
7

The Higgs mechanism in the
Glashow–Salam–Weinberg model

7.1 Masses for gauge bosons

In order to give masses to the gauge bosons and the fermions, we follow the method
described in Section 5.3. We introduce a complex scalar doublet

φ =
[
φ+
φ0

]
. (7.1)

From the relation Q = T3 + Y/2, it follows that Y = 1 for φ. Each of the fields
has a real part and an imaginary part, so there are four independent scalar fields.
The Lagrange function for the scalar sector is given by

Lφ = (Dµφ)†(Dµφ) − V (φ+φ), (7.2)

with the covariant derivative defined by

Dµ = ∂µ + ig′ Bµ + ig
τ i

2
W i

µ (7.3)

and the potential by

V (φ†φ) = −µ2φ+φ + λ(φ†φ)2. (7.4)

We have been gradually enlarging the Lagrangian and so far it consists of three
terms:

L = LF + LB + Lφ. (7.5)

It contains fermions, vector bosons, and scalar fields and is invariant under gauge
transformations of the group SU(2) × U(1).
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58 The Higgs mechanism in the Glashow–Salam–Weinberg model

Classically, the potential V (φ) has a locus of minima at

∂V

∂φ∗+
= −µ2φ+ + 2λ

(|φ+|2 + |φ0|2
)
φ+ = 0, (7.6)

∂V

∂φ0
= −µ2φ0 + 2λ

(|φ+|2 + |φ0|2
)
φ0 = 0; (7.7)

that is, at

|φ+|2 + |φ0|2 = µ2

2λ
. (7.8)

We can choose the ground state (vacuum state) at the minimum of the potential.
Since we wish to conserve charge, the field must carry vacuum quantum numbers

|φ0| = µ√
2λ

and φ+ = 0. (7.9)

In the quantum theory the symmetry is broken by introducing

〈φ〉 =
(

0
v/

√
2

)
with v = µ√

λ
.

In other words, one of the neutral scalar fields acquires a vacuum expectation value
at the minimum of the potential.

The next step is to try to rewrite the Lagrangian in terms of fields displaced
relative to the minimum of the potential and arrive at a physical interpretation. The
selection of a vacuum expectation value chooses a direction in the potential, thus
breaking the symmetry. We define four scalar fields, ξ1, ξ2, ξ3, and η, by

φ = U−1(�ξ )

(
0

(v + η)/
√

2

)
, (7.10)

where U−1(�ξ ) is the unitary transformation

U−1(�ξ ) = exp

(
− i�ξ · �τ

2v

)
. (7.11)

This is very similar to the discussion concerning Eqs. (5.38) and (5.39). Again, we
define new fields through a gauge transformation

φ → φ′ = U (�ξ )φ =
(

0
(v + η)/

√
2

)
, (7.12)

ψL → ψ ′
L = U (�ξ )ψL and ψ ′

R = ψR, (7.13)

1

2
�τ · �W µ → 1

2
�τ · �W ′

µ = 1

2
U (�ξ )�τ · �W µU−1(�ξ ) + i

g

[
∂µU−1(�ξ )

]
U (�ξ ). (7.14)
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7.1 Masses for gauge bosons 59

This transformation has the form described in Chapter 5, with a new feature:
the fields themselves occur in the transformation. Upon substitution into the
Lagrangian, the terms LF and LB retain the same form when expressed in terms of
the new fields, but Lφ is modified. In fact, as we show next, several of the scalar
fields disappear and the Lagrangian has a new physical interpretation.

Consider the Lφ term and set

φ′ =
(

0
(v + η)/

√
2

)
= v + η√

2
χ with χ =

(
0
1

)
. (7.15)

On substituting for the φ field in terms of the new field, it appears as if we are
making a gauge transformation. The covariant derivatives become

Dµφ′ =
[
∂µη + i

2
(v + η)

(
g′ Bµ + gτ i W i

µ

)] χ√
2
, (7.16)

(Dµφ′)†(Dµφ′) + h.c. = 1

2
(∂µη)(∂µη)

+ 1

8
(v + η)2χ+{(

g′ Bµ + gτ i W i
µ

)
(g′ Bµ + gτ i W i,µ)

}
χ.

(7.17)

The cross-term is purely imaginary and does not appear in the product. We study
in detail the structure of the second term,

(g′ Bµ + g�τ · �W µ)(g′ Bµ + g�τ · �W µ) =
[
g′2 Bµ Bµ + g2 �W µ

�W µ + 2gg′ Bµ�τ · �W µ
]
,

(7.18)

and between the χ states

χ+ [. . .]χ = g′2 Bµ Bµ + g2W i
µW i,µ − 2gg′ BµW 3,µ

= (
g′ Bµ − gW 3

µ

)2 + 2g2W +
µ W −µ

= (g2 + g′2)ZµZµ + 2g2W +
µ W −µ. (7.19)

The evaluation of the term linear in �τ is most easily done using �τ · �W µ =√
2(τ+W −

µ + τ−W +
µ ) + τ 3W 3

µ and properties of τ±χ. New fields were also
introduced:

W ±
µ = 1√

2

(
W 1

µ ± iW 2
µ

)
, Zµ = −gW 3

µ + g′ Bµ√
g2 + g′2 ,

and

Aµ = gBµ + g′W 3
µ√

g2 + g′2 . (7.20)
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60 The Higgs mechanism in the Glashow–Salam–Weinberg model

We note that the fields W± and Z are now massive with

MW = 1

2
gv and MZ = 1

2

(
g2 + g′2)1/2

v, (7.21)

but the field Aµ remains massless. The physical correspondence for the fields
is evident. Aµ represents the photon and the other three the intermediate gauge
bosons of the weak interaction. An interesting property is the disappearance from
the Lagrangian of the ξ1, ξ2, and ξ3 fields. These three degrees of freedom were
transformed into longitudinal states of the massive vector mesons. This form of the
theory, with its clear physical interpretation, is referred to as the unitary gauge.

To sum up, we have constructed a theory with vector, scalar, and spin- 1
2 particles

based on the symmetry group SU(2) × U(1). The symmetry was broken in the Higgs
mode by introducing a non-zero vacuum expectation value for the neutral field φ0.

Then it was shown that a judicious choice of the gauge eliminates three scalar fields.
In this gauge the physical interpretation is clear, with the states W± and Z0 being
massive. They also have three longitudinal degrees of freedom.

In the quantum theory, the breaking of the symmetry by Eq. (7.9) implies
that the vacuum is not the empty state but a complicated superposition of states,
as demonstrated for the simple Hamiltonian in Problem 3 of Chapter 5. Condi-
tion (7.9) does not break the symmetry completely, because the charge generator
annihilates the vacuum and the law for charge conservation is preserved. The other
three generators are broken and to each of them there corresponds a massive gauge
boson. Their masses satisfy the relation

M2
W

M2
Z

= g2

g2 + g′2 . (7.22)

They also couple to fermions through charged and neutral currents, which satisfy the
SU(2) × U(1) algebra. These and other couplings will be studied in the following
chapters.

Finally, the simple mass relations (7.21) depend on the fact that the field φ

was a weak isodoublet. It survives even if φ is replaced by a finite number of
isodoublet fields. It fails, however, when Higgses belonging to other representations
are introduced. Consider, for instance, a theory that contains, in addition to the
doublet, a triplet of Higgs fields,

�	 =
⎡
⎣	+

	0

	−

⎤
⎦, (7.23)

with 〈	0〉 = σ �= 0. Then, by repeating the steps (7.16)–(7.21) and using the SU(2)
matrices for the three-dimensional representation, the reader can verify the new
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7.2 Masses for leptons 61

mass relations

MW = 1

2
g(v2 + σ 2)1/2 and MZ = 1

2

(
g2 + g′2)1/2

v. (7.24)

7.2 Masses for leptons

The standard model based on the group SU(2) × U(1) allows us to make some of
the simplest choices. It is the simplest group which contains charged, neutral, and
electromagnetic currents. This is at the expense of introducing two coupling con-
stants, g and g′, which are related through the Higgs mechanism to other parameters
of the theory (masses of gauge bosons, structure of neutral currents, . . .).

It has the simplest multiplet assignment for the fermion multiplets which is
consistent with parity violation. The left-handed particles are SU(2) doublets and
the right-handed components singlets,

ψe =
(

νe

e−

)
L

, e−
R , (7.25)

with the same pattern repeated for the other two families:

ψµ =
(

νµ

µ−

)
L

, µ−
R and ψτ =

(
ντ

τ−

)
L

, τ−
R . (7.26)

We note that there are no right-handed neutrinos because it was thought that they
are massless. This attitude changed with the discovery of neutrino oscillations,
which require small and finite masses. The subject of neutrino masses is covered
in Chapter 13.

Masses for leptons are generated through Yukawa couplings. A Yukawa inter-
action invariant under SU(2) × U(1) is given by

Ly = geψ̄eφeR + h.c. (7.27)

As mentioned earlier, the symmetry is broken by giving a vacuum expectation value
to φ0: (

φ+

φ0

) −→
breaking

(
0

(1/
√

2)(v + η)

)
, (7.28)

which gives the mass me = (1/
√

2)gev. Similarly, masses are generated for the mu
and tau leptons. The lepton masses remain arbitrary parameters without any relation
among them.

The theory has the simplest symmetry-breaking mechanism. The Higgs particles
are in the fundamental representation of SU(2) containing just enough fields to make
W± and Z0 massive and leave one neutral Higgs as a physical particle. This pattern
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62 The Higgs mechanism in the Glashow–Salam–Weinberg model

of symmetry-breaking provides a consistent way to control the higher-order terms
by absorbing infinities into the masses and couplings of the theory. ’t Hooft (1971)
derived the correct Feynman rules in a class of gauges and constructed gauges for
which the theory is manifestly renormalizable. Detailed studies of renormalization
and unitarity followed (Lee and Zinn-Justin, 1972; ’t Hooft and Veltman, 1972).
This remarkable success opened the road for many investigations and predictions
that have been confirmed by experiments.

Problems for Chapter 7

1. Use the matrices

λ1 = 1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠, λ2 = 1√

2

⎛
⎝0 −i 0

i 0 −i
0 i 0

⎞
⎠ and

λ3 = 1√
2

⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠

for the I = 1 representation of SU(2) and the Pauli matrices for the I = 1/2 represen-
tation in order to prove Eq. (7.24).

2. Generally, it is possible to construct SU(2) × U(1) theories with several multiplets of
scalar fields. We denote them by φi and they carry weak isospin Ii and have a neutral
component I3i . If each neutral component develops a vacuum expectation value vi/

√
2,

show that the W and Z masses satisfy

M2
W = 1

2
g2

∑
i

[
Ii (Ii + 1) − I 2

3i

]
v2

i ,

M2
Z = sec2 θW g2

∑
i

I 2
3iv

2
i .

Find the first values (I, I3) for which the relation

MW = MZ cos θW

is maintained.
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