THE ORDER OF ALGEBRAIC LINEAR TRANSFORMATIONS

BY
RANDEE PUTZ

In this paper we extend the results of an earlier note [1].
Definition. Let E be an extension field of the rationals. A vector $v=\left(b_{1}, \ldots, b_{n}\right)$ in E^{n} is algebraic if each coordinate b_{i} is algebraic over the rationals. A linear transformation $T: E^{n} \rightarrow E^{n}$ is algebraic if $T(v)$ is an algebraic vector for every algebraic vector v.

Definition. The degree of an algebraic linear transformation T, denoted by $\operatorname{deg} T$, is the minimum of [$K: Q]$ taken over all finite algebraic extensions K of the rationals Q such that $T: K^{n} \rightarrow K^{n}$.

Remark. Clearly if $\left(a_{i j}\right)$ is the matrix representation of the algebraic linear transformation T, the degree of T is the degree over the rationals of the algebraic extension generated by the algebraic numbers $a_{i j}$.

Definition. Let \mathfrak{A} denote the algebra over the rationals of algebraic linear transformations $T: E^{n} \rightarrow E^{n}$. For T in \mathfrak{A}, T has order m, if $T^{m}=I$ (the identity transformation) and m is the smallest integer q for which $T^{q}=I$.

Theorem. Let T belong to \mathfrak{A} the algebra of algebraic linear transformations. If T has order m then

$$
m \leq e^{C}(\log (n \operatorname{deg} T+1))\left(1+1 / \log ^{2}(n \operatorname{deg} T+1)\right)(n \operatorname{deg} T)^{\pi(n \operatorname{deg} T+1)}
$$

where $\pi(t)$ denotes the number of primes less than t, C is Euler's constant, and an approximate value for e^{C} is, $e^{C}=1.781072417990198$.

Remark. If the extension field E is algebraic over the rationals of degree q, then replacing deg T by q in the inequality in the theorem yields a uniform bound on the order of algebraic linear transformations of E^{n} onto E^{n}.

Proof of the Theorem. Let K be the finite algebraic extension of the rationals such that $T: K^{n} \rightarrow K^{n}$ and $\operatorname{deg} T=[K: Q]$. Since K is a vector space over the rationals of dimension $\operatorname{deg} T$, let $v \rightarrow v_{Q}$ denote the linear isomorphism over the rationals, Q, of vectors v in K^{n} and vectors v_{Q} in Q^{r}, where $r=n \operatorname{deg} T$. The linear transformation $T: K^{n} \rightarrow K^{n}$ yields a linear transformation over Q, denoted by $T_{Q}: Q^{r} \rightarrow Q^{r}$, defined by $T_{Q}\left(v_{Q}\right)=(T(v))_{Q}$.

One easily establishes that for any two linear transformations $S, T: K^{n} \rightarrow K^{n}$ we have $(S T)_{Q}=S_{Q} T_{Q}$. By induction we see that if the transformation T has order m
then the transformation T_{Q} has order m. Our result then follows immediately from the following theorem which appears in [1].

Theorem. If $L: Q^{r} \rightarrow Q^{r}$ is a linear transformation of order m then

$$
m \leq e^{c}(\log (r+1))\left(1+1 / \log ^{2}(r+1)\right) r^{\pi(r+1)}
$$

Reference

1. Randee Putz, An estimate for the order of rational matrices, Canad. Math. Bull. 10 (1967), 459-461.

Temple University,
Philadelphia, Pennsylvania

