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TRANSLATION-INVARIANT OPERATORS ON D{G), 
0 < p < 1 (II) 

DANIEL M. OBERLIN 

For a locally compact group G, let LP(G) be the usual Lebesgue space with 
respect to left Haar measure m on G. For x G G define the left and right 
translation operators Lx and Rx by Lxf{y) = f(xy), Rxf(y) = f(y%)(f 6 LV(G), 
y Ç G). The purpose of this paper is to prove the following theorem. 

THEOREM. Let G be a locally compact group and fix p with 0 < p < 1. The 
bounded linear operators on LP(G) which commute with each Rx(x £ G) are 
precisely those operators of the form 

OO CO 

(1) J2 aiLxi, xt G G, X) \ai\P < °°-
1=1 i=l 

For compact abelian G this was proved in [4]. Here we give the details for the 
(somewhat more complicated) proof of the general case. 

One half of the proof is trivial: for 0 < p < 1 and complex numbers z and 
w we have \z + w\v S \z\v + \w\v. Thus it is obvious that (1) defines a bounded 
translation-invariant linear operator on LP{G). So assume that T is such an 
operator and we shall show, in two steps, that T has the form (1). First, 
though, we record some notation: the symbol J • • • dx always stands for 
JG ' ' ' dm(x), while for 0 < q ^ 1 a n d / G Lq(G), the symbol ||/||ff stands for 
the number (j\f(x)\qdx)1/Q. 

Step 1. We shall prove: 

(2) There exists a complex-valued regular Borel measure X on G such that 
Tf = X * / f o r / G L*(G) C\Ll(G). 

LEMMA 1. Let S be a bounded real-linear operator on LV{G) which sends real-
valued functions into real-valued functions. Let \\S\\ denote the number 

sup {||S/|U||/||,,;/e £ ' ( £ ) , / * 0 } . 

For any q with 0 < p < q ^ 2 and any real-valued continuous compactly-
supported f on G X G, we have 

f(f\Sf(-,y)(xWdyy
>Sdx ^ PIT f(f\f(x,y)\<dyy°dx. 

Proof of Lemma 1: For each n = 1, 2, . . . there exist m(= m(n)), pairwise 
disjoint Borel sets Ei, . . . , Em C G, and continuous compactly-supported 
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real-valued functions gi, . . . , gm on G such that if x% is the characteristic 
function of Et and if fn(x, y) = TIi=ièi(x)Xî(y), then 

(3) support (fn) C K for some compact K Ç G X G and 
sup{|/n(*,y) - / ( * , y ) | : (*, y) 6 G X G} -> 0. 

It follows that / J |/n(#> y) — f(%, y)\pdx dy —•» 0, and so J J |5/n(-, y)(x) — 
Sfi'i y)(x)\pdx dy —> 0. By passing to a subsequence we may assume that for 
almost every x G G we have 5/w(-, y) (x) —» 5/(-, y) (x) for almost every y G G. 
Then Fatou's lemma yields 

J|S/(-,y)(*)r<*y ^ liminf J|5/.(-,y)(*)|'d« 

for almost every x, and so 

j(J\Sf(-,y)(x)\,dyjqdx ^ liminf J ( J |S/„(-, ;y)(x)|y;yj V 

We will be done with the proof of Lemma 1 when we establish 

(4) liminf f(f\SM-,y)(kx)\'dy)P"dx ^ \\S\\P / ( j \f(x, y)\'dy)'.. "dx. 

Fix n and recall that/n(#, y) = 2TLigi(#)x*(y)- For i — 1, . . . , m, let /£*(x) = 
gi(x)m(Ei)1/g. A theorem of Marcinkiewicz and Zygmund [3, Théorème 2], 
implies that 

J ( g \Sht(x)\Q) dx g 11511' J [Y, \ht(x)\'j dx, 

and so 

f(f\Sfn(-,y)(x)\tdy)"tdx ^ \\S\\* §[§\fn{x,y)\<>dy)Vlqdx. 

But 

/ ( f\fn(x, y) \'dyf"dx -> J(f\f(x, y)\QdyJ"dx 

by (3), so (4) is established. 

The preceding lemma is essentially Lemma 2 in [1], where it is stated with
out proof. We have included the details for the sake of completeness. We note 
that part of the argument which follows was inspired by the proof of the 
theorem in [1]. 

We return to the proof of (2). Let 5 be either of the real-linear operators 
/ - > R e (7Y) , / -> Im (Tf). If we show: 

(5) There exists a real-valued regular Borel measure M on G such that 
Sf=p*f for real-valued/ G l? (G) C\ Ll{G)% 
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then (2) will follow. We note that S is a real-linear operator on LV{G) which 
commutes with each Rx(x G G) and satisfies the hypothesis of Lemma 1. 

Let U and V be neighborhoods of the identity e in G with U relatively 
compact, V symmetric, and V2 C U. Let u and h be continuous real-valued 
compactly-supported functions on G with u(x) = 1 for x £ [/and h supported 
in V. Taking q = 1 and/(# , ;y) = u(x)h(xy) in Lemma 1, we get 

I«S'il- \\u\L- \\h: |i ^ (/'(/'\S(u(.)h(-y))(x)\dyjdxyT 

- (J(/yl5(M(-)^^))WI^)^)1/?. 
and so, since S commutes with each Rx, 

(6) ||5||-||«||,-||A||i ^ (j(Jv \S(u(-y-l)h(-))(xy)\dy)dx)IP. 

Since F2 C £/, F is symmetric, and support (Â) C F, it follows that u{-y~l) is 
equal to 1 on the support of h as long as y £ V. Thus, if xv denotes the 
characteristic function of V, 

j |5(«(-y-1)A(.))(*y)|^= f |SAfoO|dy= f ISftCjOxrC*-1?)!^ 

= J \Sh(y)Xv(y~lx)\dy 

since V is symmetric. Now (6) yields 

||S|HMI„-||A||i ^ (/(/|5A(y)xr(y-1*)|dy)',<fo)1/!' 

- / ( / lxF(y - 1*)rd»»(*)j |5A(y)|dy= (m(F))1/p||S/*||i, 

where the last inequality follows from an application of Minkowski's integral 
inequality. Thus we have established 

(7) WSW-WuUmmr^WhlU^ \\Sh\U 

for any real-valued continuous h supported in V. It is easy to check that (7) 
continues to hold for an arbitrary real-valued h £ Ll(G) so long as h is sup
ported in V. But any compactly-supported h £ Ll(G) can be written as a 
finite sum of right translates of L1 functions supported in V—say h = Yl^iRfii 
where Rt is right translation by some xt £ G—and we can arrange to have 
the sets {x £ G: Rthi 9e Oj pairwise disjoint. With A denoting the modular 

https://doi.org/10.4153/CJM-1977-063-8 Published online by Cambridge University Press

file:////u/L-
file:////Sh/U
https://doi.org/10.4153/CJM-1977-063-8


OPERATORS 629 

function of G we then have 

pal l ia È WSRjitHi = ê 11^^111= Z A^r1)!^*^! 
z= l i = l *=1 

Since 
i = l 

2=1 i = l 

it follows that (7) holds for any compactly-supported real-valued function h 
in Ll{G). Now (5) follows from Wendel's theorem [2, Theorem 35.5]. This 
completes Step 1. 

Step 2. We will show that the measure X of (2) is of the form Y^=ia^i where 
hi is the unit mass at some xt £ G and ^?=i|a^|p < oo. This will complete the 
proof of the theorem. We begin by showing that X is a discrete measure. We 
will need the following lemma. 

LEMMA 2 (Lemma 1 of [4]). Let K be a compact Hausdorff space and let X be 
a complex-valued regular Borel measure on K. If for some p(Q < p < 1) and for 
some finite positive number M we have 

m 

(8) £ | X ( E , ) r ^ M 
; = i 

for each m and each finite Borel partition [Ej)m
j=i of K, then X is of the form 

]£?=iaidi, where 5* is the unit mass at some point xt £ K and YJi=i\aî\v = M. 

To show that X is discrete it is enough to show that the restriction of X to K 
satisfies the hypothesis of Lemma 2 for each compact K C G. So fix such a K 
and a relatively compact neighborhood E of e in G. We will show that (8) 
holds for any Borel partition {E^ of K with M = \\T\\*m(K-lE)/m{E). 

Fix e > 0, compact sets Kj C £ ; , and pairwise disjoint open subsets Uj of 
G such that 

m 

(9) £ |X(£;) - \(Fj)\
v < e if each Fj satisfies#,• ç F, C [/;, 

J = I 

Let £/ be a symmetric neighborhood of e in G with KjU2 £ C/̂  for each j , and 
let {5^=1 be a partition of K~lE such that each Sk is contained in some right 
translate of U. Then if xu is the characteristic function of Sk(k = 1, . . . , w), 
we have 

||r||'m(ir1£) = i ir i i 'é Ibl l /è f Ê |7x*(*)|'<fc 
fc=l « ^ J t = l 

= f Ê i x ^ r 1 ) ^ ^ f Ê |x(*s*_1)|pd*. 
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Thus there exists some x £ E (which we now fix) with 

(10) è IMtfSr 1)!*^ \\T\\vm(K-lE)/m{E). 
k=l 

For j = 1, . . . , m, let Fj = U xS^1, where the union is over all k such that 
xSfT1 H Kj T£ 0. Since {xSk~

l\n
k=x partitionsxE~ lK "D K, it follows that-Kj C Fj. 

Since each Sk is contained in a right translate of U and since KjU2 C JJ3 for 
each j , it follows that Fj C [/y. Now (9), (10), and the definition of the sets 
F) yield 

m m n 

E |x(£,)r g e + £ |x(OT ^ e + E Ixfrsr1)!' 
;=1 j=l *=1 

^ e + \\T\\vm{K-lE)/m{E). 
But for an arbitrary e > 0, this is (8) with M = \\T\\P m(K~1E)/m(E). It 
follows that X is discrete, say X = X!?=i a^ with 5* the unit mass at some 
Xi £ G and with X!?=ik*l < °° • To complete the proof we need only show that 

With no loss of generality we may suppose that no at = 0 and that the 
xt are distinct. Let Nx be an arbitrary positive integer and let iV2 > N\ be so 
large that J2ct=N2+i\ai\ ^ WJ\/2 if 1 è j è Ni. Let C7 be a neighborhood of e 
such that XiC/n ^27 = 0 if 1 S i < j ^ N2. Now 

(ID 
|r|rm(t/) = lirinixdl/ ^ J ix^cr1)!^ 

NI r NI C \ 

^ E |x(xc/-1)|̂ = E I E 
Fix j with 1 ^ j ^ iVi and fix x £ #yZ7. Then xy G xC/_1 and if 1 ^ z g N2, 
i 9^ 7, then X i \t X U-K Thus 

I X) <*<<** ̂  I ( k i | - Z k | M x ^ I (\aj\/2)pdx. 

This and (11) yield 

*\\T\\'* E W, V 

Since Ni was arbitrary, Z)?=ik;!P < °° as desired. 
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