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TABLEAUX REALIZATION
OF GENERALIZED VERMA MODULES

VOLODYMYR MAZORCHUK

ABSTRACT. We construct the tableaux realization of generalized Verma modules
over the Lie algebra d(3, €). By the same procedure we construct and investigate the
structure of anew family of generalized Verma modules over d(n, C).

1. Introduction. The structure theory of Vermamodules over semisimple complex
finite-dimensional Lie algebras([3]) isbased on the theory of finite-dimensional modules
overtheLiealgebrasl(2, C). The classical methodsof investigation of finite-dimensional
sl(2, C)-modules provide a clear geometrical realization for these modules by choosing
an eigenbasis with respect to a Cartan subalgebra. In this basis it is possible to write
down explicit formulae defining an action of the generating elements.

During the last decade there appeared many papers (see[2, 6] and referencestherein)
where a class of the so-called stratified generalized Verma modules (different from
those studied in [13]) was investigated. For the simplest case of such modules the
structure theorem generalizing the well-known BGG theorem ([3, Theorem 7.6.23]) was
proved in [6]. The proof is based on the technical results from [7] where the structure
of a generalized Verma sl(3, C)-module induced from a simple weight sl(2, C)-module
without lowest and highest weights was studied. The main result in [7] was obtained
by a hard direct calculation. The same method was used in [6] to obtain an analogues
result in the case of the Lie algebra of type B,. In [12] an analogue of the BGG theorem
was obtained by a geometrical realization of generalized Verma modules induced from
a“well-embedded” dl(k, C) subalgebra of the algebrasl(n, C).

In the present paper we propose ageometrical realization (which we call the tableaux
realization with respect to the Gelfand-Zetlin subalgebra) for alarger family of general-
ized Vermamodules. In thisway we easily reobtain without any calculation all the results
from [7] for modules having the tableaux realization. Thisenablesusto obtainastructure
theorem for a large class of generalized Verma modules over sl(n, C) induced from an
arbitrary semisimple “well-embedded” subalgebra. Moreover, in some special caseswe
construct a composition series for a generalized Vermamodule. In sl(3, C) case thiswas
done in [7]. But those methods could not be applied to a non-simply-laced case or to
the case investigated in [12]. Moreover, even the structure of the maximal submodule
in a generalized Verma module is unknown. We describe the structure of the maximal
submodule and construct a composition series of some generalized Verma modules over
sl(n, C). We aso formulate a conjecture for al cases.
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Let us briefly describe the structure of the paper. In Section 2 we give al necessary
basic preliminaries. In Section 3 we collect all information on Gelfand-Zetlin modules.
In Section 4 we define a set of modules with the tableaux realization and present some
examples of such modules including finite-dimensional modules, generic GZ-modules
and a subclass of Vermamodules. In Section 6 we construct the tableaux realization for
a huge class of a-stratified generalized Verma modules over sl(3, C). Using the same
procedure in Section 7 we construct a new family of generalized Verma modules and
investigate their structure (Proposition 3, Corollary 3). Finally, in Section 8 we obtain
a structure theorem for a class of generalized Verma sl(n, C)-modules induced form
an arbitrary “well-embedded” semi-simple subalgebra (Theorem 1). As a corollary we
obtain a criterion of irreducibility for such modules (Corollary 4).

2. Preliminaries. Let C denotethe field of complex numbers, Z denote the ring of
integers and N denote the set of positive integers. We will also denote by 7., the set of
all non-negativeintegers.

For a Lie algebra A by U(2A) and Z(2) we will denote the universal enveloping
algebraof 2 and the center of U() correspondingly.

Let G beasimplefinite-dimensional complex Liealgebrawith afixed Cartan subalge-
bra$ andtheroot systemA. Let r beabasisof Aand A = A_ UA. bethe decomposition
of A into positive and negative roots with respect to =. For o € A let &, be the root
subspace of & corresponding to the root o and X,, be the corresponding element from a
fixed Weyl-Chevalley basis. For o € A, we also set Hy, = [Xq. X_4]-

Let %, denoteLiesubalgebraof ¢ generated by X, where a runsthrough A,.. Then

G=NN_poOp N,

is atriangular decomposition of .
Fora@-moduleV and A € O* set

Vy={veV|hv=XA(hyvforalhe H}.

If V, isnon-trivial wewill say that V, isaweight subspaceof V and in this case we will
cal A aweight of V. A module V will be called weight module provided

V= @ V)\ .
AeD*
Each non-zero element from V), will be called weight element. Note, that here we do not
assumethat V, isfinite-dimensional. For aweight &-moduleV we denote by SuppV the
set of all weightsof V. Clearly, each submodule and each quotient of aweight moduleis
aweight module.
From now on all the modules are assumed to be weight modules.
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3. Gelfand-Zetlin modules. In this section we collect all necessary information
about the so-called Gelfand-Zetlin modules. Wewill follow closely [4, 14] (seealso[1]).

Consider the Lie algebra G, = gl(m, C) for m > 1. We fix the following notations:
Un = U(Gp) and Zy = Z(Gy), m > 1. For afixedn > 1set G = G, U = U, and
for m < n identify Gy, with the Lie subalgebra of & generated by the matrix units
{ejli.ji=1..... m}. In this way we obtain the following inclusions:

Gi1CcG,Cc---CBGy=G and UjCcU,C---CU,=U.

Denote by I the subalgebra of &, generated by {Z, | m=1,...,n}. Following [4]
wewill call it Gelfand-Zetlin subalgebra (GZ-subalgebra) of U.
It is well-known (see for example [14]), that I" is a polynomial algebrainn(n+1)/2

variables ¢, where

Ck= ., €8s 6. 1<k<I<n,
i |

Following [4] and [14] we chooseanew set of generatorsfor I'. Set L = L (n) = c"™1/2,
The elements from L will be called tableaux and will be viewed as double indexed

families

M={]i=%....nj=1....i}
For [I] € L denote[I]y = {lj | j = 1.....i} thei-th row of [I]. We will also need a
subset Lo C L consisting of all [I] such that |; = O for all possiblej and Ij; € Z for all
1<j<i<n

Consider the polynomial algebra A in n(n + 1) /2 variables A\ijj, 1 < j <i < n. We
can identify A with the algebra of polynomial functions on L by setting A;;([1]) = I;.
The product of symmetrical groups G = S, x $ x -+ X §, acts on L in a natural
way: § permutes the elements of [l];. Thisinduces a natural action of G on A. Definea
homomorphismi: " — A in the following way:

i j 1
Ci— » (A *i 1- .
1j kgl( ik ) II;I[<( /\ik — >\il)
Then i(I") coincides with the set of G-invariants in A ([14]). From now on we will
identify I with itsimagein A. Let v;; denote the j-th elementary symmetric function in
Aits .. Aii. Clearly, {7ij | 1 <j <i < n} generatesthe polynomial ring I".

Fora@-moduleV and y € ' set
V' = {veV |thereexistst € N suchthat (c — X(c))tv: Oforalcer}.

If VX is non-trivial we will say that VX is a GZ-root subspace of V and in this case we
will call x aGZ-weight of V. Any non-zero element v € V* will be called GZ-element.
A ¢-module V will be called Gelfand-Zetlin module (GZ-module) provided

V= V¥and dimV* <oo foradl y e .

xEer+
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For a GZ-module V we will denote by GZsuppV the set of all GZ-weights of V. If the
action of I is diagonalizable on VX we will say that VX is a GZ-weight space and will
denoteit by V, . Each non-zero element from V,, will be called GZ-weight element.

Since we identify I with i(I") we can parametrize an element x € ' by the tableau
[1] € L. Inthiscasewewill say that the GZ-root (weight) space V\ (V,) hasthe tableau
[1] and will denoteit by VI (V).

Let V be an indecomposable GZ-module and y € GZsuppV. Suppose that x has a
tableau[l] € L. Thenthereexistsasubset P([1], V) in[I]+Lo whoseelements parametrize
al GZ-weights of V ([4]).

Clearly, any weight (with respect to the Cartan subalgebra) $-module with finite-
dimensional weight spaces is a GZ-module. Thus, each Verma module ([3]) is a GZ-
module.

Sincegl(n, C) isasplitting central extension of sl(n, C) one can consider each gl(n, C)-
module as an sl(n, C)-module by restriction. Moreover, each sl(n, C)-module defines a
C-family ([12]) of gl(n, C)-moduleswith different “ central charges’. Wewill formulateall
our results for the reductive algebragl(n, C) asit donein [4]. One can easily reformulate
them for sl(n, C) case.

4. Moduleswith the tableaux realization. A tableau [I] € L will be called good
provided lj; # lik for all 1 <j < k <i < nand bad in the opposite case.

A ¢-moduleV is said to have the tableaux realization if it is GZ-weight module, all
GZ-weight spaces are one-dimensional and have good tableaux.

Let 5 be the Kronecker tableauii.e. 5} = 1and 6}, = 0fori #i'orj #J'.

LEMMA 1. Let V be a G-module which has the tableaux realization. Suppose that
Vi) # 0 for some[l] € L. ThenV ~ W, where -module W is defined as follows: it has
the C-basis vy for [t] € P([l], V) and the action of elements from & is defined by the
following formulae:

civig = Gi([tvig.  Evig = > & ([t Vigesi -

i
=1

whereE =g, B =qi_1,i =1,..., n—1j=1...., i and

ci([t]) = kil(tik +iy g(l - );

tik — tis
ey Tk(ticik — tj)
) = F
a; ([t]) T (tic — )
ProoF. Follows from [4, Theorem 24, Proposition 20, Proposition 22]. ]

The last lemma implies that a G-module with the tableaux realization has clear
geometrical structure. Thus the question to give the tableaux realization for a given
module seemsto berather interesting. Wewill call the formulae from Lemma 1 Gelfand-
Zetlin formulae (GZ-formulae). The basis {vy; } will be called GZ-basis. Note, that these
formulae appear first time in the original papers by Gelfand and Zetlin ([9, 10]).
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The following lemmais obvious:

LEMMA 2. If a G-module V has the tableaux realization then each submodule and
each quotient of V also has the tableaux realization.

Now we can give some examples of modules having the tableaux realization.

4.1. Finite-dimensional modules. Thefirst result from whichthetheory of GZ-modules
aroseweretheresult from [9] wherethere was proved that each simplefinite-dimensional
©-module hasabasis {vy; } with [I] suchthat I;; € N for all possiblei,j and lj > li_1j >
l;j+1. Moreover, the action of elementsof thealgebra® inthis basisis defined by the GZ-
formulae. Thus, directly from the definition we obtain that each simplefinite-dimensional
($-module has the tableaux realization.

4.2. Generic GZ-modules. The second class of modules having clear tableaux realiza-
tion is a huge family of GZ-modules constructed in [4].

Consider atableau[l] € L suchthat I;; — lix # Z for all possiblei andj # k. Let V be
aC-spacewith the basis vy, [t] € [I] + Lo. Then GZ-formulae defineon V astructure of
aG-module ([4]). Clearly, such modules arise together with their tableaux realization.

An interesting subclass of such modules compose the so-called generic GZ-modules
([12]). These modules can be obtained from the original tableau [I] satisfying the fol-
lowing condition: lj+1j — lix # Z for all possiblej, k andi < n. One can easily show that
each simple generic module does not have non-trivial extensionswith a non-isomorphic
simple GZ-module in the category of GZ-modules ([4]).

4.3. GenericVermamodules. For A € * let M(\) bethe Vermamodule corresponding
to G, O, A and 7 ([3]). Since M()) is aweight module with finite-dimensional weight
spacesit isalso a GZ-module. But it may happened that some GZ-weights of M()) have
bad tableaux. For example, it followsimmediately from the construction of the GZ-basis
for finite-dimensional G-modules that for any dominant integral A the corresponding
module M(\) necessarily has a GZ-weight parametrized by a bad tableau.

Now we construct the tableaux realization for a huge family of Verma modulesthose
are “opposite” in some senseto the modules with dominant integral highest weight. Let
a=(ag,....a)) € C"besuchthatay —a ¢ Z forall 1 <j < k < n. Consider atableau
[I] =[l](a) defined asfollows: |;; = & for al 1 <j <i < n. Let P([]) denote the set of
all tableaux [t] satisfying the following conditions:

1. Inj :tnj,j =1....n

2. lij—tjezZiforal L<j<i<nm

3. tj —ti_gj >0forall<i<nl1l<j<i.

LemMMA 3. Let [t] € P([l]) and aﬁ([t]) # 0 (here aﬁf is an expression from the GZ-
formulae). Then[t] 6 € P([1]).
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PROOF. Let aﬁ([t]) # 0. Hencet # tiyqx foral 1 <k <i+landthust; <ty (here
a< 3means0 < 3 —a € R) since[t] € P([I]). Clearly, thisimplies [t] + &1 € P([l]).
For & the proof is analogous. ]

Applying [4, Section 2.3] to the set P([t]) we obtain:

COROLLARY 1. LetV = V([I]) be a C-space with the basis {vig, [t] € P([l])}.
1. The GZ-formulae define on V the structure of a G-module;

2. W+V[|] =0

3. If Nyvyg = 0then [t] =[I].

PrROOF. The first statement is a straightforward corollary from [4]. The second and
the third onesfollow from the GZ-formulae. ]

PrROPOSITION 1. Let A — p € ©* beaweight of vi;. Then
1. Visgenerated by vy;;

2. M(\) >V,

3. M(}) isirreducible.

PrROOF. Thefirst statement follows from the GZ-formulae by direct calculation. To
prove the rest consider M()). It is a GZ-module with P([I]. M(})) c P([I]). Since all
tableaux from P([]) are good it follows by direct calculation that V and M(\) have equal
dimensions of the weight spaces with respect to . Thus M(\) ~ V. But V is simple
since vy is the unique (up to ascalar) primitive element in V by Corollary 1. ]

By Proposition 1 we construct the tableaux realization for afamily of Vermamodules
defined by n (or n — 1 in the case of sl(n, C)) parameters (ay, ..., ay) lying in “genera

position” (this means that &, — & ¢# Z), i.e. generic Verma modules. The following
properties of generic Verma modules are easy:

LEMMA 4. Let M(\) be a generic Verma module then
1. Ext'(M(A). M(p)) = Ext'(M(u). M(X)) = Ofor any pu € H;
2. M(\) ® F iscompletely reducible for any finite-dimensional module F.

PrOOF. Thefirst statement follows from the fact that the GZ-weight lattices of M(\)
and M(y) have empty intersection. The second one follows from the Kostant theorem

([22)). "
And finally we have;

COROLLARY 2. Let M()\) be a generic Verma module with primitive generator v
having the tableau [I] € L. Then [I] = [l](a) for some a € C" (see the definition of the
set P([1])).

ProoF. Follows from Proposition 1 and [4, Theorem 17, Theorem 24]. ]

Regretfully, we can not construct the tableaux realization for an arbitrary Verma
module since till now there does not exist any generalization of the GZ-formulae in the
case of moduleswith non-trivial GZ-root subspaces.
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5. Generalized Verma modules. Consider asubset S C 7 and let As be the root
subsystemof A generated by S. Denoteby & sasemisimpleLiesubalgebraof & generated
by X,, a € As and by Ns the subalgebraof . generated by all X,, @ € A: \ As. Let
Ds = O N Gs be aCartan subalgebraof Gs and HS be the complement to Hsin O with
respect to the standard form on 9.

Set p = 3 Yaen, & ps = 3 Yacn,rns @ ad p° = p — ps.

Consider a parabolic subalgebra s = Gs+ O + ... An important role in the rep-
resentation theory of G is played by the so-called generalized Verma modules (GV M),
those are the universal modulesin a category of $-modulesinduced form Gs ([2]).

Let V be an irreducible weight Gs-module and A € ($5*. Putting 9sv = 0 and
hv = (A\(h) — pSvfor al v € V and h € $° we define a 23s-module structure on V. The
module

M, V) =U6) K V
U(3s)
is called generalized Verma module correspondingto , S V and A.

A non-zero element w of a §-module W will be called S-primitive provided Yisv = 0.
Clearly, each element of the form 1® v € M(\, V) for 0 # v € V is S-primitive. The
following statement describes the universal property of M(A. V) ([2]):

LEMMA 5. Let W be a weight G-module generated by an S-primitive element v such
that the module U(Gs)v is simple. Then W is a quotient of a generalized Vierma module.

A @-moduleViscalled S-stratified ([2]) provided theaction of X, « € Asisinjective
onV.

Note, that recently there appeared a number of papers devoted to the study of GVM,
seefor example[2, 5, 6, 7, 12] and references therein.

6. Tableauxrealization for o-stratified generalized Ver mamodulesover (3, C).
Let G = d(3,C), O consist of all diagonal matrices with zero trace, A be the standard
root system with a basism = {«, 3} and S = {«}. We fix the standard Weyl-Chevalley
basisin .

In the case when S= {«}, Sstratified modules are also called a-stratified ([2]). The
structure of a-stratified generalized Vermamodules over 8 wasinvestigatedin [7]. The
aim of this section isto construct the tableaux realization for a-stratified GVM M(), V),
A E (DM

It is well-known ([2]) that M(A, V) is a-stratified if and only if V is an irreducible
weight sl(2, C)-module without highest and lowest weights. Unfortunately, there exists
an a-stratified GVM such that the action of the “small Casimir operator” C = (H, +
1)? + 4X_,X, is not diagonalizable on it. And this is the case as soon as our GVM
has the biggest possible number of non-trivial submodules ([7]). Thus, we are not able
to construct the tableaux realization for such GVMs in our terms. To overcome this
difficulty we need a notion of the backward GZ-modules.
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The GZ-modules defined in Section 3 correspond to the inclusions gl(k,C) C
gl(k + 1, C) with respect to the left upper corner of the matrix. We will call such mod-
ules forward GZ-modules. One can consider another kind of inclusions with respect to
the right lower corner. More precisely, one can identify gl(k, C) with the subalgebra of
gl(k + 1. C) generated by matrix units {e; | i.j = 2..... k + 1}. Following the same
procedure as in Section 3 one obtains a class of backward GZ-modules. We will call
the corresponding GZ-subalgebra backward GZ-subalgebra and will denote it by Iy,
For backward GZ-modules we will use the same notations as for forward GZ-modules,
adding “ backward” to them.

Clearly, each weight module with finite-dimensional weight spaces necessarily is a
forward GZ-module as well as a backward GZ-module.

LEMMA 6. Thereexistsaforward GZ-moduleV over gl(n, C) whichisnot a backward
GZ-module and vice versa.

PROCF. Let V be a generic forward GZ-module defined in Section 4. Consider the
element a = e,_1nenn-1 € . The GZ-formulae imply immediately that a has no
eigenvectorson V an thus V can not be a backward GZ-module. ]

Since every a-stratified GVM is a weight module with finite-dimensional weight
spacesit is both forward and backward GZ-module.

It was mentioned that any Verma module M()) with a dominant integral A has no
tableaux realization. In this section we will show that aimost all analogous o-stratified
generalized Verma modules (over sl(3, C)) has the tableaux realization as backward
GZ-modules.

Set 67 = (X5, X_5, Hpg).

As afirst step we construct a family of generic a-stratified GVM together with their
tableaux realization.

Consider amap @: C* — L defined asfollows: ®(a, b, c.x) =[l], where

|i1:a, i=1,2,3; |22:X; |32:b; |33:C.

Let[I] = ®(a, b, c, x). Consider a set P, ([I]) consisting of all tableaux [t] such that
Lty= |3j,j =123;

2. tr —l»p €7,

3 lii—t1€24,i=1.2

4. t31 < to.

Let V = V([I]) be aC-space with the basis vy, [t] € P4([I]).

LEMMA 7. 1. If x— a ¢ Z then the backward GZ-formulae define on V the structure
of a G-module.
2. Visa-stratifiedif andonly if x — ¢, x — b ¢ Z.
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PrROOF. Thefirst statement follows from[4]. The second onefollows easily from the
backward GZ-formulae. ]

The following statement covers all results from [7] for modules defined above.

PROPOSITION 2. Supposethat x —a,x — b, x — ¢ Z Z. Then
1. Visan a-stratified GVM.
2. All a-primitive generatorsof V have the following form:

n
Z SV[|]+k,522~, s €C.
k=—n

3. If Vi isan a-primitive element then either b =ty; =ty or c =ty =ty.

4. Visirreducibleif andonlyifa—b ¢ Nanda—c ¢ N.

5. Ifa—b e Nanda—c ¢ N then V has the unique submodule W generated by
an a-primitive element which has the tableau [t] = ®(b. a. ¢, x). Both Wand V /W are
irreducible.

6. fa—ce Nanda—b ¢ N then V has the unique submodule W generated by
an a-primitive element which has the tableau [t] = ®(c. a, b, x). Both Wand V /W are
irreducible.

7. fa—be Nb—ce NthenW, C W, C V, where W, is generated by an
a-primitive element which has the tableau [t] = ®(c, a, b, X) and W, is generated by
an a-primitive element which has the tableau [s] = ®(b. a. ¢, x). Modules Wy, W /Wi,
V /W, areirreducible.

PROOF. Letp € ©* betheweight of the element vy;. Consider an U(G")-submodule
K = ®x=0V,—ks Of V. One hasdimK,_.; = k+ 1 by direct calculation. Thus, comparing
the dimensions of the weight spaces of V with the dimensions of the weight spacesin the
corresponding GVM M(v", U(Gg)vy) (v € (9*)*) weobtainthat V ~ M(v', U(Gs)vy).
Fromthe backward GZ-formulaeit followsthat an action of X, onU(§s)vy isinjective,
henceV is a-stratified. This proves the first statement. The rest follows easily from the
backward GZ-formulae. ]

7. Tableaux realization of generalized Verma modules over sl(n,C). A trick
described in Section 6 allows oneto consider a new family of GVM over the Lie algebra
gl(n, €) (d(n, C)).

Let G = gl(n,C),  be the subalgebra of all diagonal matrices, 7 = {c, ..., On-1}
be the standard basis of the root system A. We fix the standard Weyl-Chevalley basisin
G.LetS={a...., an-1}. Theaim of this section is to construct a family of forward
GZ-modules which are GVMs with respect to S.

Consider amap @: L(n — 1) & € — L(n) defined as follows: for [t] € L,_;,a e C
we set ®(([t]. a)) = [I], where

lip=a, i=1..., n; Iij:ti—lj—l- 2<j<i<n.

For [I] = ®(([t]. a)) consider a set P([I]) consisting of all tableaux [s] such that
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Llj=s,j=1..., n.

2. lh—s1€Z,i=1,....n—1.

3.s1>s.11,i=2.....n—1

4. lj—s€2,2<j<i<n-1

Let V = V([I]) be aC-space with the basis vig, [s] € Ps([l]). The following lemmais

obvious:
LEMMA 8. |f|ij—|ik¢Z,1§k<j <i<nm |ij_|i71k¢zai =2...., nj=2...,i,
k=2, ...,i —1then GZ-formulae define on V the structure of a G-module.

For the rest of the section we will assumethat [1] satisfiesall conditions of Lemma 8.
The following lemma describes the basic properties of V:

LEMMA 9. 1. Visa GVM with respectto S

2. If vig isan S-primitive generator of Vthens; =a,i =1.....n.

3. If vig isan S-primitive elementin V then[s] = ®(([f]. ly)) for some[f] € L(n—1)
andj e {1.....n}.

4. Visirreducibleif and only if Iny — Iy ¢ Nforall 1 <j <n.

Proor. Clearly, V isaquotient of some GVM M(\, W) generated by an S-primitive
element of weight 1, (see Lemma 5). One can see that the length of an U(Gs)-module
U(@S)X‘ialvm equals to the length of an U(Gs)-module U(Gs)M(A. W),,_ka, (see[12,
Section 6]). ThusV ~ M(A, W). The rest follows from the GZ-formulae. m

The following lemma describes the type of the module V:

LEMMA 10. Let W = U(Gs)vy;. Then Wis a forward GZ-module over §s. Moreover,
W isageneric GZ-module.

Proor. Clearly, for thefirst part it is sufficient to prove that vy isaGZ-weight vector
with respect to the forward GZ-subalgebra of U(Gg).

Let A, k=2,..., n be a subalgebra of ¢ generated by the matrix units {e; | i.j =
1,...,k} and set (y)s = Ak N Gs. We denote by 9; the standard Cartan subalgebra of
i and by S;“),S the complement of O N Gsin O; with respect to the standard form on 9;.

Consider the S‘homomorphism of Harish-Chandra (see [5] for more details):

s Z(Ui) — Z((Ai)s) © S(HY).

For any S-primitive element v and for any z € Z(;) we have zv = ¢g(2)v. By the S
Harish-Chandratheorem ([ 12, Theorem 3]) there exists a homomorphism v Z( (% )s) ®

(9D — (D)W suchthat itsrestriction on Z((?Ii)s) coincideswith the Harish-Chandra
homomorphism ([3]) and ¢ o ¢s is an isomorphism. Thus for any u € Z((‘Jli)s) there
existsz € Z(3;) and h € S($P) such that ¢s(2) = u® h. This proves the first statement.
The second part now follows from the conditions of Lemma 8 and the GZ-formulae.

|

Now we are able to describe the structure of V.
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ProPOSITION3. Let M = {l | 2 < j < nly — Iy € N} and m = |[M|. Set
M = {ps,..., Pm}t; B > P+, ] = 1.....m— 1. The length of V equals m+ 1. A
composition seriesfor V has the following form:

O0=Vm1 CVnC---CVIC Vo=V,

where V; is generated by an S-primitive GZ-weight element vy;; and [1j] = ®(([t]. 1))
for a suitable [t].

PROOF. One can obtain all these results directly from the construction of P([I]) and
the GZ-formulae. n

Let L(V) denote a unique simple quotient of V.

COROLLARY 3. The sequence
0—Vi——V (V) — 0,

where ¢’ isthe canonical inclusion and ¢ is the canonical projection, is exact.

It is natural to call this sequence a BGG-resolution of V.

We note that in the case m \ S= {an_1} the exactness of the analogous sequenceis
an open problem (see [12, Section 4]). And the complete structure of the corresponding
GVMsiin that caseis till unknown. In that case the only known result is the tableaux
realization for aclass of generic GVMs. But generic GVMs consideredin [12] may have
only one proper submodule. In the most interesting case when a GVM has the maximal
possible number of proper submodules, it has no tableaux realization. This shows us a
brief analogue with Section 6. It happens that the structure of the modules considered
in this section is more simpl e than those considered in [12]. We have already mentioned
that our family contains GVMs having more than one proper submodule. Nevertheless,
we manage to construct the tableaux realization in all cases.

The following conjecture seemsto be reasonable;

CONJECTURE 1. Let G = dl(n,C), 7\ S={ou}, V be a generic GZ-module over Gs
(forward or backward). Supposethat the module M(\, V) is reducible. Then the maximal
submodule of M(A, V) hasthe form M(u, W) for suitable ; and W.

By Corollary 3 thisisthe caseif M()\, V) has the tableaux realization.

8. Structureof induced modules. Proposition 3 allowsusto formulate an analogue
of the BGG-criterion for the existence of a submodulein a GVM over gl(n, C) (sl(n, C))
induced from the generic GZ-module over an arbitrary subalgebra Gs, S C n. More
precisely we describe the submodule structure for all GVMs having special form (we are
unable to overcome the difficulties which are described in Section 7).

In this section we give all necessary constructions, definitions and formulations. One
can prove al the results following the routine procedure of [12].

Consider 8 = gl(n,C)andSC 7, SZw. For 1 <j <i < nwewill writej i if
{4, a1, . .., ai} C Sandj i in the opposite case.

Let [1] € L be atableau satisfying the following generating conditions:
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1 lj =1y for1 <j <i<nsuchthatj p«i;
2. l—lj g Zforl <k<j<i<nsuchthatjni;
3 lik—licjgZforl1<i<n1<j<i—11<k<isuchthatjpi.
Define an action of the Weyl group W ~ S, on the set consisting of all tableaux [I]
satisfying the generating conditions, as follows: for o € W set o([1]) = [t], where
Lty =|ng(j),j =1....m
2. tj = lnyg) for L <j <i < nsuchthatj i«i;
3. t;j = ljj in the remaining cases.
For 3 € A+ wewill denote by s; € W the reflection corresponding to the root 3.
We will write[I] ~ [t] if thetableau [] = [I] — [t] satisfiesthe following conditions:
1. s;=0foral 1 <j <i<nsuchthatj wi;
2. i€ Zforal 1 <j<i<nsuchthatji.
We assumethat o, & S.
Fora=(a...., &) € Ckando € Sy seto(a) = (@) - - - » ) -Fora=(a,....a),

Let [I] be a tableau satisfying the generating conditions. For i € {1,....n} we will
denote by [1]} the vector which can be obtained from [1]; by erasing of thosel;;, 1 <j <
for which j >xi.

We define apartial order < on L asfollows: set [I] < [t] if and only if the following
two conditions are satisfied:

1 lj —tj € Zfor 1 <j <i <nsuchthatj p«i,

2. [ <[tlifori<i<n-—1

Obvioudly, thereexistsaGVM M(A, V) = M([1]) generated by an S-primitive element
vy Which hasthetableau 1]. It follows from Lemma10 that the G s-module K = U(Gs)vy
isan irreducible generic GZ-module over G (i.e. K isirreducible and is adirect sum of
generic GZ-submodules with respect to connected components of Gs). We will denote
by L([1]) the unique irreducible quotient of M([I]). The following result is an obvious
property of the defined action:

LEMMA 11. Let Ws C W bethe Weyl group of the root systemAsand o € Ws. Let [1]
be a tableau satisfying the generating conditions. Then M([1]) ~ M(o[l]).

The following theorem can be obtained in the same way as[12, Theorem 8].

THEOREM 1. Let [I], [t] be a tableaux which satisfies the generating conditions. The
following statements are equivalent:

1. M([t]) < M([ID).

2. L([t]) isa subquotient of M([I]).

3. Thereexistsa sequencefs, ..., Bk of elementsfrom A, such that

CoROLLARY 4. M([l]) isirreducibleif andonly if I; — I« £ Nforanyl <j<k<n
suchthat j &« k.
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