this difficulty can be overcome by restricting
to manifolds embedded in complex space.

Proposition B.22 (holomorphic de Rham cohomology). LetM be a complex
p-manifold embedded in Cn. Then the inclusions Cn,holo(M) ↪→ Cn(M) induce
an isomorphism of cohomology rings. In particular, Hholo,k(M) � Hk(M) for
all k ≥ 0. �

Proof See Voisin [Voi02] and the notes at the end of this appendix. �

We finish this appendix by observing a corollary of Proposition B.10 in the
complex setting.

Corollary B.23 (asymptotics depend only on relative homology class). Let X
be a complex manifold of dimension n with submanifold Y also of dimension
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n, and define ω = ωλ = exp(λ φ(z)) η for some holomorphic n-form η and
holomorphic function φ on X. When C ≡ C′ in Hn(X,Y) with Re{φ} ≤ β on Y
then, as λ→ ∞, ∫

C

ωλ =

∫
C′
ωλ + O

(
eλβ

)
.

Proof This follows immediately from Proposition B.10, because dω = 0 for
a holomorphic n-form on a complex n-manifold. �

Notes

From their origins near the end of the nineteenth century, homology and co-
homology have become crucial tools in many areas of mathematics. Much of
our presentation of the material in this appendix follows Hatcher [Hat02] and
Munkres [Mun84], and further details can be found in those sources.

The Andreotti–Frankel Theorem is true in much greater generality than
Proposition B.20: for instance, it holds for all algebraic varieties in complex
affine space, regardless of whether they are smooth or singular. This was first
proved in [Kar79] via stratified Morse theory. The complement of a varietyVQ

is biholomorphically equivalent to the variety V1−zd+1Q in one greater dimen-
sion, hence complements of d-dimensional affine algebraic varieties are also
homotopy equivalent to d-dimensional cell complexes.

Voisin [Voi02] proves Proposition B.22 by showing that holomorphic de
Rham hypercohomology (cohomology with coefficients in a sheaf resolution)
is the same as the ordinary de Rham cohomology, hence the same as smooth
cohomology and singular cohomology. For Stein spaces, such as embedded
complex manifolds, this resolution is flat and holomorphic de Rham hyperco-
homology boils down to the cohomology of the holomorphic de Rham com-
plex itself. Special cases were known earlier; for example, if A is a complex
hyperplane arrangement then Brieskorn [Bri73] showed that the forms d f / f as
f varies over annihilators of hyperplanes in A generate the cohomology ring
of the complementM ofA.

Additional exercises

Exercise B.9. Define the Möbius strip as the quotient of the cell complex
representing the unit square as ∆1 × ∆1 via the three identifications (0, 0) ∼
(1, 1), (0, 1) ∼ (1, 0) and (0) × ∆1 ∼ −(1) × ∆1.

(1) What is the dimension of this cell complex?
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(2) Give a basis for each space Z0, B0,Z1, B1,Z2, and B2.
(3) Compute the homology of the Möbius strip with coefficients in C from this

cell complex.
(4) What changes, if anything, if you use coefficients in Z instead of coeffi-

cients in C?

Exercise B.10. Let X = C∗ = C \ {0} be the punctured plane, the simplest case
of the complement of a hyperplane arrangement. To establish the complex de
Rham Theorem for H1(X) we need to show that holomorphic 1-forms ω and
θ map to the same element of the dual of H1(X) if and only if they differ by a
coboundary d f .

(1) Use Theorem B.18 to prove the forward implication.
(2) Compute the homology of X by verifying that the embedding of S 1 into X

is a homotopy equivalence.
(3) Let ω be any holomorphic 1-form on X. Use Stokes’s Theorem to show

that
∫
C
ω = 0 for any C homologous to zero in H1(X).

(4) Let γ be the unit circle oriented, say, counterclockwise, and let η = ω −

cdz/z, where c = (2πi)−1
∫
γ
ω. Show that

∫
C
η = 0 for every C ∈ Z1(X).

Hint: Use part 2.
(5) Show that

∫
γ
ω =

∫
γ
θ impliesω−θ = d f for some holomorphic function f .

Hint: You can construct f by integrating from an arbitrary fixed basepoint.

Exercise B.11. Let X be the complex curve {(x, y) ∈ C2 : x2 + y2 = 1}. By
the Andreotti–Frankel Theorem, it is homotopy equivalent to a cell complex
of (real) dimension 1. Demonstrate this by finding a deformation retract of X
onto a one-dimensional manifold.
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