
2 About Python

Python is currently the most popular programming language among scientists and other
programmers. There are a number of reasons leading to its popularity and fame, es-
pecially among younger researchers. This chapter introduces the Python programming
language and provides an overview on how to install and use the language most effi-
ciently.

2.1 What Is Python?

Python is a general-purpose programming language that is extremely versatile and rela-
tively easy to learn. It is considered a high-level programming language, meaning that
the user typically will not have to deal with some typical housekeeping tasks when de-
signing code. This is different from other (especially compiled) languages that heavily
rely on the user to do these tasks properly. Python is designed in such a way as to help
the user to write easily readable code by following simple guidelines. But Python also
implements powerful programming paradigms: it can be used as an object-oriented, pro-
cedural, and functional programming language, depending on your needs and use case.
Thus Python combines the simplicity of a scripting language with advanced concepts
that are typically characteristic for compiled languages. Some of these features – which
we will introduce in detail in Chapter 3 – include dynamic typing, built-in object types
and other tools, automatic memory management and garbage collection, as well as the
availability of a plethora of add-on and third-party packages for a wide range of use
cases. Despite its apparent simplicity, these features make Python a very competitive,
powerful, and flexible programming language.

Most importantly, Python is open-source and as such freely available to everyone. We
detail in Section 2.2 how to obtain and install Python on your computer.

Based on various recent reports and statistics, Python is currently the most popular
programming language among researchers and professional software developers for a
wide range of applications and problems. This popularity largely stems from the ease
of learning Python, as well as the availability of a large number of add-on packages
that supplement basic Python and provide easy access to tasks that would otherwise be
cumbersome to implement.

https://doi.org/10.1017/9781009029728.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009029728.003

6 About Python

But there is also a downside: Python is an interpreted language, which makes it slower
than compiled languages. However, Python provides some remedies for this issue as we
will see in Chapter 9.

For researchers, Python offers a large range of well-maintained open-source packages,
many of which are related to or at least based on the SciPy ecosystem. SciPy contains
packages for scientific computing, mathematics, and engineering applications. Despite
being the backbone of many Python applications, SciPy is completely open-source and
funded in some part through NumFocus, a nonprofit organization supporting the devel-
opment of scientific Python packages. We will get to know some of the packages that
are part of the SciPy universe in Chapters 4, 5, and 8.

2.1.1 A Brief History of Python

The Python programming language was conceived by Guido van Rossum, a Dutch com-
puter scientist, in the 1980s. He started the implementation in 1989 as a hobby project
over the Christmas holidays. The first release became available in 1991 and Python 1.0
was released in 1994; Python 2.0 became available in 2000. With a growing user base,
the development team also started to grow and gradually all the features that we appre-
ciate about this language were implemented. Python 3.0 was released in 2008, which
broke the backwards compatibility with Python 2.x due to some design decisions. The
existence of two versions of Python that were incompatible with each other generated
some confusion, especially with inexperienced users. However, support for Python 2.x
ended in 2020, leaving Python 3.x as the only supported version of Python. The example
code shown in this book and the accompanying Jupyter Notebooks (see Section 2.4.2)
are based on Python version 3.9.12, but this should not matter as future versions should
be compatible with that one.

Van Rossum is considered the principal author of Python and has played a central role
in its development until 2018. Since 2001, the Python Software Foundation, a nonprofit
organization focusing on the development of the core Python distribution, managing
intellectual rights, and organizing developer conferences, has played an increasingly
important role in the project. Major design decisions within the project are made by a
five-person steering council and documented in Python Enhancement Protocols (PEPs).
PEPs mainly discuss technical proposals and decisions, but we will briefly look at two
PEPs that directly affect users: the Zen of Python (PEP 20, Section 2.1.2) and the Python
Style Guide (PEP 8, Section 3.13).

We would also like to note that in 2012, NumFOCUS was founded as a nonprofit or-
ganization that supports the development of a wide range of scientific Python packages
including, but not limited to, NumPy (see Chapter 4), SciPy (see Chapter 5), Matplotlib
(see Chapter 6), SymPy (see Chapter 7), Pandas (see Chapter 8), Project Jupyter, and
IPython. The support through NumFOCUS for these projects includes funding that is
based on donations to NumFOCUS; for most of these open-source projects, donations
are their only source of funding.

https://doi.org/10.1017/9781009029728.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009029728.003

2.1 What Is Python? 7

One detail we have skipped so far is why Van Rossum named his new programming
language after a snake. Well, he did not. Python is actually named after the BBC comedy
TV show Monty Python’s Flying Circus, of which Van Rossum is a huge fan. In case you
were wondering, this is also the reason why the words “spam” and “eggs” are oftentimes
used as metasyntactic variables in Python example code in a reference to their famous
“Spam” sketch from 1970.

2.1.2 The Zen of Python

The Zen of Python is an attempt to summarize Van Rossum’s guiding principles for the
design of Python into 20 aphorisms, only 19 of which have been written down. These
guiding principles are very concise and distill many features of Python into a few words.
The Zen of Python is so important that it is actually published (PEP 20) and its content
is literally built into the Python language and can be accessed as follows:

import this

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren’t special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one −− and preferably only one −− obvious way to

do it.

Although that way may not be obvious at first unless you’re Dutch.

Now is better than never.

Although never is often better than *right* now.
If the implementation is hard to explain, it’s a bad idea.

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea −− let’s do more of those!

Please note that these guidelines focus on the design of the Python programming lan-
guage, not necessarily the design of code written in Python. Nevertheless, you are free to
follow these guidelines when writing your own code to create truly pythonic code. The
term pythonic is often used within the Python community to refer to code that follows
the guiding principles mentioned here.

https://doi.org/10.1017/9781009029728.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009029728.003

8 About Python

These guiding principles are numerous and some of them might not be immediately
clear to the reader, especially if you are new to Python programming. We would sum-
marize the most important Python concepts as follows.

Simplicity Simple code is easier to write and read; it improves readability, shareability,
and maintainability, and therefore helps you and others in the short term and
long term.

Readability It is nice to write code as compact as possible, but if writing compact
code requires some tricks that are hard to understand, you might prefer a more
extensive implementation that provides better readability. Why? Imagine that
your future self tries to modify some code that you wrote years ago. If your
code is well-readable, you will probably have fewer problems understanding
what the individual lines of code do.

Explicitness We will explain this idea with an example. Consider you are writing code
that is able to read data from different file formats. A decision you have to
make is the following: will you create a single function that is able to read
all the different file formats, or do you create a number of individual functions,
each of which is able to read only a single file format? The pythonic way would
be the latter: each function that you create will explicitly be able to deal with
only a single file format in contrast to a single function that implicitly deals
with all file formats. Why is this solution favored? Generally, explicit code is
easier to understand and less prone to confusion.

Naturally, these concepts are entangled and closely related to each other. However, there
is no need to memorize these concepts. You will internalize those concepts that are
relevant to you by writing code and reading code written by others. And, of course,
nobody can force you to follow these principles in your own coding; but we hope that
this section provides you a better understanding of the Python programming language
and its design.

2.2 Installing Python

Depending on the operating system you are using, there are several ways to install
Python on your computer, some of which are simpler than others. The easiest and at
the same time safest way to install Python is to use the Anaconda environment as de-
tailed below.

Alternatively, you can also install Python from scratch on your computer – unless it is
already installed. In the latter case, you should be careful not to interfere with the native
Python already installed as it might be required by your operating system. This process
might be a bit more complicated, but there are detailed installation guides for all oper-
ating systems available online. To be on the safe side, we recommend the installation of
Anaconda, which comes with Conda, a tool to set up and utilize virtual environments,

https://doi.org/10.1017/9781009029728.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009029728.003

2.2 Installing Python 9

in order to prevent interference with other versions of Python that might be installed on
your computer. Once Python is installed, additional packages can also be installed using
Conda and the Package installer for Python, pip.

2.2.1 Anaconda and Conda

Anaconda is a Python distribution package for data science and machine learning appli-
cations. Despite this specialization, the Anaconda Individual Edition (also known as the
“Anaconda Distribution”) constitutes a solid basis for any scientific Python installation.

The Anaconda Distribution is provided and maintained by Anaconda Inc. (previously
known as Continuum Analytics). Despite being a for-profit company, Anaconda Inc.
distributes the Anaconda Individual Edition for free.

Installing Anaconda
Installing Anaconda is simple and straightforward. All that is required is to download
the respective Anaconda Individual Edition installer (see Section 2.6) for your operating
system and run it. The installer will walk you through the installation process. Note that
you will need to agree to the Anaconda license agreement. At the end of the installa-
tion routine, you will be asked whether to make Anaconda Python your default Python
version, which is a good idea in most cases. If you now start the Python interpreter (see
Section 2.4.1), you will be greeted by Anaconda Python. Congratulations, you have
successfully installed Anaconda Python on your computer.

Conda
One advantage of using Anaconda is the availability of Conda, an open-source pack-
age and environment manager that was originally developed by Anaconda Inc., but has
subsequently been released separately under an open-source license. Although, for a
beginner, the simple installation process for Anaconda Python is most likely its most
important feature, Conda also solves two problems in the background. As a package
manager, it allows you to easily install Python packages with a single command on
your command line, e.g.,

conda install numpy

Almost all major Python packages are available through Conda. Packages are available
through Conda-Forge (see Section 2.6), a GitHub (see Section 10.3.1) organization that
contains repositories of “Conda recipes” for a wide range of packages. Conda-Forge
contains more detailed information on how to install packages through Conda, as well
as a list of all packages that are available through Conda.

As an environment manager, Conda allows you to define different environments, each
of which can have its own Python installation. Although this is an advanced feature and
becomes important when you are dealing with specific versions of your Python pack-
ages, there is still some benefit for the Python beginner. Some operating systems use

https://doi.org/10.1017/9781009029728.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009029728.003

10 About Python

native Python installation to run crucial services; meddling with these Python installa-
tions can seriously harm your system. By default, Anaconda creates a base environment
for the user. Since this environment is independent from your system, there is no danger
in meddling with your system Python installation. Thus using Anaconda is safer than
using your system Python installation.

It is not complicated to define new Conda environments and to switch between them.
However, due to the advanced nature of dealing with different environments, we refer
to the Conda documentation to learn more about how to do this.

2.2.2 Pip and PyPI

Pretty much all Python packages are registered with the Python Package Index, PyPI,
which enables the easy distribution of these packages. Installing packages from PyPI is
very easy using the pip package manager, which comes with most Python installations,
e.g.,

pip install numpy

Everybody can publish their code via PyPI; in Section 10.3.2 we will show how this can
be achieved. Since PyPI is the official repository of Python packages, pretty much all
available packages are installable using pip.

Pip or Conda?
After learning about Conda and pip you might be confused which of these tools you
should use to install Python packages. The short answer is, in most cases it does not
matter. Especially for beginners, it is perfectly fine and typically also safe to install
packages using pip. Pip is typically faster than Conda in installing packages.

This faster installation process comes at a (small) price that won’t matter to most users.
The price is that Conda is generally safer in installing new packages. Before Conda in-
stalls a new package, it will check the version numbers of all packages that are already
installed in your current Conda environment and it will check whether these packages
in the present versions are compatible with the new package and vice versa. Pip sim-
ply checks whether the versions of the installed packages are compatible with the new
package – and it will update the already present packages, to make them compatible
with the new package. However, pip disregards that there might be requirements by
other packages that will break by updating these existing packages. As a result, pip may
break packages that were previously installed.

This happens very rarely, since most Python packages are compatible over many dif-
ferent versions. However, in the case of quickly developing projects it is mandatory to
use specific versions of packages. In those cases, it is much safer to use Conda to install
new packages. For most other users, especially on the beginner level, there should be
no major issues.

https://doi.org/10.1017/9781009029728.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009029728.003

2.3 How Python Works 11

2.3 How Python Works

In Chapter 1, we already introduced compiled and interpreted programming languages.
As a brief reminder, compiled languages take the code written by the user in some
high-level programming language and translate it into machine-readable code that is
written to an executable file. Interpreted languages, on the other hand, do not require the
high-level code provided by the user to be compiled. Instead, the interpreter reads the
code in chunks and translates them sequentially into some less-basic kind of machine-
readable bytecode that is directly executed. As you can imagine, compiled languages
perform faster than interpreted languages, since the compiler already does the hard work
to translate user code to efficient machine-readable code, whereas an interpreter has to
do this on the fly in a less efficient way.

The following sections will detail how to directly provide code to the interpreter in
different ways.

2.4 How to Use Python

There are different ways to use Python, the most important of which we will introduce
in the following sections. Which of these options you should use depends on your pref-
erences and the problem you are trying to solve.

In the remainder of this book, we assume that you are using Jupyter Notebooks. This
choice is mainly driven by the opportunity to publish all code elements from this book
as readily accessible Jupyter Notebooks. You can run these Notebooks (as well as your
own Notebooks) online in the cloud, or locally on your computer as detailed below.
However, we would like to point out that it is not a requirement for the reader to use
these Notebooks in order to follow this book in any way. Feel free to use whichever
interface to Python you feel most comfortable with.

2.4.1 The Python Interpreter

The easiest way to use Python is to run its interpreter in interactive mode. On most
operating systems, this is done by simply typing python into a terminal or powershell
window. Once started, you can type Python commands and statements into the inter-
preter, which are then executed line by line (or block by block if you use indentation).

While this might be useful to quickly try something out, it is not really suited to write
long scripts or other more or less complex pieces of code. The interpreter also provides
only a bare minimum in terms of support and usability.

The Python interpreter also offers a different way to run Python code that is much better
suited for running longer pieces of code. Instead of writing your code line by line into
the interpreter, you can simply write your code into an ordinary text file and pass that

https://doi.org/10.1017/9781009029728.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009029728.003

12 About Python

file to the interpreter in your terminal window or on the command line. You can give
your code file any name you want, but by convention, you should use the file ending
“.py.” You can use the most basic text editor for this purpose: Emacs, Vim, Nano or
Gedit on Linux, TextEdit or Sublime on a Mac, or NotePad on Windows. It is important
that the resulting Python code file does not contain any fancy formatting, just clean
text.

For example, you could create a file named “hello.py” with the following single line
of content:

print(’Hello World!’)

You can then run this script in a terminal window or powershell by using

python hello.py

Make sure that Python is properly installed on your system (see Section 2.2) and that
you run this command in the same directory where the hello.py file resides. If suc-
cessful, the output that you receive should look like this:

Hello World!

And this is your first Python program!

2.4.2 IPython and Jupyter

IPython (Interactive Python) is an architecture for interactive computing with Python:
it can be considered as the Python interpreter on steroids. The IPython interpreter has
been designed and written by scientists with the aim of offering very fast exploration
and construction of code with minimal typing effort, and offering appropriate, even
maximal, on-screen help when required. It further supports introspection (the ability to
examine the properties of any Python object at runtime), tab completion (autocomple-
tion support during typing when hitting the Tab key), history (IPython stores commands
that are entered and their results, both of which can be accessed at runtime), as well
as support for parallel computing. Most importantly, IPython includes a browser-based
Notebook interface with a visually appealing notebook-like appearance.

The first version of IPython was published in 2001. Project Jupyter evolved from IPython
around 2014 as a nonprofit, open-source project to support interactive data science
and scientific computing. The Notebook interface was subsequently outsourced from
IPython and implemented as part of Jupyter, where it was perfected and extended in
different ways. Most notably, Jupyter Notebooks are language agnostic and can be used
with different programming languages using so-called kernels. The Python kernel is
provided and still maintained by the IPython project.

https://doi.org/10.1017/9781009029728.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009029728.003

2.4 How to Use Python 13

Figure 2.1 A newly created Jupyter Notebook containing a single, empty code cell.

The following sections introduce the most important features of Jupyter.

Jupyter Notebooks
The most relevant feature of Jupyter for you will most likely be the Jupyter Notebook,
which is an enhanced version of the IPython Notebook. All programming examples
are presented in the form of Jupyter Notebooks and imitate their appearance (see Fig-
ure 2.1). Furthermore, all code elements shown in this book are available as Jupyter
Notebooks online at CoCalc, and also at www.cambridge.org/9781009014809.

Jupyter Notebooks are documents that consist of distinct cells that can contain and run
code, formatted text, mathematical equations, and other media. Notebooks are run in
your browser through a server that is either hosted locally on your computer or in the
cloud (see Section 2.4.4).

To start a Jupyter Notebook server locally, you simply have to run

jupyter notebook

in a terminal window or powershell. This will run a server in the background that is
typically accessible through http://localhost:8888 (you need to type this into the
URL field of your browser to access the Notebook server). You will see a list of files and
directories located in the directory you started the server from. From here you can nav-
igate your file system, and open existing Jupyter Notebooks or create new ones. Note-
book files use the filename ending .ipynb, indicating that they are using the IPython
kernel. To open a Notebook, simply click on the file and you will see something that
looks like Figure 2.1.

Cloud services hosting Jupyter Notebook servers are a different avenue that allow you to
utilize Notebooks without the (minor) hassle of having to install the necessary software
on your computer. As a result, Notebooks that run on cloud services (see Section 2.4.4)
might look a little bit different to what is shown in Figure 2.1, but rest assured that they
can be used in the same way as described in this book.

Notebooks consist of cells that are either code cells that contain Python code or mark-
down cells that contain text or other media utilizing the markdown language. Mark-
down is a lightweight markup language (pun intended) that enables you to quickly
format text and even supports LaTeX inline math. A markdown cheat sheet contain-
ing some formatting basics is provided in Table 2.1 for your convenience; for more

https://doi.org/10.1017/9781009029728.003 Published online by Cambridge University Press

https://cocalc.com/
http://www.cambridge.org/9781009014809
http://localhost:8888
https://doi.org/10.1017/9781009029728.003

14 About Python

Table 2.1 Jupyter Notebook markdown cheat sheet

Markdown Appearance

Large Headline Large Headline
Medium Headline Medium Headline
Small Headline Small Headline

normal text normal text
emphasized/italics text emphasized/italics text
bold text bold text
‘simple one-line code sample‘ simple one-line code sample

‘‘‘python

print(’multi-line syntax’) print(’multi-line syntax’)

print(’highlighting’, ’!’) print(’highlighting’, ’!’)

‘‘‘

* unordered list item 1 • unordered list item 1
* unordered list item 2 • unordered list item 2
1. ordered list item 1 1. ordered list item 1
2. ordered list item 2 2. ordered list item 2

[https://www.python.org](link) link

![alt text][https://...image.jpg] insert image from url
![alt text][/path/to/image.jpg] insert image from file

$\frac{1}{2} xˆ2 = \int x\, dx$ 1
2 x2 =

∫
x dx

information on how to use the markdown language, please consult your favorite internet
search engine.

To run any cell, i.e., to run the code in a code cell or to render the text in a markdown cell,
you can click the corresponding “run” button or simply use the keyboard shortcut shift
+ enter. If your code cell generates output, this output will be displayed underneath
the code cell. Note that each executed code cell will be numbered (e.g., [1] for the
code cell that was executed first) at the beginning of that cell and that the corresponding
output will carry the same number. This number is stored in the history of the Notebook
and can be utilized and indexed during runtime. Note that in the case of markdown cells,
the raw input that you provided is simply replaced by the rendered text upon execution.

For as long as a Notebook is open and running, the memory is shared between all cells.
That means that if you define an object in one cell and execute that cell, you can access
that object from any other cell. This also means that if you change the object in one cell,
its state changes in all other cells, too. Thus the order in which cells are executed might
be important.

There is no rule for how many lines of code should go into a single code cell. When
testing code or performing explorative data analysis, you might end up with a number
of single-line code cells. If you develop large-scale numerical models, you might end

https://doi.org/10.1017/9781009029728.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009029728.003

2.4 How to Use Python 15

up with cells containing hundreds of lines of code. The same applies to the number of
cells in a Notebook.

We encourage the reader to take full advantage of the features of a Notebook: com-
bine code cells and markdown cells in such a way as to treat the Notebook as a self-
explanatory document that contains runnable Python code.

While code cells generally expect to receive valid Python commands, they can also
execute commands on the underlying operating system’s terminal or command line en-
vironment. Magic commands provide the user with a way to interact with the operating
system and file system from within a Jupyter Notebook. A very long, very detailed de-
scription of magic commands can be found by typing %magic, and a compact list of
available commands is given by typing %lsmagic. Note that there are two types of
magic: line magic and cell magic. Line magic commands are prefixed by % and operate
only on a single line of a cell. Cell magic, on the other hand, is prefixed by %% and
operates on the entire cell; cell magic should always appear at the beginning of a cell.

A harmless line magic example is pwd, which comes from the Unix operating system
and prints the name of the current directory (present working directory). With magic,
pwd can be called by invoking

%pwd

An example for a cell magic command is %%timeit, which we introduce in Section
9.1.1 to accurately measure the time it takes to run a specific cell.

Magic commands provide a useful set of commands, but this set is limited. There is
also the possibility to execute commands directly on the operating system level without
having to leave a running Notebook environment. This can be achieved in code cells
by prepending an exclamation mark (!). For instance, you can use this mechanism to
install missing Python packages from within a Notebook:

!pip install <package name>

(see Section 2.2.2 for an introduction on pip).

Within this book, we display Notebook code cells as follows:

This is a code cell.

The output of a cell is displayed differently:

This is the code cell’s output.

Please be aware that the output that you might receive on your computer may differ from
the output provided in this book. This is especially true for code elements that rely on
random numbers, but also other examples. Finally, please be aware that we had to edit

https://doi.org/10.1017/9781009029728.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009029728.003

16 About Python

the output provided by Python manually in a few cases to have it displayed properly in
this book.

JupyterLab
JupyterLab is an advanced version of the Jupyter Notebook. It provides you with an
interface to arrange multiple files – e.g., documents, Jupyter Notebooks, text editors,
consoles – on a single screen. The idea behind the JupyterLab environment is to sup-
port data analysis by combining different tools into a single environment. To start a
JupyterLab server locally, all you need to do is to run

jupyter lab

in your Linux or Mac terminal or your Windows powershell. The combination of Note-
books and data visualization tools makes JupyterLabs powerful for tasks involving the
analysis of data and other tasks. We encourage readers to experiment with this system,
but we will not require its use in the following.

JupyterHub
JupyterHub runs a multi-user server for Jupyter Notebooks. This means that multiple
users can log into a server to run and share Notebooks. Some research institutes maintain
their own JupyterHub to provide their researchers a collaborative work environment. A
detailed discussion of JupyterHub is outside the scope of this book, but we would like
the reader to be aware of its existence.

2.4.3 Integrated Development Environments

If you prefer a more sophisticated environment for coding, you should have a look at in-
tegrated development environments (IDEs), which support you in your software devel-
opment endeavors by providing online help, checking your syntax on the fly, highlight-
ing relevant code elements, integrating with and supporting version control software,
providing professional debugging tools, and many other things.

A wide range of IDEs for Python is available. Here we briefly introduce a small number
of freely available open-source IDEs that run on all major operating systems (Linux,
Mac OS, and Windows).

A very simple IDE for beginners is Thonny. One feature of Thonny that might appeal
to beginners is that it comes with an option to install its own Python interpreter; the user
will not have to install Python themselves (although this is of course still possible). Fur-
thermore, Thonny provides features that will help you code in Python, better understand
your code, and find mistakes in your code during typing.

Spyder is a much more advanced IDE that is tailored to scientific applications with a
focus on data science. Spyder is written in Python and for Python. It comes with many
features of professional IDEs, like a debugger, and it allows you to work with Jupyter
Notebooks.

https://doi.org/10.1017/9781009029728.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009029728.003

2.5 Where to Find Help? 17

PyCharm and VSCode (Visual Studio Code) are two rather professional IDEs provid-
ing all of the aforementioned features plus a wide range of plugins for a variety of use
cases. While VSCode, although provided by Microsoft, is completely free of charge,
PyCharm has two different versions: a free-to-use Community Edition that comes with
all the bells and whistles for Python programming, and a Professional Version that is
not free, but comes with additional support for the development of scientific software
and web applications.

Finding the right IDE that fits your needs is mostly a matter of taste, habit, and expecta-
tions. Feel free to try all of these IDEs and pick the one that suits your needs. Be aware
that especially the more professional environments will typically feel less comfortable
in the beginning and that it takes some time to get used to setting them up and working
with them. However, at some point, you will get used to them and enjoy some of their
more advanced features.

However, always keep in mind that there is no requirement to use an IDE to become
a good programmer. There are plenty of people out there that write excellent and ex-
tremely complex code, using simple text editors like Vim or Emacs (even those can
be customized into very efficient programming tools by installing a few extensions) or
Jupyter Notebooks. Our bottom line is this: feel free to use whatever tool you feel most
comfortable with!

2.4.4 Cloud Environments

Finally, we would like to point out that it is possible to run Jupyter Notebooks in cloud
environments. For instance, all Notebooks utilized in this book are available online and
can be run on different cloud services. Free computing is available through a number
of providers; we would like to point out three examples: Binder, CoCalc, and Google
Colab. Binder enables you to run Notebooks hosted in Github repositories (see Section
10.3.1) and does, as of writing this, not require any form of registration or user authen-
tication. CoCalc provides similar functionality; all Jupyter Notebooks related to this
book are hosted at CoCalc. Google Colab requires registration with Google services;
usage is free to some reasonable extent. The advantage of Colab is its integration in the
Google services environment (e.g., it is possible to connect to Google Drive for storing
Notebooks and data files) and the option to ask for additional computational resources
like GPU support at no charge (as of this writing).

2.5 Where to Find Help?

Before we get started on actual programming with Python, we would like to share a few
words on how to get help when you are stuck with an issue. First of all, do not panic:
there are many ways for you to get help, depending on your situation.

https://doi.org/10.1017/9781009029728.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009029728.003

18 About Python

In case you are unsure about how to use a function or method, or you are trying to
find the right function or method for your purpose, you can consult the corresponding
Reference, which describes its syntax and semantics in detail. The Python Language
Reference describes the syntax and core semantics of the language. On the other hand,
the Python Standard Library contains details on the workings of the built-in function-
ality of Python. Both references are important and you might want to browse them to
get an idea of their content and utility. In addition to these resources, each major Python
package has its own reference document. As a practical example, let us consider the
math package reference that is part of the Python Standard Library. For each function
in the math module, the reference provides a detailed docstring (see Section 3.1) that
describes the function’s general functionality as well as its arguments. For instance, the
docstring of math.perm() looks like this:

math.perm(n, k=None)

Return the number of ways to choose k items from n items without

repetition and with order.

Evaluates to n! / (n − k)! when k <= n and evaluates to zero when k >

n.

If k is not specified or is None, then k defaults to n and the

function returns n!.

Raises TypeError if either of the arguments are not integers. Raises

ValueError if either of the arguments are negative.

New in version 3.8.

math.perm takes two arguments: a (required) positional argument (see Section 3.8.2),
n, and an (optional) keyword argument (see Section 3.8.3), k. The docstring defines the
functionality of the function and what it returns. Furthermore, it contains information
on the exceptions (see Section 3.10.2) that it may raise and a note about when it was im-
plemented into the mathmodule. Based on this information – and after reading the next
chapter of this book – it should be straightforward to utilize this function. References
can be accessed online by utilizing your favorite search engine, by using the help()
function in your Python interpreter, or through your favorite IDE.

If you prefer looking things up in printed books instead of browsing the Internet, you
may, of course, also refer to literature (see, e.g., Section 3.14). The advantage here is
that function descriptions might be less technical and easier to understand – but on the
downside, these descriptions might be incomplete. Nevertheless, literature is definitely
a good resource if you are looking for help.

Even if you are perfectly sure about how to use a function, errors may occur. When
an error occurs during runtime, Python will tell you about it. It will not only tell you

https://doi.org/10.1017/9781009029728.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009029728.003

2.6 References 19

on which line of code what type of error occurred, but also how the program reached
that point in your code (this is called the traceback; see Section 3.10.1 for more details
on this). The latter might sound trivial, but it is actually very useful when dealing with
highly modular programs that consist of hundreds or thousands of lines of code.

Every once in a while, every programmer will encounter a problem that they cannot
solve without help from others. A perfectly legitimate approach to solving this problem
would be to search for a solution on the Internet. An excellent resource, and likely the
most common website to pop up as a result of search engine queries, is StackOverflow,
which is used by beginners and professional programmers alike. You can ask questions
on StackOverflow, but it is more than likely that the specific problem that you encoun-
tered has already been addressed and answered by the community and can therefore be
found with most internet search engines. For instance, the last line of your traceback
(the actual error message; see Section 3.10.1) would be a good candidate to enter into
a search engine, potentially leading to a number of cases in which other coders experi-
enced similar issues and presumably were able to solve them. While this sounds trivial,
this process of finding the solution to a problem online should be in no way stigmatized.
On the contrary, we encourage users in this process, since the potential to learn from
others cannot be underestimated.

2.6 References

Online resources

� Python project resources

Python project homepage
https://python.org

Python Developer’s Guide
https://python.org/dev/

Python PEP Index
https://python.org/dev/peps

NumFOCUS project homepage
https://numfocus.org

NumPy project homepage
https://numpy.org

SciPy project homepage
https://scipy.org

Matplotlib project homepage
https://matplotlib.org

https://doi.org/10.1017/9781009029728.003 Published online by Cambridge University Press

https://python.org
https://python.org/dev/
https://python.org/dev/peps
https://numfocus.org
https://numpy.org
https://scipy.org
https://matplotlib.org
https://doi.org/10.1017/9781009029728.003

20 About Python

SymPy project homepage
https://sympy.org

Pandas project homepage
https://pandas.pydata.org

Jupyter project homepage
https://jupyter.org

IPython project homepage
https://ipython.org

� Installation resources

Anaconda homepage
https://anaconda.com/

Anaconda Individual Edition download homepage
https://anaconda.com/products/individual

Conda project homepage
https://conda.io

Conda-Forge project homepage
https://conda-forge.org/

Conda documentation
https://docs.conda.io/

Python Package Index (PyPI) homepage
https://pypi.org/

� Integrated development environments

Thonny
https://thonny.org/

Spyder
https://spyder-ide.org/

PyCharm
https://jetbrains.com/pycharm/

Visual Studio Code
https://spyder-ide.org/

� Cloud environments

Binder
https://mybinder.org/

CoCalc
https://cocalc.com/

https://doi.org/10.1017/9781009029728.003 Published online by Cambridge University Press

https://sympy.org
https://pandas.pydata.org
https://jupyter.org
https://ipython.org
https://anaconda.com/
https://anaconda.com/products/individual
https://conda.io
https://conda-forge.org/
https://docs.conda.io/
https://pypi.org/
https://thonny.org/
https://spyder-ide.org/
https://jetbrains.com/pycharm/
https://spyder-ide.org/
https://mybinder.org/
https://cocalc.com/
https://doi.org/10.1017/9781009029728.003

2.6 References 21

Google Colab
https://colab.research.google.com/

� Finding help

Python Standard Library
https://docs.python.org/3/library/

Python Language Reference
https://docs.python.org/3/reference/

StackOverflow
https://stackoverflow.com/

https://doi.org/10.1017/9781009029728.003 Published online by Cambridge University Press

https://colab.research.google.com/
https://docs.python.org/3/library/
https://docs.python.org/3/reference/
https://stackoverflow.com/
https://doi.org/10.1017/9781009029728.003

