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TABLEAUX REALIZATION
OF GENERALIZED VERMA MODULES

VOLODYMYR MAZORCHUK

ABSTRACT. We construct the tableaux realization of generalized Verma modules
over the Lie algebra sl(3Ò C). By the same procedure we construct and investigate the
structure of a new family of generalized Verma modules over sl(nÒ C).

1. Introduction. The structure theory of Verma modules over semisimple complex
finite-dimensional Lie algebras ([3]) is based on the theory of finite-dimensional modules
over the Lie algebra sl(2Ò C). The classical methods of investigation of finite-dimensional
sl(2Ò C)-modules provide a clear geometrical realization for these modules by choosing
an eigenbasis with respect to a Cartan subalgebra. In this basis it is possible to write
down explicit formulae defining an action of the generating elements.

During the last decade there appeared many papers (see [2, 6] and references therein)
where a class of the so-called stratified generalized Verma modules (different from
those studied in [13]) was investigated. For the simplest case of such modules the
structure theorem generalizing the well-known BGG theorem ([3, Theorem 7.6.23]) was
proved in [6]. The proof is based on the technical results from [7] where the structure
of a generalized Verma sl(3Ò C)-module induced from a simple weight sl(2Ò C)-module
without lowest and highest weights was studied. The main result in [7] was obtained
by a hard direct calculation. The same method was used in [6] to obtain an analogues
result in the case of the Lie algebra of type B2. In [12] an analogue of the BGG theorem
was obtained by a geometrical realization of generalized Verma modules induced from
a “well-embedded” sl(kÒ C) subalgebra of the algebra sl(nÒ C).

In the present paper we propose a geometrical realization (which we call the tableaux
realization with respect to the Gelfand-Zetlin subalgebra) for a larger family of general-
ized Verma modules. In this way we easily reobtain without any calculation all the results
from [7] for modules having the tableaux realization. This enables us to obtain a structure
theorem for a large class of generalized Verma modules over sl(nÒ C) induced from an
arbitrary semisimple “well-embedded” subalgebra. Moreover, in some special cases we
construct a composition series for a generalized Verma module. In sl(3Ò C) case this was
done in [7]. But those methods could not be applied to a non-simply-laced case or to
the case investigated in [12]. Moreover, even the structure of the maximal submodule
in a generalized Verma module is unknown. We describe the structure of the maximal
submodule and construct a composition series of some generalized Verma modules over
sl(nÒ C). We also formulate a conjecture for all cases.
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Let us briefly describe the structure of the paper. In Section 2 we give all necessary
basic preliminaries. In Section 3 we collect all information on Gelfand-Zetlin modules.
In Section 4 we define a set of modules with the tableaux realization and present some
examples of such modules including finite-dimensional modules, generic GZ-modules
and a subclass of Verma modules. In Section 6 we construct the tableaux realization for
a huge class of ã-stratified generalized Verma modules over sl(3Ò C). Using the same
procedure in Section 7 we construct a new family of generalized Verma modules and
investigate their structure (Proposition 3, Corollary 3). Finally, in Section 8 we obtain
a structure theorem for a class of generalized Verma sl(nÒ C)-modules induced form
an arbitrary “well-embedded” semi-simple subalgebra (Theorem 1). As a corollary we
obtain a criterion of irreducibility for such modules (Corollary 4).

2. Preliminaries. Let C denote the field of complex numbers, Z denote the ring of
integers and N denote the set of positive integers. We will also denote by Z+ the set of
all non-negative integers.

For a Lie algebra ¤ by U(¤) and Z(¤) we will denote the universal enveloping
algebra of ¤ and the center of U(¤) correspondingly.

Let÷ be a simple finite-dimensional complex Lie algebra with a fixed Cartan subalge-
braÎ and the root system ∆. Let ô be a basis of ∆ and ∆ = ∆�[∆+ be the decomposition
of ∆ into positive and negative roots with respect to ô. For ã 2 ∆ let ÷ã be the root
subspace of ÷ corresponding to the root ã and Xã be the corresponding element from a
fixed Weyl-Chevalley basis. For ã 2 ∆+ we also set Hã = [XãÒX�ã].

LetËš denote Lie subalgebra of÷ generated by Xšã, whereã runs through ∆+. Then

÷ = Ë� ýÎýË+

is a triangular decomposition of ÷.

For a ÷-module V and ï 2 ÎŁ set

Vï = fv 2 V j hv = ï(h)v for all h 2 Îg

If Vï is non-trivial we will say that Vï is a weight subspace of V and in this case we will
call ï a weight of V. A module V will be called weight module provided

V =
M
ï2ÎŁ

Vï

Each non-zero element from Vï will be called weight element. Note, that here we do not
assume that Vï is finite-dimensional. For a weight÷-module V we denote by Supp V the
set of all weights of V. Clearly, each submodule and each quotient of a weight module is
a weight module.

From now on all the modules are assumed to be weight modules.
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3. Gelfand-Zetlin modules. In this section we collect all necessary information
about the so-called Gelfand-Zetlin modules. We will follow closely [4, 14] (see also [1]).

Consider the Lie algebra ÷m = gl(mÒ C) for m ½ 1. We fix the following notations:
Um = U(÷m) and Zm = Z(÷m), m ½ 1. For a fixed n ½ 1 set ÷ = ÷n, U = Un and
for m Ú n identify ÷m with the Lie subalgebra of ÷ generated by the matrix units
feij j iÒ j = 1Ò    Òmg. In this way we obtain the following inclusions:

÷1 ² ÷2 ² Ð Ð Ð ² ÷n = ÷ and U1 ² U2 ² Ð Ð Ð ² Un = U

Denote by Γ the subalgebra of ÷, generated by fZm j m = 1Ò    Ò ng. Following [4]
we will call it Gelfand-Zetlin subalgebra (GZ-subalgebra) of U.

It is well-known (see for example [14]), that Γ is a polynomial algebra in n(n + 1)Û2
variables clk, where

clk =
X

i1ÒÒik=1ÒÒl
ei1i2ei2i3 Ð Ð Ð eiki1 Ò 1 � k � l � n

Following [4] and [14] we choose a new set of generators for Γ. Set L = L(n) = Cn(n+1)Û2.
The elements from L will be called tableaux and will be viewed as double indexed
families

[l] = flij j i = 1Ò    Ò n; j = 1Ò    Ò ig

For [l] 2 L denote [l]i = flij j j = 1Ò    Ò ig the i-th row of [l]. We will also need a
subset L0 ² L consisting of all [l] such that lnj = 0 for all possible j and lij 2 Z for all
1 � j � i Ú n.

Consider the polynomial algebra Λ in n(n + 1)Û2 variables ïij, 1 � j � i � n. We
can identify Λ with the algebra of polynomial functions on L by setting ïij([l]) = lij.
The product of symmetrical groups G = S1 ð S2 ð Ð Ð Ð ð Sn acts on L in a natural
way: Si permutes the elements of [l]i . This induces a natural action of G on Λ. Define a
homomorphism Ω: Γ ! Λ in the following way:

cij 7!
iX

k=1
(ïik + i)j Y

l6=k

�
1 �

1
ïik � ïil

�


Then Ω(Γ) coincides with the set of G-invariants in Λ ([14]). From now on we will
identify Γ with its image in Λ. Let çij denote the j-th elementary symmetric function in
ïi1Ò    Ò ïii. Clearly, fçij j 1 � j Ú i � ng generates the polynomial ring Γ.

For a ÷-module V and ü 2 ΓŁ set

Vü =
n

v 2 V j there exists t 2 N such that
�
c � ü(c)

�t
v = 0 for all c 2 Γ

o


If Vü is non-trivial we will say that Vü is a GZ-root subspace of V and in this case we
will call ü a GZ-weight of V. Any non-zero element v 2 Vü will be called GZ-element.
A ÷-module V will be called Gelfand-Zetlin module (GZ-module) provided

V =
M
ü2ΓŁ

Vü and dim Vü Ú 1 for all ü 2 ΓŁ
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For a GZ-module V we will denote by GZsupp V the set of all GZ-weights of V. If the
action of Γ is diagonalizable on Vü we will say that Vü is a GZ-weight space and will
denote it by Vü. Each non-zero element from Vü will be called GZ-weight element.

Since we identify Γ with Ω(Γ) we can parametrize an element ü 2 ΓŁ by the tableau
[l] 2 L. In this case we will say that the GZ-root (weight) space Vü (Vü) has the tableau
[l] and will denote it by V[l] (V[l]).

Let V be an indecomposable GZ-module and ü 2 GZsupp V. Suppose that ü has a
tableau [l] 2 L. Then there exists a subset P([l]ÒV) in [l]+L0 whose elements parametrize
all GZ-weights of V ([4]).

Clearly, any weight (with respect to the Cartan subalgebra) ÷-module with finite-
dimensional weight spaces is a GZ-module. Thus, each Verma module ([3]) is a GZ-
module.

Since gl(nÒ C) is a splitting central extension of sl(nÒ C) one can consider each gl(nÒ C)-
module as an sl(nÒ C)-module by restriction. Moreover, each sl(nÒ C)-module defines a
C-family ([12]) of gl(nÒ C)-modules with different “central charges”. We will formulate all
our results for the reductive algebra gl(nÒ C) as it done in [4]. One can easily reformulate
them for sl(nÒ C) case.

4. Modules with the tableaux realization. A tableau [l] 2 L will be called good
provided lij 6= lik for all 1 � j Ú k � i Ú n and bad in the opposite case.

A ÷-module V is said to have the tableaux realization if it is GZ-weight module, all
GZ-weight spaces are one-dimensional and have good tableaux.

Let éij be the Kronecker tableau i.e. éij
ij = 1 and éij

i0j0 = 0 for i 6= i0 or j 6= j0.

LEMMA 1. Let V be a ÷-module which has the tableaux realization. Suppose that
V[l] 6= 0 for some [l] 2 L. Then V ' W, where ÷-module W is defined as follows: it has
the C-basis v[t] for [t] 2 P([l]ÒV) and the action of elements from ÷ is defined by the
following formulae:

cijv[t] = cij([t])v[t]Ò Eš
i v[t] =

iX
j=1

ašij ([t])v[t]šéij Ò

where E+
i = ei i+1, E�

i = ei i�1, i = 1Ò    Ò n � 1, j = 1Ò    Ò i and

cij([t]) =
iX

k=1
(tik + i)j Y

s6=k

�
1 �

1
tik � tis

�
;

ašij ([t]) = Ý
Q

k(tiš1 k � tij)Q
k6=j(tik � tij)



PROOF. Follows from [4, Theorem 24, Proposition 20, Proposition 22].

The last lemma implies that a ÷-module with the tableaux realization has clear
geometrical structure. Thus the question to give the tableaux realization for a given
module seems to be rather interesting. We will call the formulae from Lemma 1 Gelfand-
Zetlin formulae (GZ-formulae). The basis fv[l]gwill be called GZ-basis. Note, that these
formulae appear first time in the original papers by Gelfand and Zetlin ([9, 10]).
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The following lemma is obvious:

LEMMA 2. If a ÷-module V has the tableaux realization then each submodule and
each quotient of V also has the tableaux realization.

Now we can give some examples of modules having the tableaux realization.

4.1. Finite-dimensional modules. The first result from which the theory of GZ-modules
arose were the result from [9] where there was proved that each simple finite-dimensional
÷-module has a basis fv[l]gwith [l] such that lij 2 N for all possible iÒ j and lij ½ li�1 j Ù

li j+1. Moreover, the action of elements of the algebra÷ in this basis is defined by the GZ-
formulae. Thus, directly from the definition we obtain that each simple finite-dimensional
÷-module has the tableaux realization.

4.2. Generic GZ-modules. The second class of modules having clear tableaux realiza-
tion is a huge family of GZ-modules constructed in [4].

Consider a tableau [l] 2 L such that lij � lik 62 Z for all possible i and j 6= k. Let V be
a C-space with the basis v[t], [t] 2 [l] + L0. Then GZ-formulae define on V a structure of
a ÷-module ([4]). Clearly, such modules arise together with their tableaux realization.

An interesting subclass of such modules compose the so-called generic GZ-modules
([12]). These modules can be obtained from the original tableau [l] satisfying the fol-
lowing condition: li+1 j � lik 62 Z for all possible jÒ k and i Ú n. One can easily show that
each simple generic module does not have non-trivial extensions with a non-isomorphic
simple GZ-module in the category of GZ-modules ([4]).

4.3. Generic Verma modules. Forï 2 ÎŁ let M(ï) be the Verma module corresponding
to ÷, Î, ï and ô ([3]). Since M(ï) is a weight module with finite-dimensional weight
spaces it is also a GZ-module. But it may happened that some GZ-weights of M(ï) have
bad tableaux. For example, it follows immediately from the construction of the GZ-basis
for finite-dimensional ÷-modules that for any dominant integral ï the corresponding
module M(ï) necessarily has a GZ-weight parametrized by a bad tableau.

Now we construct the tableaux realization for a huge family of Verma modules those
are “opposite” in some sense to the modules with dominant integral highest weight. Let
a = (a1Ò    Ò an) 2 Cn be such that ak � aj 62 Z for all 1 � j Ú k � n. Consider a tableau
[l] = [l](a) defined as follows: lij = aj for all 1 � j � i � n. Let P([l]) denote the set of
all tableaux [t] satisfying the following conditions:

1. lnj = tnj , j = 1Ò    Ò n;
2. lij � tij 2 Z+ for all 1 � j � i Ú n;
3. tij � ti�1 j ½ 0 for all 1 Ú i � n, 1 � j � i.

LEMMA 3. Let [t] 2 P([l]) and ašij ([t]) 6= 0 (here ašij is an expression from the GZ-
formulae). Then [t] š éij 2 P([l]).
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PROOF. Let a+
ij([t]) 6= 0. Hence tij 6= ti+1 k for all 1 � k � i + 1 and thus tij Ú ti+1j (here

a Ú å means 0 Ú å � a 2 R) since [t] 2 P([l]). Clearly, this implies [t] + éij 2 P([l]).
For a�ij the proof is analogous.

Applying [4, Section 2.3] to the set P([t]) we obtain:

COROLLARY 1. Let V = V([l]) be a C-space with the basis fv[t], [t] 2 P([l])g.
1. The GZ-formulae define on V the structure of a ÷-module;
2. Ë+v[l] = 0;
3. If Ë+v[t] = 0 then [t] = [l].

PROOF. The first statement is a straightforward corollary from [4]. The second and
the third ones follow from the GZ-formulae.

PROPOSITION 1. Let ï � ö 2 ÎŁ be a weight of v[l]. Then
1. V is generated by v[l];
2. M(ï) ' V;
3. M(ï) is irreducible.

PROOF. The first statement follows from the GZ-formulae by direct calculation. To
prove the rest consider M(ï). It is a GZ-module with P

�
[l]ÒM(ï)

�
² P([l]). Since all

tableaux from P([l]) are good it follows by direct calculation that V and M(ï) have equal
dimensions of the weight spaces with respect to Î. Thus M(ï) ' V. But V is simple
since v[l] is the unique (up to a scalar) primitive element in V by Corollary 1.

By Proposition 1 we construct the tableaux realization for a family of Verma modules
defined by n (or n � 1 in the case of sl(nÒ C)) parameters (a1Ò    Ò an) lying in “general
position” (this means that ai � aj 62 Z), i.e. generic Verma modules. The following
properties of generic Verma modules are easy:

LEMMA 4. Let M(ï) be a generic Verma module then
1. Ext1

�
M(ï)ÒM(ñ)

�
= Ext1

�
M(ñ)ÒM(ï)

�
= 0 for any ñ 2 ÎŁ;

2. M(ï) 
 F is completely reducible for any finite-dimensional module F.

PROOF. The first statement follows from the fact that the GZ-weight lattices of M(ï)
and M(ñ) have empty intersection. The second one follows from the Kostant theorem
([11]).

And finally we have:

COROLLARY 2. Let M(ï) be a generic Verma module with primitive generator v
having the tableau [l] 2 L. Then [l] = [l](a) for some a 2 Cn (see the definition of the
set P([l])).

PROOF. Follows from Proposition 1 and [4, Theorem 17, Theorem 24].

Regretfully, we can not construct the tableaux realization for an arbitrary Verma
module since till now there does not exist any generalization of the GZ-formulae in the
case of modules with non-trivial GZ-root subspaces.
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5. Generalized Verma modules. Consider a subset S ² ô and let ∆S be the root
subsystemof ∆ generated by S. Denote by÷S a semisimple Lie subalgebra of÷ generated
by Xã, ã 2 ∆S and by ËS the subalgebra of Ë+ generated by all Xã, ã 2 ∆+ n ∆S. Let
ÎS = Î\ ÷S be a Cartan subalgebra of ÷S and ÎS be the complement to ÎS in Î with
respect to the standard form onÎ.

Set ö = 1
2
P
ã2∆+ ã, öS = 1

2
P
ã2∆+\∆S ã and öS = ö � öS.

Consider a parabolic subalgebra ”S = ÷S + Î + Ë+. An important role in the rep-
resentation theory of ÷ is played by the so-called generalized Verma modules (GVM),
those are the universal modules in a category of ÷-modules induced form ÷S ([2]).

Let V be an irreducible weight ÷S-module and ï 2 (ÎS)Ł. Putting ËSv = 0 and
hv = (ï(h) � öS)v for all v 2 V and h 2 ÎS we define a ”S-module structure on V. The
module

M(ïÒV) = U(÷)
O

U(”S)
V

is called generalized Verma module corresponding to ô, S, V and ï.
A non-zero element w of a ÷-module W will be called S-primitive provided ËSv = 0.

Clearly, each element of the form 1 
 v 2 M(ïÒV) for 0 6= v 2 V is S-primitive. The
following statement describes the universal property of M(ïÒV) ([2]):

LEMMA 5. Let W be a weight ÷-module generated by an S-primitive element v such
that the module U(÷S)v is simple. Then W is a quotient of a generalized Verma module.

A÷-module V is called S-stratified ([2]) provided the action of Xã,ã 2 ∆S is injective
on V.

Note, that recently there appeared a number of papers devoted to the study of GVM,
see for example [2, 5, 6, 7, 12] and references therein.

6. Tableaux realization forã-stratified generalized Verma modules over sl(3Ò C).
Let ÷ = sl(3Ò C), Î consist of all diagonal matrices with zero trace, ∆ be the standard
root system with a basis ô = fãÒ åg and S = fãg. We fix the standard Weyl-Chevalley
basis in ÷.

In the case when S = fãg, S-stratified modules are also called ã-stratified ([2]). The
structure of ã-stratified generalized Verma modules over÷ was investigated in [7]. The
aim of this section is to construct the tableaux realization for ã-stratified GVM M(ïÒV),
ï 2 (Îã)Ł.

It is well-known ([2]) that M(ïÒV) is ã-stratified if and only if V is an irreducible
weight sl(2Ò C)-module without highest and lowest weights. Unfortunately, there exists
an ã-stratified GVM such that the action of the “small Casimir operator” C = (Hã +
1)2 + 4X�ãXã is not diagonalizable on it. And this is the case as soon as our GVM
has the biggest possible number of non-trivial submodules ([7]). Thus, we are not able
to construct the tableaux realization for such GVMs in our terms. To overcome this
difficulty we need a notion of the backward GZ-modules.
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The GZ-modules defined in Section 3 correspond to the inclusions gl(kÒ C) ²

gl(k + 1Ò C) with respect to the left upper corner of the matrix. We will call such mod-
ules forward GZ-modules. One can consider another kind of inclusions with respect to
the right lower corner. More precisely, one can identify gl(kÒ C) with the subalgebra of
gl(k + 1Ò C) generated by matrix units feij j iÒ j = 2Ò    Ò k + 1g. Following the same
procedure as in Section 3 one obtains a class of backward GZ-modules. We will call
the corresponding GZ-subalgebra backward GZ-subalgebra and will denote it by Γb.
For backward GZ-modules we will use the same notations as for forward GZ-modules,
adding “backward” to them.

Clearly, each weight module with finite-dimensional weight spaces necessarily is a
forward GZ-module as well as a backward GZ-module.

LEMMA 6. There exists a forward GZ-module V over gl(nÒ C) which is not a backward
GZ-module and vice versa.

PROOF. Let V be a generic forward GZ-module defined in Section 4. Consider the
element a = en�1 nenn�1 2 Γb. The GZ-formulae imply immediately that a has no
eigenvectors on V an thus V can not be a backward GZ-module.

Since every ã-stratified GVM is a weight module with finite-dimensional weight
spaces it is both forward and backward GZ-module.

It was mentioned that any Verma module M(ï) with a dominant integral ï has no
tableaux realization. In this section we will show that almost all analogous ã-stratified
generalized Verma modules (over sl(3Ò C)) has the tableaux realization as backward
GZ-modules.

Set ÷å = hXåÒX�åÒHåi.

As a first step we construct a family of generic ã-stratified GVM together with their
tableaux realization.

Consider a map Φ:C4 ! L defined as follows: Φ(aÒ bÒ cÒ x) = [l], where

li1 = aÒ i = 1Ò 2Ò 3; l22 = x; l32 = b; l33 = c

Let [l] = Φ(aÒ bÒ cÒ x). Consider a set Pã([l]) consisting of all tableaux [t] such that

1. t3j = l3j , j = 1Ò 2Ò 3;
2. t22 � l22 2 Z;
3. li1 � ti1 2 Z+, i = 1Ò 2;
4. t11 � t21.

Let V = V([l]) be a C-space with the basis v[t], [t] 2 Pã([l]).

LEMMA 7. 1. If x � a 62 Z then the backward GZ-formulae define on V the structure
of a ÷-module.

2. V is ã-stratified if and only if x � cÒ x � b 62 Z.
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PROOF. The first statement follows from [4]. The second one follows easily from the
backward GZ-formulae.

The following statement covers all results from [7] for modules defined above.

PROPOSITION 2. Suppose that x � aÒ x � bÒ x � c 62 Z. Then
1. V is an ã-stratified GVM.
2. All ã-primitive generators of V have the following form:

nX
k=�n

siv[l]+ké22Ò si 2 C

3. If v[t] is an ã-primitive element then either b = t21 = t11 or c = t21 = t11.
4. V is irreducible if and only if a� b 62 N and a � c 62 N.
5. If a � b 2 N and a � c 62 N then V has the unique submodule W generated by

an ã-primitive element which has the tableau [t] = Φ(bÒ aÒ cÒ x). Both W and VÛW are
irreducible.

6. If a � c 2 N and a � b 62 N then V has the unique submodule W generated by
an ã-primitive element which has the tableau [t] = Φ(cÒ aÒ bÒ x). Both W and VÛW are
irreducible.

7. If a � b 2 N, b � c 2 N then W1 ² W2 ² V, where W1 is generated by an
ã-primitive element which has the tableau [t] = Φ(cÒ aÒ bÒ x) and W2 is generated by
an ã-primitive element which has the tableau [s] = Φ(bÒ aÒ cÒ x). Modules W1, W2ÛW1,
VÛW2 are irreducible.

PROOF. Let ñ 2 ÎŁ be the weight of the element v[l]. Consider an U(÷å)-submodule
K = ýk½0Vñ�kå of V. One has dim Kñ�kå = k + 1 by direct calculation. Thus, comparing
the dimensions of the weight spaces of V with the dimensions of the weight spaces in the
corresponding GVM M(ó0ÒU(÷S)v[l]) (ó0 2 (Îã)Ł) we obtain that V ' M(ó0ÒU(÷S)v[l]).
From the backward GZ-formulae it follows that an action of Xšã on U(÷S)v[l] is injective,
hence V is ã-stratified. This proves the first statement. The rest follows easily from the
backward GZ-formulae.

7. Tableaux realization of generalized Verma modules over sl(nÒ C). A trick
described in Section 6 allows one to consider a new family of GVM over the Lie algebra
gl(nÒ C) (sl(nÒ C)).

Let ÷ = gl(nÒ C), Î be the subalgebra of all diagonal matrices, ô = fã1Ò    Ò ãn�1g

be the standard basis of the root system ∆. We fix the standard Weyl-Chevalley basis in
÷. Let S = fã2Ò    Ò ãn�1g. The aim of this section is to construct a family of forward
GZ-modules which are GVMs with respect to S.

Consider a map Φ: L(n � 1) ý C ! L(n) defined as follows: for [t] 2 Ln�1Ò a 2 C

we set Φ
�
([t]Ò a)

�
= [l], where

li1 = aÒ i = 1Ò    Ò n; lij = ti�1 j�1Ò 2 � j � i � n

For [l] = Φ
�
([t]Ò a)

�
consider a set PS([l]) consisting of all tableaux [s] such that
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1. lnj = snj, j = 1Ò    Ò n.
2. li1 � si1 2 Z+, i = 1Ò    Ò n � 1.
3. si1 ½ si�1 1, i = 2Ò    Ò n � 1.
4. lij � sij 2 Z, 2 � j � i � n � 1.
Let V = V([l]) be a C-space with the basis v[s], [s] 2 PS([l]). The following lemma is

obvious:

LEMMA 8. If lij� lik 62 Z, 1 � k Ú j � i Ú n; lij� li�1 k 62 Z, i = 2Ò    Ò n, j = 2Ò    Ò i,
k = 2Ò    Ò i � 1 then GZ-formulae define on V the structure of a ÷-module.

For the rest of the section we will assume that [l] satisfies all conditions of Lemma 8.
The following lemma describes the basic properties of V:

LEMMA 9. 1. V is a GVM with respect to S.
2. If v[s] is an S-primitive generator of V then si1 = a, i = 1Ò    Ò n.
3. If v[s] is an S-primitive element in V then [s] = Φ

�
([f ]Ò lnj )

�
for some [f ] 2 L(n�1)

and j 2 f1Ò    Ò ng.
4. V is irreducible if and only if ln1 � lnj 62 N for all 1 � j � n.

PROOF. Clearly, V is a quotient of some GVM M(ïÒW) generated by an S-primitive
element of weight ñ (see Lemma 5). One can see that the length of an U(÷S)-module
U(÷S)Xk

�ã1
v[l] equals to the length of an U(÷S)-module U(÷S)M(ïÒW)ñ�kã1 (see [12,

Section 6]). Thus V ' M(ïÒW). The rest follows from the GZ-formulae.

The following lemma describes the type of the module V:

LEMMA 10. Let W = U(÷S)v[l]. Then W is a forward GZ-module over÷S. Moreover,
W is a generic GZ-module.

PROOF. Clearly, for the first part it is sufficient to prove that v[l] is a GZ-weight vector
with respect to the forward GZ-subalgebra of U(÷S).

Let ¤k, k = 2Ò    Ò n be a subalgebra of ÷ generated by the matrix units feij j iÒ j =
1Ò    Ò kg and set (¤k)S = ¤k \÷S. We denote by Îi the standard Cartan subalgebra of
¤i and by ÎS

i the complement ofÎi \÷S in Îi with respect to the standard form onÎi.
Consider the S-homomorphism of Harish-Chandra (see [5] for more details):

ßS: Z(¤i) ! Z
�
(¤i)S

�

 S(ÎS

i )

For any S-primitive element v and for any z 2 Z(¤i) we have zv = ßS(z)v. By the S-
Harish-Chandra theorem ([12, Theorem 3]) there exists a homomorphism†: Z

�
(¤i)S

�



S(ÎS
i ) ! S(Îi)W such that its restriction on Z

�
(¤i)S

�
coincides with the Harish-Chandra

homomorphism ([3]) and † Ž ßS is an isomorphism. Thus for any u 2 Z
�
(¤i)S

�
there

exists z 2 Z(¤i) and h 2 S(ÎS
i ) such that ßS(z) = u 
 h. This proves the first statement.

The second part now follows from the conditions of Lemma 8 and the GZ-formulae.

Now we are able to describe the structure of V.
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PROPOSITION 3. Let M = flnj j 2 � j � nÒ ln1 � lnj 2 Ng and m = jMj. Set
M = fp1Ò    Ò pmg; pj Ù pj+1, j = 1Ò    Òm � 1. The length of V equals m + 1. A
composition series for V has the following form:

0 = Vm+1 ² Vm ² Ð Ð Ð ² V1 ² V0 = VÒ

where Vj is generated by an S-primitive GZ-weight element v[lj] and [lj] = Φ
�
([tj]Ò pj)

�
for a suitable [tj].

PROOF. One can obtain all these results directly from the construction of PS([l]) and
the GZ-formulae.

Let L(V) denote a unique simple quotient of V.

COROLLARY 3. The sequence

0 ! V1
¢0

��! V
¢

��! L(V) �! 0Ò

where ¢0 is the canonical inclusion and ¢ is the canonical projection, is exact.

It is natural to call this sequence a BGG-resolution of V.
We note that in the case ô n S = fãn�1g the exactness of the analogous sequence is

an open problem (see [12, Section 4]). And the complete structure of the corresponding
GVMs in that case is still unknown. In that case the only known result is the tableaux
realization for a class of generic GVMs. But generic GVMs considered in [12] may have
only one proper submodule. In the most interesting case when a GVM has the maximal
possible number of proper submodules, it has no tableaux realization. This shows us a
brief analogue with Section 6. It happens that the structure of the modules considered
in this section is more simple than those considered in [12]. We have already mentioned
that our family contains GVMs having more than one proper submodule. Nevertheless,
we manage to construct the tableaux realization in all cases.

The following conjecture seems to be reasonable:

CONJECTURE 1. Let ÷ = sl(nÒ C), ô n S = fã1g, V be a generic GZ-module over ÷S

(forward or backward). Suppose that the module M(ïÒV) is reducible. Then the maximal
submodule of M(ïÒV) has the form M(ñÒW) for suitable ñ and W.

By Corollary 3 this is the case if M(ïÒV) has the tableaux realization.

8. Structure of induced modules. Proposition 3 allows us to formulate an analogue
of the BGG-criterion for the existence of a submodule in a GVM over gl(nÒ C) (sl(nÒ C))
induced from the generic GZ-module over an arbitrary subalgebra ÷S, S ² ô. More
precisely we describe the submodule structure for all GVMs having special form (we are
unable to overcome the difficulties which are described in Section 7).

In this section we give all necessary constructions, definitions and formulations. One
can prove all the results following the routine procedure of [12].

Consider ÷ = gl(nÒ C) and S ² ô, S 6= ô. For 1 � j � i � n we will write j ÆØ i if
fãjÒ ãj+1Ò    Ò ãig ² S and j 6ÆØ i in the opposite case.

Let [l] 2 L be a tableau satisfying the following generating conditions:
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1. lij = lnj for 1 � j � i Ú n such that j 6ÆØ i;
2. lik � lij 62 Z for 1 � k Ú j � i Ú n such that j ÆØ i;
3. lik � li�1 j 62 Z for 1 � i Ú n, 1 � j � i� 1, 1 � k � i such that j ÆØ i.
Define an action of the Weyl group W ' Sn on the set consisting of all tableaux [l]

satisfying the generating conditions, as follows: for õ 2 W set õ([l]) = [t], where
1. tnj = lnõ(j), j = 1Ò    Ò n;
2. tij = lnõ(j) for 1 � j � i Ú n such that j 6ÆØ i;
3. tij = lij in the remaining cases.

For å 2 ∆+ we will denote by så 2 W the reflection corresponding to the root å.
We will write [l] ' [t] if the tableau [s] = [l] � [t] satisfies the following conditions:
1. sij = 0 for all 1 � j � i � n such that j 6ÆØ i;
2. sij 2 Z for all 1 � j � i � n such that j ÆØ i.

We assume that ãn 62 S.
For a = (a1Ò    Ò ak) 2 Ck and õ 2 Sn set õ(a) = (aõ(1)Ò    Ò aõ(k)). For a = (a1Ò    Ò ak),

b = (b1Ò    Ò bk) 2 Ck we will write a � b if there exists õ 2 Sk such that b�õ(a) 2 Zk
+.

Let [l] be a tableau satisfying the generating conditions. For i 2 f1Ò    Ò ng we will
denote by [l]r

i the vector which can be obtained from [l]i by erasing of those lij, 1 � j � i
for which j ÆØ i.

We define a partial order � on L as follows: set [l] � [t] if and only if the following
two conditions are satisfied:

1. lij � tij 2 Z for 1 � j � i Ú n such that j 6ÆØ i;
2. [l]r

i � [t]r
i for 1 � i � n � 1.

Obviously, there exists a GVM M(ïÒV) = M([l]) generated by an S-primitive element
v[l] which has the tableau [l]. It follows from Lemma 10 that the÷S-module K = U(÷S)v[l]

is an irreducible generic GZ-module over÷S (i.e. K is irreducible and is a direct sum of
generic GZ-submodules with respect to connected components of ÷S). We will denote
by L([l]) the unique irreducible quotient of M([l]). The following result is an obvious
property of the defined action:

LEMMA 11. Let WS ² W be the Weyl group of the root system ∆S and õ 2 WS. Let [l]
be a tableau satisfying the generating conditions. Then M([l]) ' M(õ[l]).

The following theorem can be obtained in the same way as [12, Theorem 8].

THEOREM 1. Let [l], [t] be a tableaux which satisfies the generating conditions. The
following statements are equivalent:

1. M([t]) ² M([l]).
2. L([t]) is a subquotient of M([l]).
3. There exists a sequence å1Ò    Ò åk of elements from ∆+ such that

[t] � så1 [t] � Ð Ð Ð � såk
Ð Ð Ð så1[t] ' [l]

COROLLARY 4. M([l]) is irreducible if and only if lnj � lnk 62 N for any 1 � j Ú k � n
such that j 6ÆØ k.
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