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TRANSLATION-INVARIANT OPERATORS ON D{G), 
0 < p < 1 (II) 

DANIEL M. OBERLIN 

For a locally compact group G, let LP(G) be the usual Lebesgue space with 
respect to left Haar measure m on G. For x G G define the left and right 
translation operators Lx and Rx by Lxf{y) = f(xy), Rxf(y) = f(y%)(f 6 LV(G), 
y Ç G). The purpose of this paper is to prove the following theorem. 

THEOREM. Let G be a locally compact group and fix p with 0 < p < 1. The 
bounded linear operators on LP(G) which commute with each Rx(x £ G) are 
precisely those operators of the form 

OO CO 

(1) J2 aiLxi, xt G G, X) \ai\P < °°-
1=1 i=l 

For compact abelian G this was proved in [4]. Here we give the details for the 
(somewhat more complicated) proof of the general case. 

One half of the proof is trivial: for 0 < p < 1 and complex numbers z and 
w we have \z + w\v S \z\v + \w\v. Thus it is obvious that (1) defines a bounded 
translation-invariant linear operator on LP{G). So assume that T is such an 
operator and we shall show, in two steps, that T has the form (1). First, 
though, we record some notation: the symbol J • • • dx always stands for 
JG ' ' ' dm(x), while for 0 < q ^ 1 a n d / G Lq(G), the symbol ||/||ff stands for 
the number (j\f(x)\qdx)1/Q. 

Step 1. We shall prove: 

(2) There exists a complex-valued regular Borel measure X on G such that 
Tf = X * / f o r / G L*(G) C\Ll(G). 

LEMMA 1. Let S be a bounded real-linear operator on LV{G) which sends real-
valued functions into real-valued functions. Let \\S\\ denote the number 

sup {||S/|U||/||,,;/e £ ' ( £ ) , / * 0 } . 

For any q with 0 < p < q ^ 2 and any real-valued continuous compactly-
supported f on G X G, we have 

f(f\Sf(-,y)(xWdyy
>Sdx ^ PIT f(f\f(x,y)\<dyy°dx. 

Proof of Lemma 1: For each n = 1, 2, . . . there exist m(= m(n)), pairwise 
disjoint Borel sets Ei, . . . , Em C G, and continuous compactly-supported 
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real-valued functions gi, . . . , gm on G such that if x% is the characteristic 
function of Et and if fn(x, y) = TIi=ièi(x)Xî(y), then 

(3) support (fn) C K for some compact K Ç G X G and 
sup{|/n(*,y) - / ( * , y ) | : (*, y) 6 G X G} -> 0. 

It follows that / J |/n(#> y) — f(%, y)\pdx dy —•» 0, and so J J |5/n(-, y)(x) — 
Sfi'i y)(x)\pdx dy —> 0. By passing to a subsequence we may assume that for 
almost every x G G we have 5/w(-, y) (x) —» 5/(-, y) (x) for almost every y G G. 
Then Fatou's lemma yields 

J|S/(-,y)(*)r<*y ^ liminf J|5/.(-,y)(*)|'d« 

for almost every x, and so 

j(J\Sf(-,y)(x)\,dyjqdx ^ liminf J ( J |S/„(-, ;y)(x)|y;yj V 

We will be done with the proof of Lemma 1 when we establish 

(4) liminf f(f\SM-,y)(kx)\'dy)P"dx ^ \\S\\P / ( j \f(x, y)\'dy)'.. "dx. 

Fix n and recall that/n(#, y) = 2TLigi(#)x*(y)- For i — 1, . . . , m, let /£*(x) = 
gi(x)m(Ei)1/g. A theorem of Marcinkiewicz and Zygmund [3, Théorème 2], 
implies that 

J ( g \Sht(x)\Q) dx g 11511' J [Y, \ht(x)\'j dx, 

and so 

f(f\Sfn(-,y)(x)\tdy)"tdx ^ \\S\\* §[§\fn{x,y)\<>dy)Vlqdx. 

But 

/ ( f\fn(x, y) \'dyf"dx -> J(f\f(x, y)\QdyJ"dx 

by (3), so (4) is established. 

The preceding lemma is essentially Lemma 2 in [1], where it is stated with­
out proof. We have included the details for the sake of completeness. We note 
that part of the argument which follows was inspired by the proof of the 
theorem in [1]. 

We return to the proof of (2). Let 5 be either of the real-linear operators 
/ - > R e (7Y) , / -> Im (Tf). If we show: 

(5) There exists a real-valued regular Borel measure M on G such that 
Sf=p*f for real-valued/ G l? (G) C\ Ll{G)% 
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then (2) will follow. We note that S is a real-linear operator on LV{G) which 
commutes with each Rx(x G G) and satisfies the hypothesis of Lemma 1. 

Let U and V be neighborhoods of the identity e in G with U relatively 
compact, V symmetric, and V2 C U. Let u and h be continuous real-valued 
compactly-supported functions on G with u(x) = 1 for x £ [/and h supported 
in V. Taking q = 1 and/(# , ;y) = u(x)h(xy) in Lemma 1, we get 

I«S'il- \\u\L- \\h: |i ^ (/'(/'\S(u(.)h(-y))(x)\dyjdxyT 

- (J(/yl5(M(-)^^))WI^)^)1/?. 
and so, since S commutes with each Rx, 

(6) ||5||-||«||,-||A||i ^ (j(Jv \S(u(-y-l)h(-))(xy)\dy)dx)IP. 

Since F2 C £/, F is symmetric, and support (Â) C F, it follows that u{-y~l) is 
equal to 1 on the support of h as long as y £ V. Thus, if xv denotes the 
characteristic function of V, 

j |5(«(-y-1)A(.))(*y)|^= f |SAfoO|dy= f ISftCjOxrC*-1?)!^ 

= J \Sh(y)Xv(y~lx)\dy 

since V is symmetric. Now (6) yields 

||S|HMI„-||A||i ^ (/(/|5A(y)xr(y-1*)|dy)',<fo)1/!' 

- / ( / lxF(y - 1*)rd»»(*)j |5A(y)|dy= (m(F))1/p||S/*||i, 

where the last inequality follows from an application of Minkowski's integral 
inequality. Thus we have established 

(7) WSW-WuUmmr^WhlU^ \\Sh\U 

for any real-valued continuous h supported in V. It is easy to check that (7) 
continues to hold for an arbitrary real-valued h £ Ll(G) so long as h is sup­
ported in V. But any compactly-supported h £ Ll(G) can be written as a 
finite sum of right translates of L1 functions supported in V—say h = Yl^iRfii 
where Rt is right translation by some xt £ G—and we can arrange to have 
the sets {x £ G: Rthi 9e Oj pairwise disjoint. With A denoting the modular 
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function of G we then have 

pal l ia È WSRjitHi = ê 11^^111= Z A^r1)!^*^! 
z= l i = l *=1 

Since 
i = l 

2=1 i = l 

it follows that (7) holds for any compactly-supported real-valued function h 
in Ll{G). Now (5) follows from Wendel's theorem [2, Theorem 35.5]. This 
completes Step 1. 

Step 2. We will show that the measure X of (2) is of the form Y^=ia^i where 
hi is the unit mass at some xt £ G and ^?=i|a^|p < oo. This will complete the 
proof of the theorem. We begin by showing that X is a discrete measure. We 
will need the following lemma. 

LEMMA 2 (Lemma 1 of [4]). Let K be a compact Hausdorff space and let X be 
a complex-valued regular Borel measure on K. If for some p(Q < p < 1) and for 
some finite positive number M we have 

m 

(8) £ | X ( E , ) r ^ M 
; = i 

for each m and each finite Borel partition [Ej)m
j=i of K, then X is of the form 

]£?=iaidi, where 5* is the unit mass at some point xt £ K and YJi=i\aî\v = M. 

To show that X is discrete it is enough to show that the restriction of X to K 
satisfies the hypothesis of Lemma 2 for each compact K C G. So fix such a K 
and a relatively compact neighborhood E of e in G. We will show that (8) 
holds for any Borel partition {E^ of K with M = \\T\\*m(K-lE)/m{E). 

Fix e > 0, compact sets Kj C £ ; , and pairwise disjoint open subsets Uj of 
G such that 

m 

(9) £ |X(£;) - \(Fj)\
v < e if each Fj satisfies#,• ç F, C [/;, 

J = I 

Let £/ be a symmetric neighborhood of e in G with KjU2 £ C/̂  for each j , and 
let {5^=1 be a partition of K~lE such that each Sk is contained in some right 
translate of U. Then if xu is the characteristic function of Sk(k = 1, . . . , w), 
we have 

||r||'m(ir1£) = i ir i i 'é Ibl l /è f Ê |7x*(*)|'<fc 
fc=l « ^ J t = l 

= f Ê i x ^ r 1 ) ^ ^ f Ê |x(*s*_1)|pd*. 
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Thus there exists some x £ E (which we now fix) with 

(10) è IMtfSr 1)!*^ \\T\\vm(K-lE)/m{E). 
k=l 

For j = 1, . . . , m, let Fj = U xS^1, where the union is over all k such that 
xSfT1 H Kj T£ 0. Since {xSk~

l\n
k=x partitionsxE~ lK "D K, it follows that-Kj C Fj. 

Since each Sk is contained in a right translate of U and since KjU2 C JJ3 for 
each j , it follows that Fj C [/y. Now (9), (10), and the definition of the sets 
F) yield 

m m n 

E |x(£,)r g e + £ |x(OT ^ e + E Ixfrsr1)!' 
;=1 j=l *=1 

^ e + \\T\\vm{K-lE)/m{E). 
But for an arbitrary e > 0, this is (8) with M = \\T\\P m(K~1E)/m(E). It 
follows that X is discrete, say X = X!?=i a^ with 5* the unit mass at some 
Xi £ G and with X!?=ik*l < °° • To complete the proof we need only show that 

With no loss of generality we may suppose that no at = 0 and that the 
xt are distinct. Let Nx be an arbitrary positive integer and let iV2 > N\ be so 
large that J2ct=N2+i\ai\ ^ WJ\/2 if 1 è j è Ni. Let C7 be a neighborhood of e 
such that XiC/n ^27 = 0 if 1 S i < j ^ N2. Now 

(ID 
|r|rm(t/) = lirinixdl/ ^ J ix^cr1)!^ 

NI r NI C \ 

^ E |x(xc/-1)|̂ = E I E 
Fix j with 1 ^ j ^ iVi and fix x £ #yZ7. Then xy G xC/_1 and if 1 ^ z g N2, 
i 9^ 7, then X i \t X U-K Thus 

I X) <*<<** ̂  I ( k i | - Z k | M x ^ I (\aj\/2)pdx. 

This and (11) yield 

*\\T\\'* E W, V 

Since Ni was arbitrary, Z)?=ik;!P < °° as desired. 
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