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Abstract

It is proved that an arbitrary pair of positive integers can be simultaneously represented by products
of the values at integer points of certain rational functions. Linear recurrences in Z-modules and
elliptic power sums are applied.
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Let

P(x) = U(x + a,)"'
i=0

be a rational function with non-negative integers a0 < a, < • • • < ah, and in-
tegral exponents bt which may be positive or negative but whose highest common
factor is 1.

THEOREM. Let m,, m2 and t be positive integers. Then there is a {simultaneous)
representation

m, = II P(nj)'J, m2 = f[ /»(«, + t)tj,
7=1 7=1

with positive integers n} and each e, = ± 1.

The method of proof shows that there are in fact infinitely many such
representations. A bound for the ny in terms of m,, m2 and t could be found at
the expense of complication of detail.
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406 P.D.T.A. Elliott [2 ]

The existence of a one-dimensional representation involving only w, was
established algebraically in the author's paper Elliott (1983). The present proof
applies new ideas. In particular, studies are made of linear recurrences defined
over Z-modules; and of the asymptotic behaviour of elliptic power-sums.

Let Qx be the abelian group of positive rational fractions with multiplication as
the rule of combination, and let Q2 be the direct sum of two copies of Qx.

Let T be the subgroup of Q2 generated by the (direct) summands P(n) (B
P(n + t),n = 1 ,2 , . . . .

I shall establish the theorem by proving, in three steps, that the quotient group
G = 6 2 / r is trivial.

Step one: G is finitely generated

Let H be a Z-module, with the operation of Z on H written on the left. We
shall study the solution-sequences (a,, a2,. . .) in Hu of the recurrence

(1) 2 ^ - 0 ^ = 0,
7 = 0

where the Cj are integers with highest common factor 1.
Without loss of generality c = ck =£ 0 and k > 2 will be assumed.

LEMMA 1. Let M be an integer so that Man = 0 for n — 1,..., k. Then

Mc"an = 0

for all n^ 1.

PROOF. By induction on n. In fact

Mcak+l = - 2 CjMaJ+i = 0,
7=0

and so on, to give Mc"~kan = 0 for n > k + 1, from which the desired result
follows.

Under the conditions of this lemma, each element -an which appears in a
solution sequence of (1) has finite order. From now on we shall assume that every
element of the module H has finite order.

Let p be a (positive) rational prime.
For each positive integer n let | n \p — p'r, where pr is the exact power of the

prime p which appears in the canonical factorisation of n in the rational integers.
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[ 3 ] Representation of integers by products of rational functions 407

With this definition one begins the derivation of the well-known /?-adic metric on
the rational numbers. We shall do our best to construct a valuation on the
Z-module H.

If a is a non-zero element of H which has order m, and if ps is the exact power
of p which divides m, s = 0 being permissible, we define v(a) = ps. .

We set i>(0) = 1.
The appropriate properties of this pre-valuation are embodied in

LEMMA 2. (i) v{a) s* 1 always,

(ii) t>(«a) = v(a) if(n, p) — 1,
(iii) v(na) < maxfln \pv(a), 1),
(iv) v(a + /?)

PROOF. Assertions (i) and (ii) follow directly from the definition of the
pre-valuation.

If a and j8 have orders u and v respectively, then the least common multiple
[u,v] will annihilate a + (i:

[u,v]{a + jB)=O.

Thus

v(a + /3) < |[u, v]\p - max(\u\p , \v\P ) = max(u(a), v(/3)),

giving (iv).
Let a be a non-zero element of order m. Let m and n be exactly divisible by ps

and pr respectively. If r > s then | n \pv(ot) — p~r+s < 1, giving the inequality of
(iii). Otherwise (p~rm)n<x = 0 and v(na) <*ps~" = \n\pv(a), from which the
inequality of (iii) is again obtained.

Returning to the recurrence (1) we note that not every coefficient cy is divisible
by our (arbitrary) prime p.

LEMMA 3. Let ( a , ,o 2 , . . . ) be a solution to the equation (1). Then for every
n> k + \ with v(an) > 1

either: there is an integer j , 1 <j<k,so that

(0 v(an)^v(an_j),

or: there is an infinite sequence

where each rt satisfies 1
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PROOF. Let ju = ch be the coefficient cJt with the maximum j for which
(p,Cj)= 1. Then for (each) n > k + 1

k-h h

7=1 7=1

where the integers dj are divisible by p. As usual, empty sums are deemed to be 0.
In view of Lemma 2

»(«„) = »(/*««) ^ max! max v(djan+j), max u(ey-a •)}•
*• \*&j^k — h 1 < / < / I •*

Suppose first that this upper bound is u(eyan_y) for some j in the range
1 <> < h. Then since | ey j,, < 1,

« («„ )< max(u(an_,), l ) .

By hypothesis u(an) > 1, giving u(an) < u(an_y), the first possibility in the
lemma.

Otherwise

«(«„) < «(^«n+7) < max(\dj\po(aH+j), l)

for somey in the range 1 <j<k — h<k. Once again v(an) > 1, giving now

(2) «>(«,,) <l>~Ie(«»+r1)

for some r, in the interval 1 < r, < A:.
We suppose r, to be the minimal integer for which this inequality is valid, and

repeat the above argument with n + rl in place of n. Note that t>(an+r) > 1.
If in this manner we arrive at an inequality

with 1 <y < h, let m — n + r, —j.
For ra<nwe get again an inequality of the form (i) in the statement of the

lemma.
With m = nwe would have

which is impossible.
For n < m < « + r, we would get

contradicting the minimality of r,.
Otherwise we shall obtain an analogue of the inequality (2):

for some (minimal) r2 in the interval 1 < r2 < k.
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[5] Representation of integers by products of rational functions 409

The proof now proceeds by induction.

REMARKS. This lemma shows that in some sense the order of an either remains
bounded, or grows exponentially. In particular the results of Lemma 1 is not
unreasonable.

We come now to our applications to the theorem. We shall apply the following
result from the author's paper Elliott (1983).

Let A be a subgroup of Q2.

LEMMA 4. In order that the quotient group Q2/& be trivial, it is necessary and
sufficient that every homomorphism of it into the additive Z-module Q/Z be trivial.

REMARK. Q/Z is the well-known additive group of the rationals (mod 1), and it
is not a field.

Any homomorphism of a group (?2/A into Q / Z will have the form

where the /•( ) are, in the usual notation of analytic number theory, completely
additive arithmetic functions with values in Q/Z.

In our present circumstances we take for A the group generated by T (see
earlier) and a finite collection

/ S I , 1 © / , 1 < / * S T ,

and show that for a suitably chosen T, Q2/A is trivial. It will suffice to establish

LEMMA 5. With a suitably chosen (finite) T, any pair (/,, f2) of additive functions
which take values in Q/Z and satisfies

(3) MP(n)) + f2(P(n + t)) = 0

for all n > 1, together with

(4) / /(0 = 0, i = l , 2 , , K / < r ,

is necessarily trivial.

During the proof of this lemma we shall apply (perhaps surprisingly) the
following sieve result.
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LEMMA 6. Let d be a positive integer. Then there is a constant g so that the
number of integers m in the interval n < m < n + y which have no prime factor q in
the range d < q < Jy is at most

gy

logy

uniformly for all integers n s* 1 and real y > 2.

PROOF. See Chapter 2 of the author's book Elliott (1979b) or the account of
sieve theory given by Halberstam and Richert (1974).

PROOF OF LEMMA 5. In view of the additive nature of the/

f,(P(»))= ibjMn + aj).
7 = 0

The hypothesis (3) of Lemma 5 may thus be expressed in the form 2*=ocyan+y — 0
for all n s* 1, where k = ah, an — /,(«) +/2(« + t), and the integers cy, not all
zero, have highest common factor 1.

We aim to prove that/(«) = 0, / = 1,2, and so an — 0, for all n. By hypothesis
this assertion is valid for 1 < n < T — t.

Let c = ck, which is without loss of generality positive. If T^ k + t then
an — 0 for 1 < n < k, and by Lemma 1, c"an — 0 for all positive integers n.

If c = 1 then an = 0 for all n, and this already leads to the complete result.
Indeed, replacing n by nt we obtain

since T > t and/,(r) = 0 = f2(t).
Writing fin for/,(n) + f2(n + 1) we see that for s > 2

(5) ft(s) = fi(s/2) ifs is even,

ft(s/2) = ft - f2((s + l) /2) ifs is odd,

since T>2 and/,(2) = 0 = /2(2).
Together with ft = 0 for s s= 1 these relations clearly demonstrate (inductively)

the triviality of the functions/.
Suppose now that c > 1. Choose a prime divisor p of c and define a pre-valua-

tion u() on Q/Z in terms of/?. We shall prove that if T is fixed at a large enough
value, independent of the definition of the f, then v(an) = 1 holds for all n.

We argue by contradiction, noting that v(an) = 1 for \ < n < T — t. Assume
that there is an integer n > k + 1 with u ( a n ) > 1. We apply Lemma 3 with the
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[7] Representation of integers by products of rational functions 411

least such n. This rules out the possibility (i) given by that lemma, and we must
have an infinite chain of inequalities

(6) V(an

with 1 < r, < A:.
There must be an integer / , bounded only in terms of k and t, so that each of

the integers

n+ £ 1. »+ 2 1
I = I \ 1=1

has a prime factor # in the range It < q < «/(2?). For otherwise the integers

for w = 1,2,... ,z, will between them generate at least z/4 numbers w which have
no such factors, and which lie in the interval n<m<n + kz + t. According to
Lemma 6, either n < 2t(kz + t)x/2 or

We choose for z a value large enough that this last inequality fails, and then
restrict T to exceed 2t(kz + t)l/2 + t. Since v(an) > 1 this will not allow the
penultimate inequality.

Hence, writing 8 for the sum r, + • • • +ry, we have

n + S = mxm2, n + 8 + t = m3m4

where It < mi < (n + 8 + t)/(2t) for i= 1,... ,4. Therefore
2 4

«„+« = 2 /i("i,-) + 2 fzimj)
i = l y=3

where for all large enough values of n

max w, < (« + /A: + r ) / (2t) < (n - l ) / r .
l</<4According to our temporary hypothesis, v(au) — 1 for 1 < u < n — 1, so that

v((is) = 1 for 1 < 5 < (« — \)/t. The relations (5) then allow us to assert that

for / = 1,2 and all s not exceeding (« — \)/t. In particular we may conclude that
v(an+s) = 1. Our chain of inequalities (6) now gives the impossible «(«„) ^ 1-

We may carry out this argument using each of the prime divisors of c, and since
the primes which divide the order of an also divide c, obtain that an = 0 for every
positives.

Lemma 5 is now immediate, and with its proof we have completed step one.
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Step two: G is finite

In this section I apply quite different ideas.

Elliptic power-sums.

LEMMA 7. Let Zj,j = 1 , . . ,,k, be complex numbers which satisfy \Zj\= 1. Let Pj,

j — } , . . . , k be further complex numbers, and assume that the function

H{n) = i Pjzf
7 = 1

is not zero for all positive integers n. Then

limsup \H(n)\>0.

PROOF. We argue by induction on k. The case k = 1 is trivial.
Let k > 2. Without loss of generality p, ^ 0.
Suppose first that no Zj/zx is a root of unity. Then

i
where fory > 2, ZjZ\x = exp(27770y) for some irrational real number Oj. Hence

k

lim x-] 2 z;"2H(n) = p, + 2 P, 1™ x"1 2 ^ 2 " " ^ = P.,

each right-hand limit being zero by a result of Hermann Weyl. For an account of
the appropriate estimates for exponential sums see Cassels (1957) Chapter IV.
Sharper bounds may be obtained by using a transcendence measure for the sum
of two logarithms of algebraic integers, and then applying this to the Weyl-sum
inequality given in Vaughan (1981) Lemma (2.4). In this case we deduce that

limsup\H{n)\^\px\> 0.
n —* oo

Otherwise we can write

Zj = \jz], j=2,...,m,

where zj/zi is not a root of unity for m <j < k. We write H(n) in the form

I 2 Pjrf + 2 PJ{ZJ^Y = *?\HM + H2(n))
y = l j=m+\ J

say. If //,(«) = 0 for all n, then H2(n) is non-zero for at least one integer n, and
we may apply our induction hypothesis to obtain the desired result. If Hx(n) ̂  0
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[9] Representation of integers by products of rational functions 413

for some n, then the function
m

J(n) = 1 PjXf
7 = 1

is periodic, or period q say, and there is an integer t so that J(t) ¥= 0., Thus for all
positive integers r

z?'+r«)2H(t + rq) = J{t) + H2(t + rq).

Once again z,/zx = exp(27n#y) where 0, is irrational for j > m, and by another
appeal to a Weyl-sum inequality

1 ^ g2i,/<rV + 2r/,)#y ^ 0 aS J -» 00 .

Hence l i m ^ ^ l/y1r^yH2(t + r^) = 0, and arguing as earlier

]imsup\H(n)\>]imsup\H(t + rq)\^\j(t)\>0.

This completes the proof of Lemma 7.

REMARK. The above proof shows that if H(n) vanishes for all n ^ 1 then either
every Pj = 0, or some ratio zt/Zj with / ¥=j; is a root of unity.

The analogue of Lemma 4 which is relevant to this part of the proof of the
theorem is the following

LEMMA 8. In order that every element of Q2/F should have a finite order, it is
necessary and sufficient that there should be no non-trivial homomorphisms of Q2/^
into the additive group of real numbers.

PROOF. A proof of this result may be found in the author's paper Elliott (1983),
where an account is given of earlier related results.

In order to apply Lemma 8 we show that any pair (ft, f2) of real-valued
additive arithmetic functions which satisfies

for all n 3= 1 must be trivial. As in step one, with an = /,(«) + h{n + t) we have
2*=oc/an+y = 0. Since the real numbers form a field this linear recurrence has a
solution of the form
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414 P.D.T.A. Elliott I"

where the Sj lie in some algebraic extension of the rational field Q, and the Fj(x)
may be taken to be polynomials defined over this same extension field.

Replacing n by tn and appealing to the additive nature of the / ,

fM+/2(n + i)= 2/•(/«)«/"- 2/,( ')•
7 = 2 i=\

This holds for all positive integers n, including even integers:

fx(2n) + f2(2n + 1) = 2 Fj(2tn)8?'" - | / ( / ) .
7 = 1 / = 1

By subtraction, writing/forf2, we see that/(2« + 1) — f(n + 1) and so/(2« — 1)
— f(n) have representations of the same type:

7 = 1

Suppose now that the ratio A,X"2' is a root of unity, say Xd
t — \d

2. If in this
representation we replace n by dn then

i - i) -/(«) = 2 ^(^)X1"
7 = 1

where the terms /?,(J«)A'{" + R2(dn)\d2 may be coalesced into a single term of
the same form.

Continuing in this manner we reach a representation

r

(7) f(D2n - 1) - / ( « ) = 2 S;-(»)«; + constant,
7=1

with D a positive integer, and where no ratio wtujx with / =£j is a root of unity.
We shall prove that a representation of this type is only available to trivial

additive functions / . To this end we need

LEMMA 9. Let A (> 2) be a positive integer. If a completely real-valued function f
has f(An — 1) - / («) bounded for all n > 1, ?/ie« // must be of the form B log n for
all positive n.

PROOF. A (somewhat) complicated proof of a similar result may be found in the
author's paper Elliott (1979a). In order to obtain the present result by the same
method only minor adjustments are necessary, together with a proof that if
f(An — 1) — /(«) is bounded, then so for n > 2 is /(n)/log n. This last we shall
now supply.
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[li) Representation of integers by products of rational functions 415

Suppose that \f(Am — 1) — f(m) |< C for all m > 1. If an integer n is divisible
by a prime divisor q of A, then there is an integer «, = n/q < (\ — (2A)~x)n so
that

Otherwise « will have the form Am + I, where 1 < / < A, (I, A) — 1.' In this case
let z be the unique integer in the interval 1 < z < A which satisfies zl = -1
(mod A), say with zl — Au — 1. Note that A > 2 and therefore z < /4 — 1 must
hold. Then

f(n) = f(zn) - f(z)

= f(A{am + «} - 1) - f(z)

so that writing n, = zw + « and appealing to our hypothesis

Here the integer n, does not exceed (1 — A'l)n + 1.
Defining U{x) = maxne;x |/(/i) | we have

(8) £/(*) < f/((l - \/2A)x) + constant

for all sufficiently large (in terms of A only) values of x.
An easy induction proof now completes the argument.

Without loss of generality we may assume that

« = | « , | = | < o 2 | = • • • = | t t J > K + 1 | > • • • > K | .

Moreover, we may also assume that

rf = degreeSx{x) > degree52(x) s* • • • > degree5A(x).

Of course the polynomials S,(x) withy > h (if there are any) may have degrees
greater than d.

LEMMA 10. If d > 1 or \ u |> 1 f/*e/i ?/zere w a constant E so that

for all positive integers n.

PROOF. It follows from the representation (7) that

\f(D2n - 1) -f(n)\^Lndmax(a,\)n

for some constant L and all n s* 1.
The argument given in the above account of Lemma 9 may be applied here

also. In the same notation as before (save that A = D2) we obtain

U(x) s£ {/((I - l/2A)x) + Mxdmax(u, \)x

as an analogue of (8).
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An inductive proof of Lemma 10 is now readily arranged.

If in the representation (7) we replace n by n2, the term D2n2 — 1 factorises
into (Dn — 1)(Z>/? + 1) and we obtain

2 S,(«2)«;2 =f(Dn + 1) +f(Dn - l) - 2/(«) + N
7 = 1

for some constant N. Under the conditions of Lemma 10 this right-hand side does
not exceed a constant multiple of ndmax(u, \)"D in size.

Suppose now that u > 1. Dividing both sides of the above equation by n2du"2

we obtain an asymptotic relation
h

2 Pjzf ->0, n -> oo,
7 = 1

since no matter what the values of d or D,

as n becomes unbounded. Here we have written Zj for «,•«-', and p7 is the
coefficient of xd in the polynomial Sj(x).

In view of Lemma 7, the elliptic power-sum Lh
j=ipjzJ must be zero for all

n > 1. But since not all the p7 = 0, and we have arranged that no ratio zi/zi with
/ ¥=j is a root of unity, this cannot be the case.

Thus w < 1, and every | wy|< 1.
Suppose now, without loss of generality, that w = 1 but that d> 1. Then

Lemma 10 yields the bound | / (n ) | ^ End. The argument given above will once
again lead to a contradiction.

We can therefore write

f{D2
n - i) - / (») = 2 P,-«; + y + o(c-)

7 = 1

where Y and c > 1 are constants, and every | wy|= 1. In particular f(D2n — 1) —
f(n) is bounded for all n.

Applying Lemma 9 with /I = D2 we conclude that/(n) has the form Slog « for
all positive n.

Since log(Z>2n - 1) - logn = 21ogD - (D2n)'] + O(n'2) we can define

p 0 =Y-21og£> , « 0 = l ,

and write
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[13] Representation of integers by products of rational functions 417

Suppose for the moment that B is non-zero. Replacing n by n2 gives

V()2f +

Here the expression on the right hand side (and so also V(n)) does not vanish for
all large n.

Another application of Lemma 7 gives limsup^oo | V(n)\> 0, which is not
compatible with the bound V{n) = O(n~2). Hence B = 0, and we have proved
that/2(/i) — f(n) = 0 for all positive integers n.

Returning to our first representation for an we now have the simpler

(9) /,(»)= 2 ^(»)«;

valid forn = 1,2,
There are several ways to deduce that / , is trivial. For example, since /,(«)

satisfies the linear recurrence

(10) 2 bjM" + Oj) = 0

we may appeal to Theorem 1 of the author's paper Elliott (1980) to deduce that
/,(«) has the form Clog n for some constant C. Substituting into (10) gives

h

C 2 bjlog(n + aj) = 0.
7 = 0

If C ¥= 0 then as n -* oo there is for positive t an asymptotic estimate

7=0 \ r=\

From these we deduce that 2h
j=0bjCij = 0, r = 0,1, Hence

2 V°8(* + fly)
7 = 0

vanishes as a function of complex x, first for | x | < 1 and then, by analytic
continuation, over the half-plane Re(x) > 0.

Thus the rational function

P(x)= ft
7=0

is identically one; a nonsense.
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Alternatively, we may treat the representation (9) as we did that of (7), after
arranging that the ratios 5,/S,, / ¥=j are not roots of unity. In this way/,(«) is
seen to be bounded, and a (uniformly) bounded completely additive (real-valued)
function is identically zero.

We have now proved that every element of the group G — Q2/T has finite
order, and since we established in part one that G is finitely distributed, it must in
fact be finite.

This completes step two.

Step three: G is trivial

Once again the argument takes a different turn. The argument hinges upon the
following analogue of Lemma 8, a proof of which may be found in the author's
paper Elliott (1983).

Let p be a prime number.

LEMMA \\. In order that every element of the group Q2/T be a pth-power, it is
necessary and sufficient that there be no non-trivial homomorphism of it into the
additive group of a finite field Fp of p elements.

Let (/,, f2) be a pair of additive functions which take values in Fp. If

for all positive integers n, then as in Step two «„ = /,(«) +/2(n + 0 satisfies a
linear recurrence 2*=ocyan+7 = 0. Here the Cj are interpreted in Fp according to
the map

Cj -» Cj (mod p) in Z//>Z,

and since (c0, . . . ,ck) — 1, not all the c^ vanish (mod p).
We obtain formally the same representation

7 = 1

as in step two, and with/denoting f2, reach

(11) • f(2n - 1 ) - / ( » ) = 2 RJWJ
7 = 1

where the Xy and the coefficients in the polynomials Rj all belong to a finite
algebraic extension of Fp, say Fq.
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[ i s 1 Representation of integers by products of rational functions 419

In particular each X" is periodic in n, of period q — 1. The Rj(n) are periodic in
n, of period p, so that the whole of the expression on the right-hand side of the
above equation is periodic, with a period p(q — 1).

The function f(2n - 1) — f(n) is therefore periodic, of period d — p(q — 1).
This may not be its minimal period, but that will not matter in what follows.

Replacing n by In1 we see that the function

f(2n - 1) +f(2n + l) - 2/(«) = f(4n2 - 1) - f(2n2)

is also periodic, with the same period; and by subtraction the difference

(12) f(2n + \)-f(2n-\).

We shall denote their difference by g(n).
Let T— 2f=|g(n) be a sum over a period (modrf). Then for any positive

integer s
pds

n=\

But the sum telescopes to give/(2/?<fc + 1) = 0 for all s > 1.
An additive function, with values in Fp, which satisfies

f(Dn + 1) = 0

for some positive integer D and all n 3* 1, need not be identically zero on the
integers prime to D. It will, however, be given by

exp(2irif(n)/p) = x(«)
for some (fixed) Dirichlet character x (mod D).

We shall not need this last result. In fact (12) shows that g(2pds) has a period 1
in s; it is constant for all s > 1. With what we have already established, the
replacement of n in (12) by 2 pds shows that

f(2pds - 1) = f(2pd - 1) = constant

for all positive s.
Equation (11) with 2pds in place of n allows us to assert that if Xo = 1 and

R0(x) is a suitable constant (polynomial), then there is a representation

/(*) = - 2 Rj(2pds)\)>""
7 = 0

valid for all s > 1. The expression on the right-hand side of this equation has
period 1, so that/(«) is a constant, ja say.

Since

- /x=/ ( l 2 ) - 2/(1) = 0,

we have proved that the additive function f2 — /vanishes identically.
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In particular

7=1

for all n > 1. It is easy to obtain from this representation that/,(/!) is periodic
and then a constant, and so zero.

In view of Lemma 11 we see that whatever the choice of prime p, each element
of the group G is a/?th-power. This forces G to be trivial. For example let G have
order r, so that each element g of G satisfies gr — 1. If p is a prime divisor of r
then there is a further element y of G so that g — yp. Hence

grp-'=yr=l

Proceeding inductively we obtain g = 1, and the triviality of G.
The theorem is proved.
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