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Abstract

We study a class of Newtonian models for the deformations of non-magnetised neutron stars during their spin-down. All the models have
an analytical solution which allows to easily grasp the dependence of the strain on the star’s main physical quantities, such as radius, mass,
and crust thickness.

We first use the model proposed by Franco, Link, and Epstein that depicts the star as made of a fluid core and an elastic crust with the
same density, to compare the response to a decreasing centrifugal force on stars having different masses and equations of state. We find that
the strain angle is peaked at the equator and its maximum value decreases as a function of the mass.

Afterwards, we introduce a second, more refined, model in which the core and the crust have different densities, and the gravitational
potential of the deformed body is self-consistently accounted for. The strain angle is still a decreasing function of the stellar mass, but now
its maximum value is typically peaked at the poles and is larger (by a factor of four) than the corresponding value in the one-density model.

Finally, within the present analytic approach, we evaluate the impact of the Cowling approximation: when the perturbations of the
gravitational potential are neglected, we find an underestimation of the centrifugal effect on the star, since the strain angle is about 40% of
the one obtained with the complete model.
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1. Introduction

The long-term evolution of a neutron star (NS) can be driven by
spin-down, accretion of matter, or external forces, like the tidal
force due to the presence of a close companion or electromagnetic
strains arising from strong internal magnetic fields. According to
the current understanding of matter properties at supra-nuclear
densities, NS structure involves a superfluid core surrounded by a
floating hard crust (see, e.g., Chamel & Haensel 2008, for a com-
prehensive review). All the aforementioned processes may lead to
deformation of the crust, measured by considering the displace-
ment with respect to an initial equilibrium state (usually assumed
to be a stationary fluid configuration, Love 1959).

Stellar crust breaking is thought to be a key aspect for under-
standing several phenomena linked to the astrophysical phe-
nomenology of NSs. In fact, starquakes are promising candidates
as trigger mechanism for both glitches in radio pulsars (Baym
et al. 1969; Ruderman 1991) and flares in magnetars (Thompson
& Duncan 1995; Cheng et al. 1996). The crust breaking hypoth-
esis is also studied for its possible role on NSs precession (Link
et al. 1998; Cutler et al. 2003) and on gravitational waves emis-
sion (Ushomirsky et al. 2000; Haskell et al. 2006). For all of these
phenomena, the crust acts as an elastic layer that can store stress
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during time (Baym & Pines 1971), until it reaches a critical thresh-
old defined by the breaking strain value of the material (see, e.g.,
Christensen 2013, for a extensive discussion on failure criteria).

Since the seminal work of Love on the theory of the elas-
tic response of a homogeneous, self-gravitating body of nearly
spherical shape (Love 1959), only two analytic models describing
deformations of an NS have been presented to date: in order to
investigate the qualitative features of the growth of strain in an NS
as it spins down under its external torque, Baym & Pines (1971)
modelled the star as a self-gravitating, incompressible, homo-
geneous elastic sphere of constant shear modulus. This model
allowed Link et al. (1998) to conclude that the failure of the crust
is likely to occur near the equator, with interesting consequences
on the magnetic field and the evolution of the electromagnetic
braking torque of pulsars. Later, Franco et al. (2000) refined the
model of Baym and collaborators by considering a star composed
of a fluid (i.e. a substance of null shear modulus) core and a solid
crust with the same constant densities, finding that the introduc-
tion of the fluid core does not affect the conclusion that the crust is
likely to break near the equator. We will refer to this model, with
discontinuous shear modulus at the core–crust interface, as FLE
model.

In this paper, we study the behaviour of FLE-like models by
considering a realistic equation of state of dense matter in NSs,
that makes the stellar parameters, like radius, crust thickness,
and mass self-consistently linked among each other. Given the
widespread use of the Cowling approximation in the literature, in
Section 3.2 we also perform the interesting comparison between
the FLE displacement and the one obtained in that approximation.© Astronomical Society of Australia 2019; published by Cambridge University Press.
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In Section 4, we introduce a more refined analytic model that
is based on the set of ideas presented in Sabadini et al. (1982) and
Vermeersen et al. (1996) for the study of the viscoelastic Earth,
here adapted to the NS scenario in the elastic limit. Our newmodel
incorporates the gravitational potential in a fully consistent way
and allows us to solve exactly the problem of an auto-gravitating,
incompressible, rotating body with a fluid interior and an elas-
tic envelope, with two different densities. A comparison is made
between the original FLEmodel and the two-density one by study-
ing the spin-down of a pulsar between two glitches, in terms of the
calculated strains in the crust.

The important effects due to the finite compressibility and
stratification of matter, not included in these models, are consid-
ered in the more general approach described in Giliberti et al.
(2018). However, compressible and self-gravitating models are
considerably more complex and need a certain amount of numer-
ical work to be solved, so that the kind of two-density models
studied here represent an improvement of the approach pioneered
by Baym & Pines (1971), without losing the possibility to obtain
closed solutions for the displacement field ready to be used for
astrophysical estimates.

2. Elasticity

Let us consider a non-rotating, non-magnetised, unstrained NS of
radius R and core radius R′. This will be our initial configuration.

We define x to be the position of a portion of matter in the
initial configuration, r(x) the new position of the same portion
of matter in the configuration of the rotating body, and the local
displacement u as the difference of the previous two, that is,

r(x) = x+ u(x). (1)
Since the centrifugal force has azimuthal symmetry, the displace-
ment cannot depend on the azimuthal angle, so that u= u(r, θ),
where r is the usual radial distance from the centre of the star and
θ is the colatitude angle. The deformation of the star with respect
to the initial configuration can be described by the strain tensor uij
(Love 1959), defined as

uij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
. (2)

This tensor accounts for the non-diagonal part of the relative
deformation of the object, namely the shear, due to loading. The
eigenvectors of the strain tensor form an orthonormal local basis,
while the three associated eigenvalues represent the amount of
deformation in the direction of the principal axis (Landau &
Lifshitz 1970). Moreover, the strain tensor is very useful also for
the determination of the crust breaking, via the use of the Tresca
criterion (Christensen 2013): introducing the strain angle α as the
difference between the local maximum (εmax) andminimum (εmin)
eigenvalues of the strain tensor,

α(r, θ)= εMax(r, θ)− εMin(r, θ) , (3)
the material response to strains ceases to be elastic first in the
regions of the crust where α overcomes a certain threshold.
According to the Tresca criterion, the material locally fails around
the zone where the strain angle is peaked and this happens when

αMax = σMax

2
,

where αMax is the maximum of the function α(r, θ) in the range
R′ ≤ r ≤ R and 0≤ θ ≤ π , and σMax is a property of the material
called breaking strain (see, e.g., Christensen 2013).

Figure 1. Sketch of the idealised non-rotating NS structure used in the present study
(not in scale). The spherical configuration of radius R consists of two regions separated
at r= R′: the core, where the shearmodulusμ is null, and the crust, whereμ > 0. Since
all the models discussed in the present work are incompressible, the bulk modulus κ

is infinite everywhere.

To date, the value of the breaking strain in an NS crust is
poorly known. Estimates of σMax span from values of the order of
10−2 ÷ 10−1 (Horowitz & Kadau 2009; Baiko & Chugunov 2018)
found bymeans ofmicroscopic calculations to themuch lower val-
ues of 10−5 ÷ 10−3 used in macroscopica models of glitches and
flares (Ruderman 1991; Thompson & Duncan 1995). Because of
these theoretical uncertainties, we will assume that a realistic value
σMax for a macroscopic portion of crustal matter is in the range
10−5 ÷ 10−1.

Since crustal matter is likely to be an isotropic bcc polycrystal,
a single effective shear modulus μ and the bulk modulus κ are
expected to be sufficient to express stresses in terms of strains via
Hooke’s law (see Chamel & Haensel 2008, and references therein).

The shear modulus, in particular, can be calculated as a
function of the crustal composition (Ogata & Ichimaru 1990;
Horowitz & Hughto 2008). More recently, Caplan et al. (2018)
performed classical molecular dynamics simulations where a sam-
ple of nuclear pasta at the bottom of the inner crust is deformed;
they simulate idealised samples of nuclear pasta and describe
their breaking mechanism, finding that nuclear pasta may be the
strongest layer of an NS, with a shear modulus of μ ∼ 1030 erg s−1.

If matter is at equilibrium, the crustal composition can be
thought as a function of the total density ρ, and thus μ =
μ(ρ). However, continuous stratification introduces a consid-
erable complication that can be dealt with the more refined
approach proposed in Giliberti et al. (2018), which has to be solved
numerically (see also Ushomirsky et al. 2000; Cutler et al. 2003).
Therefore, in order to obtain exactly solvable analytic models, in
the following we will study only idealised incompressible stellar
structures with homogeneous layers, implying also constant shear
modulus, as sketched in Figure 1. In particular, the shear modulus
is constant in the crust but zero in the core.

In the present paper, we assume that the stellar deformation
can be described by the linearised theory of elasticity (Landau &
Lifshitz 1970), consistently with the fact that the displacement u is
small. This is a reasonable assumption, since the modulus of the
force acting on the body is typically very small compared to the

a It is currently debated whether or not microscopic scale failure (usually investigated
by means of molecular dynamics to signify failure when bonds are distorted beyond their
limits) is predictive of macroscopic failure, as discussed in Christensen (2013).
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gravitational one. As we will see in the following, in our case, the
linearity assumption can be justified in retrospect by the results of
Section 3. The equilibrium equation is given by

∇ · T + F = 0, (4)

where F are the external forces acting on the object and T is the
Cauchy stress tensor, defined by Link et al. (1998), Franco et al.
(2000), and Zdunik et al. (2008).

Tij = −p δij + σij = −p δij + μ uij. (5)

Here, p is the local pressure and σij is the material incremental
stress, where we made use of the incompressibility assumption
uii = 0.

3. FLE model

In this section, we study in detail the FLE model (Franco et al.
2000), where the star is described as a homogeneous body, with a
fluid core and an elastic crust of the same density. Here we present
briefly only the main characteristic of the model; for the complete
derivation, we refer to the original paper by Franco et al. (2000).

We are interested in calculating the displacement field u
between a configuration rotating with velocity � and one rotat-
ing at � − δ�, where δ� > 0 for a spinning down pulsar. The
non-rotating configuration is known for our elastic star, since it
coincides with the one given by the usual hydrostatic equilibrium
for a fluid. Thanks to the assumed linearity of the problem, we
calculate the displacements u� due to the spin-up of a spherical
configuration to a rotating one having centrifugal potential pro-
portional to �2; then, the desired displacement between the two
rotating configurations is given by

u = u� − u�−δ� ∝ δ� � . (6)

Clearly this procedure gives results identical to the method
described by Franco et al. (2000), according to which the displace-
ment field u up to the linear order in δ� is

ur(r, θ)=
(
ar − 1

7
Ar3 − 1

2
B
r2

+ b
r4

)
P2 ≡ f (r)P2,

uθ (r, θ)=
(
1
2
ar − 5

42
Ar3 − 1

3
b
r4

)
dP2

dθ
,

(7)

where P2 = 1
2

(
3 cos2 θ − 1

)
is the second Legendre polynomial of

argument cos θ and we have defined the function f (r). The four
coefficients a, b, A, and B are fixed by four boundary conditions,
two at the core–crust transition radius r = R′ and two at the star’s
surface r = R. At both these interfaces, we have to require the con-
tinuity of radial stresses, Trr = −p+ μurr , and that σrθ = 0, since
both the fluid core and the vacuum outside the star cannot sup-
port shears. It is useful to introduce the sound speed in the crust
of transverse waves, ct = √

μ/ρ, and the usual Keplerian velocity,
vK = √

GM/R, so that the four boundary conditions read

a− 8
21

AR2 − B
2R3 + 8

3
b
R5 = 0,

a− 8
21

AR′2 − B
2R′3 + 8

3
b
R′5 = 0,

df
dr

(R)+ 1
5
v2K
c2t

f (R)
R

− 1
3

�δ�

c2t
R2 = −AR2

2
+ B

R3 ,

df
dr

(R′)= −1
2

(
AR′2 + B

R′3

)
,

(8)

Using the definition (7) and the boundary conditions (8), the
four coefficients a, b,A, and B are obtained with straightforward
algebra.

It is useful to rewrite the displacement (7) as

ur = � δ� R3

Q(ct , vK , L)

(
ãr
R

− Ãr3

7R3 − B̃R2

2r2
+ b̃R4

r4

)
P2,

uθ = � δ� R3

Q(ct , vK , L)

(
ãr
2R

− 5Ãr3

42R3 − b̃R4

3r4

)
dP2

dθ
,

(9)

where the tilde superscript indicates that now the coefficients
are dimensionless: all the dependence on the physical parame-
ters has been included into the pre-factors. In particular, in the
above expressions the parameter Q, which has the dimension of a
squared velocity, is a complicated function of the physical param-
eters of the problem (see equation (10) and Appendix B for its
explicit form). On the other hand, the coefficients ã, Ã, b̃, and
B̃ are functions of the parameter L= R′/R only, where the limits
L= 0 and L= 1 describe a completely solid star and a completely
fluid star, respectively. Since the parameter L spans from about
0.86 to 0.95 when realistic EoS are used, the parameter q= 1− L
is sufficiently small to consider the expansion of the coefficients
ã, b̃, Ã, B̃, and Q only up to the second order in q. The boundary
conditions (8) fix the form of the dimensionless coefficients in (9),
that turn out to be

ã= 280
(
13q2 − 7q+ 2

)
,

b̃= −5
(
643q2 − 232q+ 37

)
,

Ã= 280
(
15q2 − 13q+ 5

)
,

B̃= −560
(
70q2 − 27q+ 5

)
/3,

Q/v2K = 35
(
q2
(
109− 240χ 2)−

−q
(
48− 60χ 2)+ 11

)
,

(10)

where χ is defined as the ratio between the sound speed in the
crust ct and the star’s Keplerian velocity vK ,

χ = ct
vK

� 1 . (11)

We interpret the parameter χ as an indicator of the relative
importance of the elastic forces with respect to the unperturbed
gravitational one: in this sense, this ratio gives an estimation of
the goodness of the linear perturbation theory. According to cur-
rent estimates of μ ∼ 1028 erg cm−3, χ is expected to be much less
than unity in the whole crust (see, e.g., Figure 7 of Zdunik et al.
2008). Interestingly, as noted by several authors (see, e.g., Haskell
et al. 2006; Bastrukov et al. 2007), the speed of transverse elastic
shear waves ct ∼ 108 cm/s is rather constant (within a factor of 2)
throughout the crust, so that we expect χ ∼ 10−2.

3.1. Parametric study of the FLEmodel

In their original work, Franco et al. (2000) considered only a
‘standard’ NS of massM = 1.4M	, R= 10 km and R′ = 0.95 R (i.e.
L= 0.95 according to the present notation), as benchmark stel-
lar configuration. Here, we extend their analysis investigating the
behaviour of the FLE model as a function of the star’s parameters:
radius, mass, and crust thickness.

First, we consider the displacement (9). We define a dimen-
sionless weight factorW that quantifies the displacement at a given
radial coordinate for a given amount of spin-down δ�, namely
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W = � δ� R2

Q(ct , vK , L)
. (12)

To gain some physical understanding of how W scales with the
stellar parameters, we use the smallness of the χ and q parameters
in equation (10), which gives a rough estimate of Q as

Q≈ 385 v2K . (13)

Moreover, to remove the dependence of the numerator on a par-
ticular set of rotational parameters, we can fix � and δ� to some
constant value. In this way, all the remaining contributions to W
will depend on the structural properties of the star. Hence, using
the approximation (13) into (12) immediately gives that the dis-
placements in (9) are expected to scale with the inverse of the
average density of the star,

W ∝ R2

v2K
= R3

GM
∝ 1

ρ
. (14)

This tells us that the FLEmodel predicts smaller displacements for
dense stellar configurations.

For a better understanding of this behaviour, the strain angle
α may be calculated changing the parameters one by one, keeping
fixed all the others. For comparison purposes, we set the relative
extension of the core to be L= 0.95, the same used in the original
FLE study. The procedure used to calculate the strain angle is as
follows. First, the relations in (9) are used to obtain the compo-
nents of the strain tensor in spherical coordinates. At this point,
for a fixed value of the coordinates r and θ , we calculate numeri-
cally the eigenvalues of the strain tensor, so that the definition in
(3) can be locally applied.

Since the displacements, and thus the strain, are proportional
to the actual spin-down between the two configurations, we set the
pre-factor�δ� equal to one for simplicityb. Therefore, to calculate
the deformation for a certain star, it is just sufficient tomultiply the
desired quantities for the actual parameter� δ�. The strain angle,
being a local quantity, depends on the position inside the crust;
for given mass, radius, and crust thickness of the star, it is shown
in Figure 2, where it is possible to observe that α is a decreasing
function of r. Hence, we expect that, if the crust breaks, the failure
threshold will be reached first at the crust–core interface, near the
equatorial plane (i.e. θ ≈ π/2 in our coordinates). However, the
value obtained with this test configuration is by far smaller than
the smallest breaking strain theoretically expected of 10−5. As we
will see, this kind of behaviour is scarcely influenced by the model
used.

Moreover, by looking at equations (9) and (14), we see that
deformations depends mainly on the radius and on the mean den-
sity of the star. In this sense, it is interesting to compare the strains
of stars all having the same average density ρ = 3M/(4πR3), but
different radii and masses. We find that, as long as the density is
taken constant but themass and the radius vary, the strain is nearly
unchanged. An example of this is shown in Figure 3, where we
fixed ρ to be the average density of a star of 1.4M	 and R= 10 km:
different choices of the mass and of the radius that are consistent
with the fixed density value do not move the estimated strains,
providing a numerical check of the goodness of the approximation
made in equation (14). This result indicates that, in the original
FLE model, the strain developed by a spinning-down pulsar (for

b Incidentally, our choice to set �δ� = 1 rad2 s−2 in all the calculations of the plotted
strains is not so distant from the value �δ� ≈ 0.6 rad2 s−2 that we will use for the Vela
pulsar (B0833-45) in the next section (see Table 1).

Figure 2. Strain angle as a function of the colatitude θ for the FLE model and fixed
benchmark values M= 1.4M	, R= 10 km, and L= 0.95. The strain angle is calculated
for different values of the radius: r= R (purple), r= 0.99R (blue), r= 0.98R (green), r=
0.97R (yellow), r= 0.96R (orange), and r= 0.95R (red). In particular, we indicate with a
solid line the innermost (red) and outermost (purple) value of α, and a dashed line for
the others. We used�δ� = 1 rad2 s−2.

Figure 3. Strain angle α of the FLE model restricted to the spherical shell r= R′ as a
function of the colatitude θ . The crust thickness parameter is fixed to L= 0.95, but we
consider two extreme values of the stellar radius: R= 10 km and R= 20 km. The cor-
responding two masses M are fixed by the constraint that the average density of both
configurations is ρ = 6.6× 1014 g cm−3. The two curves appear to be superimposed in
the graph.

a given value of �δ�) depends essentially only on the average
density of the star and on L: the independent choice of both M
and R implies a degeneracy in the results.

From the M–R relation of realistic equations of state, we
know that more massive stars typically have smaller radii, imply-
ing a larger average density and smaller W, as can be seen in
equation (14). In this sense, we can say that in the original FLE
model, heavier stars develop smaller strains during the spin-down,
which is the expected behaviour considering that the centrifugal
force is less effective on more compact stellar configurations.

Finally we can study also how the value of L affects α. We find
that the strain angle is a weakly increasing function of the crustal
thickness, that is, a decreasing function of L in the range 0.85≤
L ≤ 0.95. This can be seen in Figure 4, where we computed the
maximum value of α(L) over θ , for r = R′ andM = 1.4M	 andR=
10 km (in particular αMax(L= 0.85)� 1.3αMax(L= 0.95)). Figure 4
shows clearly that a thick crust can support larger deformations
with respect to a thinner one (as expected), but the dependence is
not so strong. The reason is that the elastic restoring force is small
compared to the gravitational one (11).
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Figure 4. The maximum strain angle as a function of the thickness parameter L= R′/R
for the FLE model. The fixed benchmark values M= 1.4M	 and R= 10 km have been
used. The strain angle is normalised at the value reached for L= 0.95 and calculated at
the core–crust interface r= R′. We used�δ� = 1 rad2 s−2.

3.2. Cowling approximation

It is possible to exploit the FLE model as a tool to estimate the
impact of the Cowling approximation (Cowling 1941), accord-
ing to which the perturbation of the star’s gravitational potential
is neglected. This kind of approach has been widely used in the
literature, especially for the study of the oscillation modes of
NSs (McDermott et al. 1988), but also for static deformations
(Ushomirsky et al. 2000; Johnson-McDaniel & Owen 2013). In
fact, this approximation has the advantage to simplify consider-
ably the momentum equations and to avoid the need to solve the
perturbed Poisson equation. However, it has a large impact on the
estimation of elastic deformations, as we show in the following.

The Cowling approximation can be easily implemented by set-
ting δφ = 0 in the perturbed equations of the original FLE model
[in particular in equations (12) and (31) of Franco et al. (2000)].
Assuming this further simplification, we can now rewrite the
boundary conditions in (8) as

a− 8
21

AR2 − B
2R3 + 8

3
b
R′5 = 0,

a− 8
21

AR′2 − B
2R′3 + 8

3
b
R′5 = 0,

− 2
df
dr

(R)− v2K
c2t

f (R)
R

+ 2
3

�δ�

c2t
R2 =AR2 + B

R3 ,

− 2
df
dr

(R′)=AR′2 + B
R′3 .

(15)

Using definition (7), together with the solutions of the above equa-
tions, we obtain the corresponding displacement introduced in
(9). The explicit form of the coefficients is given in Appendix B; see
(57). The simplest way to estimate the net effect of the perturbed
gravitational potential is to neglect the terms containing the ratio
χ and compare the displacement obtained with and without the
Cowling approximation, indicated as uC and u, respectively. In the
limit χ = 0, we find that

ur
uCr

= uθ

uCθ
= 5

2
+ O

(
χ 2 (1− L)

)
. (16)

Therefore, in the FLE scheme, the displacements calculated with
the Cowling approximation are 40% of the ones calculated by

Figure 5. Strain angle α as a function of the colatitude for the original FLE model. The
strain is calculated for M= 1.4M	, with the SLy EoS, at different evenly spaced values
of r, from r= R′ (red) to R (purple). In particular, we indicate with a solid line the inner-
most and outermost values of α, and a dashed line for the others. Again, themaximum
strain occurs at the core–crust interface on the equatorial plane.

considering also the gravitational potential perturbation (see also
Appendix B).

3.3. FLEmodel with M–R relation from realistic equations of
state

In the previous section, we analysed the main physical properties
of the FLE model by using only benchmark values for R, L, and
M. In this section, instead, we will study the strain developed in
rotating NSs by using the mass–radius relation of two very differ-
ent equations of state, the soft SLy (Douchin & Haensel 2001) and
the stiff GM1 (Glendenning & Moszkowski 1991).

This use of realistic EoSs, albeit still quite approximate in this
case of uniform density, links all the parameters of the star (i.e.
R, L, and ρ) to its mass M. Given the EoS, by solving the hydro-
static equilibrium equations (namely, the Tolman–Oppenheimer–
Volkoff (TOV) equations), we obtain the mass–radius relation
R(M). At this point, the star is continuously stratified, but to use
the FLE model, we choose the average uniform density ρ(M) as

ρ(M)= 3M
4πR(M)3

. (17)

Furthermore, also the parameter L can be determined for a given
EoS and total stellar mass: solving the TOV equations, we find
the radius R′(M) corresponding to the crust–core density transi-
tion of the particular EoS under study, so that we can fix L(M)=
R′(M)/R(M).

This approach simplifies our parametric study, since once the
stellar mass is chosen the same applies self-consistently for all the
other parameters and, at the same time, it gives a better estimate
of what we might expect in an astrophysical scenario.

In Figures 5 and 6, we show, respectively, the strain angle
α(r, θ) calculated for a 1.4M	 NS at different radii and the one
calculated at r = R′ for different stellar masses by using the rela-
tion given by the EoSs. As expected from the previous analysis, the
strain is a decreasing function of the radius and of the mass.

On the other hand, it is interesting to compare the maximum
strain angle αMax calculated with different EoSs. In Figure (7), we
compare the relatively soft SLy Eos with the stiffer GM1, which
leads us to conclude that a stiffer equation of state gives larger
maximum values of αMax. Again, this is has to be expected from
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Figure 6. Strain angle α as a function of the colatitude for the original FLE model on
a spherical shell of radius r= R′ , that is, where the strain angle reaches its maximum
value. The structural parameters have been fixed by considering the SLy EoS, for differ-
ent stellar masses: M= 1M	 (red),M= 1.2M	 (orange),M= 1.4M	 (yellow), M= 1.6M	
(green),M= 1.8M	 (blue), andM= 2M	 (purple).

Figure 7. Comparison of the maximum values of the strain angle αMax (which always
occurs at r= R′ and θ = π/2), obtained with the original FLE model, as function of the
stellar mass. A comparison between the SLy EoS (blue) and GM1 EoS (red) is made for
our benchmark value �δ� = 1 rad2 s−2. The green star indicates the maximum strain
value obtained for the standard configuration used in Franco et al. (2000) with M=
1.4M	, R= 10 km, and L= 0.95 (red curve of Figure 2). The curves approach for higher
masses as the crust thickness decreases and R′ gets closer to R; the GM1 line remains
always well above SLy because a stiffer equation of state gives a thicker crust for the
samemass.

(14); for the same stellar mass, a stiffer EoS gives a larger stellar
radius, and thus a smaller compactness. Therefore, the numeri-
cal analysis confirms the qualitative picture that is expected from
equation (14); however, from the quantitative part of view, the
use of more realistic combination of parameters, given by the
use of the EoS, give larger strains with respect with the standard
configuration (M = 1.4M	, R= 10 km) chosen by Franco et al.
(2000).

The most important information that can be extracted from
Figure 7 is that the maximum strain value (of the order of αMax ∼
10−8) is three orders of magnitude smaller than the lowest allowed
breaking strain (σMax ∼ 10−5), when �δ� = 1rad2 s−2. Therefore,
according to the FLE model, it’s unlikely that the spin-down
between two subsequent glitches could deform the crust enough
to break it: the only viable possibility is that the crust is always in
a stressed state, near the failure threshold. This result accords with
the observational finding of a lack of correlation between glitch
sizes and waiting times: although this may seem counterintuitive
if glitches are threshold-triggered events (as in theories involving
starquakes or superfluid vortex avalanches), the lack of correlation

Table 1. The rotational parameter �δ� that sets the actual value of the aver-
age stress developed in between two glitches is given for a selection of pulsars
with at least 10 glitches. Data are taken from the Jodrell Bank Glitch Catalogue
(www.jb.man.ac.uk/pulsar/glitches.html, see also Espinoza et al. 2011).

Pulsar name �δ� (rad2 s−2)

J0537−6910 5± 2

J0631+1036 0.006± 0.004

B0833−45 (Vela) 0.6± 0.3

B1338−62 0.04± 0.02

B1737−30 0.002± 0.002

B1758−23 0.005± 0.003

B1822−09 0.0002± 0.0001

can emerge naturally when a threshold mechanism is combined
with the secular stellar braking, as shown by Melatos et al. (2018).

It is possible to give a rough estimate of the average spin-down
δ� that occurs between two glitches in a pulsar: given the spin-
down rate �̇ < 0 and the average waiting time between glitches δt,
we set δ� = |�̇| δt.

In Table 1, the specific values of �δ� are reported for a selec-
tion of pulsars with at least 10 recorded events. Clearly, the most
interesting pulsars for the present analysis are the ones with large
values of the product � |�̇| δt; the record holder is J0537-6910,
followed by the Vela pulsar. As we can see, except for the Vela
and J0537-6910, the actual rotational parameters can only decrease
the values for the strain amplitude discussed above (that were all
calculated for �δ� = 1 rad2 s−2). The strain remains well below
the critical threshold even in the limit of very light stars with stiff
equation of state. Furthermore, if we consider the highest current
estimate of the breaking strain value σmax ∼ 0.1, we generally will
not expect the crust to break via the spin-down mechanism in the
whole star life, as has been recently proposed by Fattoyev et al.
(2018).

Finally, we can also compare the maximum strain angle using
the original FLE approach (αFLE) with the one obtained by using
the homogeneous model of Baym and Pines (αBP), where the star
is described as an elastic, rotating, homogeneous spheroid: this
is simply obtained by considering the limit R′ = 0 of the FLE
model. We choose M = 1M	, and calculate all the other quanti-
ties according to the SLy equation of state, since the use of a light
and soft star emphasises differences (however, we observe that the
same analysis can be done with the GM1 EoS or using some fidu-
cial values for the stellar configuration, with analogous results).
Both αFLE and αBP are evaluated for the same radius r, that is
the one of core–crust transition for a star obtained with the SLy
EoS (ρcore−crust = 1.3× 1014g cm−3), and θ = π/2, where the strain
angle is maximum. In this case, we obtain very similar values for
the two models:

αBP = 2.33× 10−8,
αFLE = 2.55× 10−8.

This result leads us towards another further step: the study of an
FLE-like model in which the crust and the core can have different
average densities.

4. Two-density model

The original FLE model provides a useful tool to estimate the
deformation of a rotating NS in Newtonian gravity, but it is
based on the strong assumption that the star must have the same
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constant density everywhere. In this section, we show how to over-
come this limitation, by using a self-consistent approach, where
the NS is divided in two homogeneous layers representing the
fluid core and the crust, with densities ρf and ρc, respectively. As
we will show, the self-consistency of the model becomes manifest
in two additional conditions for the gravitational potential. Note,
in fact, that contrary to the FLE model here one cannot use the
knowledge of the gravitational potential of a perturbed homoge-
neous spheroid, but has to calculate it self-consistently by solving
the perturbed Poisson equation.

The present analysis is based on the more general result dis-
cussed by Vermeersen et al. (1996), where it is shown that it is
possible to develop and build analytical models containing a large
number of layers as a description of auto-gravitating rocky planets.
Here this set of ideas is adapted to the rotating NS problem. In par-
ticular, the present approach takes inspiration from the two-layer
model firstly developed by Sabadini et al. (1982) in the context of
viscoelastic planets (like Earth).

In this section, we only discuss the general features of the
model. Detailed derivation of the model and of the main equa-
tions are summarised in Appendix A, while more technical details
can be found in Sabadini et al. (2016) and in the recent descrip-
tion of a class of more realistic (i.e. continuously stratified and
auto-gravitating) NS models (Giliberti et al. 2018).

In our two-density model, we find that the displacement u
still has the same analytic form of the displacement given in
equation (7); this is not surprising as the main difference with
respect to the original FLE model lies in the treatment of the
boundary conditions. In fact, at r = R′ we have a finite density dis-
continuity between the core and the crust, a detail which has to be
carefully incorporated into the analysis of the crust–core interface.
As a consequence, if we write down the displacement u in the form
of equation (9), the four coefficients ã, b̃, Ã, and B̃will be functions
not only of the thickness L and of χ , but also of the density ratio

d = ρc

ρf
< 1. (18)

As for the previous model, a simplified form for the coefficients ã,
Ã, b̃, and B̃ is given in Appendix B (the complete and exact form of
the coefficients turns out to be much more complex with respect
to the previous cases).

4.1. A first comparison with the original FLEmodel

We start by pointing out that the original FLE model can be
obtained as a trivial limit d = 1 of our two-density model. In fact,
imposing d = 1 in our model, we calculate the resulting displace-
ment u and the analogous one (i.e. by using the same values of L,
R,M, and χ) with the FLE model, uFLE. The ratio between the two
gives

ur
uFLEr

= uθ

uFLEθ

= 1 for d = 1. (19)

In other words, our model can be seen as a complete generalisa-
tion of FLE approach, accounting in a self-consistent way for two
different density in the NS core and crust.

We now follow the same analysis done for the FLE model in
the previous section, varying in turn one parameter while keep-
ing the others fixed. Since the parameter space is rather large, we
will vary several parameters at the same time by using a realistic
EoS in the next subsection. However, as a preliminary example,
we make a comparison with the FLE model by studying a situa-
tion similar to the one described in Figure 2, which corresponds to

Figure 8. (Top) Strain angle as a function of the colatitude θ for the two-density
model and fixed benchmark values M= 1.4M	, R= 10 km, L= 0.95, ρf = 6.6× 1014,
and ρc = ρf /10. The strain angle is calculated for different values of the radius: r= R
(purple), r= 0.99R (blue), r= 0.98R (green), r= 0.97R (yellow), r= 0.96R (orange), and
r= 0.95R (red). In particular, we indicatewith a solid line the innermost and outermost
values ofα, andwith a dashed line the others.We used�δ� = 1 rad2 s−2. (Bottom) Log-
scale comparison of the strain angle calculated for the same configuration (M= 1.4M	,
R= 10 km, L= 0.95, r= R′) using the FLE (blue, dashed) and the two-density (red)
models.

a star with R= 10 km and mass M = 1.4M	: in Figure 8, we plot
the strain at different radii for the two density model, using some
fiducial values of the parameters involved, with ρf ≈ 6.6× 1014 g
cm−3 and d = 0.1, such that the total mass is still of 1.4M	. Firstly,
we note that the strain angle in this case is larger with respect to the
FLE one. Furthermore, as the radial dependence of α(r, θ) shows,
the strain angle reaches its maximum value αMax at the crust–core
interface. However, differently with respect to the FLE model, in
this case the value of the strain is highest at the poles.

As a first check, we set ρf = ρc in the two-density model and we
find, as expected, that the maximum strain is placed at the equator
(19). Therefore, the stratification (i.e. the presence of layers with
different densities) introduces a new degree of freedom into the
model, so that it is possible to move the region of maximum stress
away from the equator.

Furthermore, we observe that, although the values of the strain
angles obtained with the new model are larger than the one of
the FLE approach, α is still well below the minimum breaking
threshold of 10−5.

As a final comparison, despite the fact that α is still a decreasing
function of L, we note that the crust thickness has a larger impact
on the strain value with respect to the FLE model. In this case,
we find that αMax(L= 0.85)/αMax(L= 0.95)� 1.6 for a 1.4M	 NS
with d = 0.1 (cf. with the factor 1.3 in Figure 4). This can be seen
in Figure 9, where the strain angle, computed for a fixed stellar
configuration, is shown as a function of the thickness parameter L.
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Figure 9. The maximum strain angle as a function of the thickness parameter L= R′/R
for the two-density model and fixed benchmark valuesM= 1.4M	, R= 10 km, and d=
0.1 (cf. with Figure 4). The strain angle is normalised at the value reached for L= 0.95
and calculated at the core–crust interface r= R′. We used�δ� = 1 rad2 s−2.

4.2. Realistic equations of state

As already done for the FLE model in Section 3.3, we investi-
gate the behaviour of the two-density model by imposing that not
all the parameters present in the equations are free: they have to
satisfy the constrain which arises by the fact that an EoS for the
internal matter is related to a particular mass–radius relation. In
order to give a stricter comparison with the FLE’s model, and since
the crust contains only a small percentage of the total stellar mass,
we use this simple prescription

ρf � M
4/3πR3 . (20)

On the other hand, the exact value of d, whose definition is in
equation (18), is found by the appropriate relation due to the par-
ticular EoS that has been chosen and therefore is a known function
of the stellar mass. The crust density is assumed to be

ρc = d ρf � d
M

4/3πR3 , (21)

a prescription that is used in both in Figures 10 and 11. In
Figure 10, the strain angle at the core–crust interface is shown
for different stellar masses. As expected, also in this case we have
that the strain decreases when the total mass is increased: again,
heavier stars have smaller radii and higher density, and are thus
more difficult to deform. However, we highlight the new interest-
ing feature that never arises by using the original FLE model: the
maximum strain αMax is now, in most of the cases, at the poles.
Interestingly, for the softer EoS and for heavier objects, there are
also cases where the maximum is still at the equator. Here, in fact,
the crust is extremely thin, and the strain tends to resembles the
LFE behaviour. However, when the opposite is true, the crust gains
a great importance in the strain shape, bringing the maximum at
the poles.

Finally, in Figure 11 we compare the maximum strain angle
αMax as function of the stellar mass, calculated with the FLE and
the two-density model, using both SLy and GM1 EoSs. Again,
stiffer EoS gives larger strain, as discussed above. The use of our
model allows to get larger strains that are typically two times larger
than the ones obtained with FLE model. As noted above, however,
in both the scenarios the maximum strain angle is still far even
from the minimum breaking strain value of ∼10−5. Therefore,
the analysis with this two-density model confirms that, starting

Figure 10. Strain angle at r= R′ as a function of the colatitude θ for the two-density
model and different masses: M= 1M	 (red), M= 1.2M	 (orange), M= 1.4M	 (yellow),
M= 1.6M	 (green), M= 1.8M	 (blue), and M= 2M	 (purple). The stellar structural
parameters are fixed by using the SLy EoS in the upper panel, while GM1 was used for
the lower one.

Figure 11. Maximum strain angle αMax (which occurs at the core–crust interface) as a
function of the stellar mass for the FLE (solid curves) and for the two-density model
(dashed curves). The red curves refer to the GM1 equation of state, and blue curves to
SLy.

from an unstressed configuration, the deformation due only to the
inter-glitch spin-down is not large enough to trigger a starquake.

5. Conclusion

In this work, we studied in details two different models describing
the deformation of the crust of a rotating NS due to its spin-down.
The first is the original FLE model (Franco et al. 2000) describing
an uniform star, with a fluid core and an elastic crust. The sec-
ond is our two-density generalisation, based on an adaptation of
the scheme first proposed by Sabadini et al. (1982) for the study of
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rocky planets deformations. Despite the fact that both approaches
are analytically solvable, the scheme proposed by Sabadini et al.
(1982) has two main advantages: it is self-consistent for spheri-
cal auto-gravitating bodies (i.e. not only homogeneous ones) and
partially accounts for stratification as it allows for two different
densities in the core and in the crust.

Both schemes were introduced in the literature without a spe-
cific parameter study: the FLE model, for example, was originally
built for the study of pulsars precession, and solved only for a
fiducial stellar configuration (see, e.g., Figure 7), while in the orig-
inal work of Sabadini et al. (1982), the focus was on geophysical
applications. Here, instead, we studied how the calculated strains
vary by considering different stellar structures, where parameters
such as the radius, the average density, and the crust thickness
are linked to the mass via an EoS. In order to parametrise our
ignorance on the unknown equation of state for matter at supra-
nuclear densities, an important part of the analysis has been
performed employing SLy and GM1 as a prototype of a soft and
a stiff EoS, respectively.

Three main conclusions have been drawn. First, all models
[including the homogeneous limit of Baym & Pines (1971)] indi-
cate that more compact stars are more difficult to deform (the
strain scales with the inverse of the average density). Because of
this quite general scaling, SLy is found to give smaller strains than
GM1, as it gives rise to more compact configurations.

Secondly, we found that the two-density model gives a strain
angle that is about two times larger than the FLE one, although the
dependence of the strain on various physical quantities is quali-
tatively the same in both models. This clearly indicates that the
different density values of the core and crust is a fundamental
aspect for the determination of the displacement and stress in
rotating NS.

As a third point, the maximum strain angle obtained using the
two-density model (as shown in Figure 11) varies for less than one
order of magnitude according to the present analysis (the maxi-
mum strain for an NS ofM = 1M	 is only about� 2÷ 3 times the
one of an NS withM = 2M	, depending on the EoS used). Hence,
it is not possible to conclude that themass is a key parameter which
clearly divides NSs in light objects that can easily undergo crust
failure and compact ones that are much more difficult to break.

Furthermore, the modification of FLE model, with the intro-
duction of the Cowling approximation, gives us a clear analytic
proof of how strong this assumption can be on the calculation
of the displacement u. In fact, we showed that the displacement
field, and thus the strain, is 40% of the original one. This suggests
some warnings about the use of such approximation for the study
of elastic displacements in NS.

As a first, simple, astrophysical application of our two-density
model, we selected a group of pulsars that have been observed to
glitch several times and we gave an estimate of the strain angle due
to the spin-down between subsequent events. Both the FLE and
the two-density models clearly indicate that starting from an ini-
tial unstressed state, it is not possible to develop enough strain to
break the crust as frequently as glitches are observed. Therefore,
the idea of a starquake as a trigger for the vortex avalanche in
glitches of superfluid NSs is severely challenged, unless the crust
is always in a state of great internal stresses (which is actually the
case for the Earth and other rocky planets). Moreover, the finding
that the maximum strain reached from a relaxed state during the
average inter-glitch spin-down is orders of magnitude smaller than
the breaking strain in an NS is in line with the lack of correlation
between glitch sizes and waiting times.

Finally, since the two-density model gives typically larger and
differently shaped strains with respect to the FLE one (e.g. the
maximum strain can be at the poles), the study of a realistic stratifi-
cation, without the assumption of incompressible medium, seems
to be the obvious choice for future studies (see Giliberti et al. 2018).
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∇ · T + F = 0, (22)

where T is the stress tensor and F is the body force acting on the star. Here,
we are considering only the effect of rotation, thus is natural to define the
total (gravitational plus centrifugal) potential �, which satisfies the Poisson
equation

∇2� = −4 π G ρ + 2�2 , (23)

where � is the angular velocity of the star. By expanding around equilibrium,
equations (22) and (23) become

∇ · σ − ∇ · (ρ0 u · ∇φ0) + ∇ · (ρ0 u)∇φ0 + ...

...− ρ0 ∇�� = 0,
(24)

∇2�� = −4 π G∇ · (ρ0 u)+ 2�2 , (25)

where the subscript 0 indicates the unperturbed quantities, while σ and�� are
the Cauchy tensor and the local variation of the potential,c respectively. Using
the assumption of constant shear and bulk modulus, an expansion in Legendre
polynomials P� of all the physical quantities allows to rewrite the radial and
tangential part of equation (24) and the Poisson equation (25) as

β

ρ0
∂rχ� − ∂r

(
gUl
)+ gχ� − ∂r�� + μ

ρ0

� (� + 1)
r

H� = 0, (26)

β

ρ0
χ� − gU� − �� + μ

ρ0
∂r (rH�) = 0 , (27)

and

∇2
r �� = −4πG (ρ0χ� +U�∂rρ0) , (28)

where

∇2
r = ∂r + 2

r
∂r − � (� + 1)

r2
.

The terms with the subscript � are the expansion coefficients of the corre-
sponding quantity in Legendre polynomials. Here, in particular, U� and V�

are the radial and tangential displacement coefficients, that is, f (r) and g(r) of
equation (7), respectively. In the above equations, some quantities have been
introduced: β = κ + 4/3μ and g is the gravitational acceleration at the initial
state of hydrostatic equilibriumd, while the scalars H� and χ� are defined as

H� = ∂rV� + V� −U�

r
, (29)

χ� = ∂rU� + 2
r
U� − � (� + 1)

r
V� . (30)

In particular, the scalar functions χ� are related to the relative volume change
� via an expansion in Legendre polynomials as

� = ∇ · u=
∞∑

�=0
χ�P� . (31)

According to the incompressibility assumptions, there are no volume changes
� in our model. However, during the deformations, also incompressible mate-
rials must be able to react to isotropic stresses. We thus require that the
bulk modulus κ is infinitely large but in such a way that the material incre-
ment of the pressure, which can be expressed as pδ = −κ�, remains finite
(Sabadini et al. 2016). Therefore, the coefficients p� of the expansion in
spherical harmonics of pδ remain finite when the formal limit

p� = − lim
χ�→0
κ→∞

κ χ�

c In Sabadini et al. (2016), a specific terminology is used. For a generic quantity f ,
the ‘local increment’ f � coincides with what is usually called Eulerian change (Shapiro &
Teukolsky 1983). On the other hand, the Lagrangian changes of f are dubbed ‘material
increments’ and are indicated by f δ .

dThe gravitational acceleration is defined as

g = 4πG
r2

∫ r

0
r′2ρ0(r′)dr′ .

is taken (Love 1959). Using the incompressibility assumption χ� = 0 into equa-
tion (30) gives a relation between the radial and the tangential displacements:

V� = r∂rU� + 2U�

� (� + 1)
. (32)

The quantity H� can thus be written as

H� = ∇2
r (U�r)

� (� + 1)
. (33)

Since, in our model, the layers are homogeneous (i.e. ∂rρ0 = 0), equation (28)
within each layers becomes the Laplace equation (� ≥ 1)

∇2
r �� = 0 . (34)

As usual, we write the solution of equation (34) as

�� = c3r� + c∗3r−(�+1) , (35)

where c3 and c∗3 are constants of integration. We underline that the absence
of density perturbations within the layers does not implies that the gravita-
tional perturbation �� is zero. Indeed, there are density jumps �ρλ between
different layers at interfaces defined by r = λ ,

�ρλ = ρ0
(
λ+)− ρ0

(
λ−) . (36)

This means that we can write the density gradient as

∂rρ0 = (ρc − ρf )δ(r − R′),

∂rρ0 = −ρcδ(r − R),

at the interfaces r = R′ and r = R, respectively.
The introduction of the auxiliary quantity,

�� = − p�

ρ0
− gU� − �� ,

allows us to reduce equations (26) and (27) to

∂r�� + μ

ρ0

� (� + 1)
r

H� = 0 , (37)

�� + μ

ρ0
∂r (rH�) = 0 . (38)

These two equations can be combined into

∇2
r �� = 0, (39)

which has the solution

�� = − μ

ρ0
c1 r� − μ

ρ0
c∗1 r−�−1 , (40)

where the quantity μ/ρ0 have been inserted for convenience and c1, c∗1 are two
constants. Inserting this solution in (37) and using the relation (33), we obtain
a differential equation for U�:

∇2
r (U� r)= c1 � r� − c∗1 (� + 1) r−�−1. (41)

Solving this equation and using (32), we finally get the radial and tangential
displacements as

U� = c1
� r�+1

2 (2� + 3)
+ c2r�−1 + c∗1

(� + 1) r−�

2 (2� − 1)
+ c∗2r−(�+2), (42)

V� = c1
(� + 3) r�+1

2 (2� + 3) (� + 1)
+ c2

r�−1

�
+ ...

...+ c∗1
(2− �) r−�

2l (2� − 1)
− c∗2

r−(�+2)

� + 1
. (43)

We remind that the centrifugal potential can be expanded in Legendre polyno-
mials as

φC (r, θ , ϕ) = φC
0 (r) P0 (θ) + φC

2 (r) P2 (θ) , (44)

where

φC
0 (r) = −�2r2

3
, (45)
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and

φC
2 (r) = �2r2

3
. (46)

All the harmonic coefficients with � �= 0, 2 are zero. Moreover, the coefficient
with � = 0 is suppressed by the request of incompressibility. Therefore, in the
case of deformations induced by the centrifugal force, we have only the har-
monic contribution corresponding to � = 2. In this, scenario is easy to see that
the above expression for the radial and tangential displacement (42) and (43)
have the same form of the ones given in equation (7). Note that, differently
from the FLE model, where there are only four constants (a, A, b and B), now
six coefficients need to be determined (c1, c2, c∗1 , c∗2 , c3, c∗3): two new coefficients
come from the self-consistent treatment of the Poisson equation and have been
introduced in equation (35). In order to fix these constants, we have to impose
the opportune boundary conditions at the interface between layers.

A.1. Boundary conditions

The boundary condition can be easily written by using the expansion in
spherical harmonics of the material incremental stress, that is,

σ · er =
∑

�

(R�P�er + S�∂θP�eθ ) , (47)

where er and eθ are the usual spherical unit vector.We call R� and S� radial and
tangential stress, respectively. We require the continuity of the radial stress and
that the tangential stress must be zero both at the star’s surface r = R and at the
core–crust boundary r = R′:

R�(R+) = 0, (48)
R�(R+) = R�(R′−), (49)
S�(R+) = 0, (50)
S�(R′+) = 0 . (51)

In fact, the fluid core and the vacuum outside the star cannot support shear
stress; moreover, pressure is zero for r ≥ R. We can add other two conditions
for the potential, by introducing the potential stress

Q� = ∂r�� + � + 1
r

�� + 4πGρ0U� . (52)

Starting from the Poisson equation (23) and using the Gauss theorem in a
pillow box placed at a radius r = R and r = R′, respectively, we can write the
boundary conditions in a compact form:

Q�(R+) = Q�(R−), (53)
Q�(R′+) = Q�(R′−). (54)

In particular, using the spherical harmonic expansion (44) of the centrifugal
potential

�C
� (r) = �C

� (R)
( r
R

)�

, � > 0, (55)

equation (53) can be explicitly written as

∂r��

(
R−)+ � + 1

r
��

(
R−)+ 4πGρ0

(
R−)U�

(
R−)=

= 2� + 1
R+ �C

�

(
R+) . (56)

The six boundary conditions [(48), (50), (53), (49), (51), and (54)] fix the
coefficients, giving us the analytical displacements, stresses, and potential.

Appendix B. Coefficients
In this appendix, we show the explicit form of the displacement coefficients,
both for the FLE model in the Cowling approximation and for our two-density
model. We recall here the main physical quantities of the problem: R is the
stellar radius, R′ the core–crust interface radius, ct = √

μ/ρc is the transverse
speed of shear waves, and vK = √

GM/R is the Keplerian velocity. We also

recall the definition of three useful dimensionless parameters that have been
used in the text: χ = ct/vK , d = ρc/ρf < 1, and q= 1− L. Since q� 1, we
expand the coefficients ã, b̃, Ã, B̃, and Q up to the second order in q.

B.1. Cowling approximation

The displacement in equation (7) can be rearranged in the form (9). If we
use the Cowling approximation, discussed in Section 3.2, we have different
parameters with respect to the FLE case:

ãC = 560
(
13q2 − 7q+ 2

)
,

b̃C = −10
(
643q2 − 232q+ 37

)
,

ÃC = 560
(
15q2 − 13q+ 5

)
,

B̃C = −1120
(
70q2 − 27q+ 5

)
/3,

QC/v2K = −175
(
q2
(
96χ2 − 109

) +
+ q

(
48− 24χ2)− 11 .

(57)

It is now easy to check that equation (16) is valid when the (very small) terms
proportional to q2χ2 and qχ2 are neglected.

B.2. Two-density model

As discussed in Section 4, the displacements for the two-density model have
the same analytic form given in equation (9). In this case, the coefficients which
appear into the explicit solution of the displacements are given by

ã = q2(− 1 680d3v2 + 8 400d2v2 − 33 600dv2χ2+
− 6 720dv2 + 44 520v2χ2)+
+ q(− 840d2v2 + 6 720dv2χ2+
+ 840dv2 − 12 600v2χ2)+
+ 1 680v2χ2,

b̃ = q2
(
405d3v2 − 1 575d2v2 + 14 400dv2χ2+

+1 170dv2 − 24 045v2χ2)+
+ q

(
90d2v2 − 1 920dv2χ2 − 90dv2 + 5 400v2χ2)+

− 555v2χ2,

Ã = q2(− 3 780d3v2 + 15 435d2v2 − 63 840dv2χ2+
− 11 655dv2 + 76 440v2χ2)+
q(− 1 575d2v2 + 15 960dv2χ2+
+ 1 575dv2 − 26 880v2χ2)+
4 200v2χ2,

B̃ = q2
(
58 240dv2χ2 + 1 680(d − 1)2dv2 − 97 440v2χ2)+

q
(
24 080v2χ2 − 8 960dv2χ2)+

− 2 800v2χ2,

Q/v2K = q2(1 890d3v2 − 8 820d2v2χ2 − 7 560d2v2+
+ 35 070dv2χ2+
+ 5 670dv2 + 50 400v2χ4 − 49 140v2χ2)+
q(630d2v2 − 5 250dv2χ2 − 630dv2 − 12 600v2χ4+
+ 15 330v2χ2)+
− 2 310v2χ2.

The exact form of these coefficients is much more complex; here expres-
sions have been truncated to the second order in q, which is the relative crust
thickness.
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