THE ORDER OF ALGEBRAIC LINEAR TRANSFORMATIONS

BY RANDEE PUTZ

In this paper we extend the results of an earlier note [1].

DEFINITION. Let *E* be an extension field of the rationals. A vector $v = (b_1, \ldots, b_n)$ in E^n is algebraic if each coordinate b_i is algebraic over the rationals. A linear transformation $T: E^n \to E^n$ is algebraic if T(v) is an algebraic vector for every algebraic vector v.

DEFINITION. The *degree* of an algebraic linear transformation T, denoted by deg T, is the minimum of [K: Q] taken over all finite algebraic extensions K of the rationals Q such that $T: K^n \to K^n$.

REMARK. Clearly if (a_{ij}) is the matrix representation of the algebraic linear transformation T, the degree of T is the degree over the rationals of the algebraic extension generated by the algebraic numbers a_{ij} .

DEFINITION. Let \mathfrak{A} denote the algebra over the rationals of algebraic linear transformations $T: E^n \to E^n$. For T in \mathfrak{A} , T has order m, if $T^m = I$ (the identity transformation) and m is the smallest integer q for which $T^q = I$.

THEOREM. Let T belong to \mathfrak{A} the algebra of algebraic linear transformations. If T has order m then

 $m \leq e^{C}(\log (n \deg T+1))(1+1/\log^2 (n \deg T+1))(n \deg T)^{\pi(n \deg T+1)}$

where $\pi(t)$ denotes the number of primes less than t, C is Euler's constant, and an approximate value for e^{c} is, $e^{c} = 1.78107$ 24179 90198.

REMARK. If the extension field E is algebraic over the rationals of degree q, then replacing deg T by q in the inequality in the theorem yields a uniform bound on the order of algebraic linear transformations of E^n onto E^n .

Proof of the Theorem. Let K be the finite algebraic extension of the rationals such that $T: K^n \to K^n$ and deg T = [K: Q]. Since K is a vector space over the rationals of dimension deg T, let $v \to v_Q$ denote the linear isomorphism over the rationals, Q, of vectors v in K^n and vectors v_Q in Q^r , where $r = n \deg T$. The linear transformation $T: K^n \to K^n$ yields a linear transformation over Q, denoted by $T_Q: Q^r \to Q^r$, defined by $T_Q(v_Q) = (T(v))_Q$.

One easily establishes that for any two linear transformations $S, T: K^n \to K^n$ we have $(ST)_Q = S_Q T_Q$. By induction we see that if the transformation T has order m

RANDEE PUTZ

then the transformation T_{φ} has order *m*. Our result then follows immediately from the following theorem which appears in [1].

THEOREM. If $L: Q^r \to Q^r$ is a linear transformation of order m then

 $m \leq e^{C}(\log (r+1))(1+1/\log^{2}(r+1))r^{\pi(r+1)}.$

Reference

1. Randee Putz, An estimate for the order of rational matrices, Canad. Math. Bull. 10 (1967), 459-461.

Temple University, Philadelphia, Pennsylvania