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Abstract

We study the tail asymptotics of two functionals (the maximum and the sum of the
marks) of a generic cluster in two sub-models of the marked Poisson cluster process,
namely the renewal Poisson cluster process and the Hawkes process. Under the hypoth-
esis that the governing components of the processes are regularly varying, we extend
results due to [6, 19], notably relying on Karamata’s Tauberian Theorem to do so. We
use these asymptotics to derive precise large-deviation results in the fashion of [32] for
the just-mentioned processes.
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1. Introduction

In this paper, we study the asymptotic properties of processes exhibiting clustering
behaviour. Such processes are common in applications: for instance, earthquakes in seismol-
ogy, where a main shock has the ability to trigger a series of secondary shocks in a specific
spatio-temporal neighbourhood; but also accidents giving rise to a series of subsequent claims
in non–life insurance or heavy rainfall in meteorology, to name a few. We will focus on two
different processes that have effectively been used in these fields. The Hawkes process has been
introduced in the pioneer works of [46, 59] and has found applications in earthquake model-
ing (see e.g. [41]), in finance (see e.g. [9, 22]), in genome analysis (see [51]) or in insurance
(see [55]). The renewal Poisson cluster process is a tool of choice in an insurance context for
modelling series of claims arising from a single event (see e.g. [38] for a reference textbook),
as well as in teletraffic modelling (see [19]) and in meteorology and weather forecasting (see
e.g. [20] or [48]).
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2 F. BAERISWYL ET AL.

The above processes, described heuristically and in the specific contexts just mentioned,
are part of the class of the so-called point processes: for a comprehensive overview, see the
monographs of [13, 14] or, more recently, and with connection to martingale theory, see
[8]. Point process theory is an elegant framework describing the properties of random points
occurring in general spaces. In both cases the temporal marked point process N possesses a
representation as an infinite sum of Dirac measures (recall that the Dirac measure ε on A
satisfies for every A ∈A that εx(A) = 1 if x ∈ A and εx(A) = 0 otherwise):

N(·) =
∞∑

i=1

εTi,Ai (·),

where Ti is the (random) time of occurrence of the ith event and Ai is its associated mark. The
specific temporal marked point processes that we are interested in are cluster point processes.
More specifically, we will assume that there exists an immigration process under which inde-
pendent points arise at a Poissonian rate; then each of these immigrant events has the ability
to trigger new points, called first generation offspring events. We will then look at two sub-
models. One is the renewal Poisson cluster process. It is complete with the immigrant events
and their first generation offsprings. The term “renewal” comes from the fact that the times
of the events form a renewal sequence. The other submodel is the Hawkes process in which
every point of the first generation has the ability to generate new points, acting as an immigrant
event, potentially generating therefore a whole cascade of points. Each immigrant event and
its associated offspring events (whether direct or indirect children) form a generic cluster.

We will study the tail asymptotics of the partial maxima and sums of a transformation
X = f (A), for some nonnegative real-valued function f , of the mark A of any event of N.
Determining the behaviour of the maximum and the sum at the level of the cluster decom-
position of a process is crucial to obtaining limit theorems for partial maxima and sums of the
whole process over finite intervals—see e.g. [29, 54], or [6]. Thus, we describe first a generic
cluster from each of the just-mentioned processes.

For the renewal Poisson cluster process, we will consider a distributional representation of
the maximum of the marks in the generic cluster, denoted HR:

HR D= X ∨
KA∨
j=1

Xj,

where X is a transformation f (A) of the mark A of the immigrant event and Xj is the transformed
mark of the jth first-generation offspring event. The number of offspring events, KA, is random
and possibly dependent on X. In particular, we will let vector (X, KA) be heavy-tailed and
assess whether the heavy-tailedness transfers to HR. Details are relegated to Section 2. Note
that under the hypothesis that X and KA are independent, the above-distributional equation has
received early consideration, e.g. in [58] or [28], where it is shown that HR and X belong to the
same maximum domain of attraction of some extreme value distribution (MDA for short—see
[15, 49], or [17] for references on extreme value theory). A more recent advance in the case
where X and KA are dependent is to be found in [5], where a similar conclusion is reached
about the MDA. Our emphasis is on the Fréchet MDA, which allows a certain refinement on
the characterisation of the tail asymptotics.

We will also consider tail asymptotics for the sum functional, which for the very same
renewal Poisson cluster process, and for a generic cluster, possesses the distributional
representation
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DR D= X +
KA∑
j=1

Xj,

supposing again that (X, KA) is heavy-tailed, We will also assess whether the heavy-tailedness
of (X, KA) transfers to DR. This equation has received consideration under the hypothesis that
X and KA are independent; see [19]. We will retrieve their results in our framework. More
recently, in the case of arbitrary dependence between X and KA, similar asymptotics have been
derived in [47].

We will then derive the very same kind of tail asymptotics for the very same functionals
of a generic cluster in the context of the Hawkes process. The distributional representation
associated with the maximum of the marks in a generic cluster, denoted HH , is given by

HH D= X ∨
LA∨
j=1

HH
j ,

where LA is the number of first-generation offspring events A of the event acting as immigrant,
and Hj is the maximum of the marks of the offsprings of the jth offspring of the immigrant event
considered, itself acting as immigrant for further subranches of the cluster, emphasising once
again the cascade structure of the Hawkes process. The equation for HH above is a special case
of the higher-order Lindley equation; see [31]. Note that X = f (A) and X = LA are dependent
through A. Letting LA be Poisson-distributed with parameter κA and letting (X, κA) be heavy-
tailed, we assess whether this transfers to HH . This functional has received attention in the
recent work of [5], where it was shown that HH has the same MDA as that of X.

The distributional representation associated with the sum of the marks in a generic cluster
in the Hawkes process, denoted DH , is given by

DH D= X +
LA∑
j=1

DH
j .

We will again let (X, κA) be heavy-tailed and assess whether this transfers to DH . This distri-
butional equation, with cascade structure, has been extensively studied: see e.g. [4]; but also,
as a main stochastic modelling approach to Google’s PageRank algorithm, see [10, 11, 27,
34, 60] and, even more closely related to our results, [47]; in the context of random networks,
see [37] or [36]; for a recent theoretical advance as well as application to queuing systems, see
[1] or [18].

The way we will deal with heavy-tailedness is through the classical notion of regular vari-
ation, introduced by J. Karamata in the 20th century (see e.g. [30]), which specifies that the
functions of interest behave, in a neighbourhood of infinity, like power-law functions. For a
thorough, textbook treatment of the topic in univariate settings, see [7]; we rely on [15, 40,
49, 50] for the multivariate case.

The flexibility offered by our approach to the way we specify the regular variation of the
governing components of our processes allows us, in the sequel, to extend results due to [19,
26, 52], or [16] so that all studied the asymptotics of the tail of distributional quantities such
as H and D in the above examples but under various assumptions on the relations of the tails
of X and KA for the renewal Poisson cluster process, respectively, X and LA, for the Hawkes
process.

Finally, we use the results on the tails of H and D to derive (precise) large-deviation princi-
ples for our processes of interest in the flavour of [39, 44]. The “precise” terminology comes
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from the fact that we have exact asymptotic equivalence instead of logarithmic ones when
assuming Cramér’s condition. Early results on precise large deviations in the case of non-
random maxima and sums can be found in [12, 24, 42, 43]. The case of random maxima and
sums of extended regularly varying random variables (a class containing regularly varying
random variables) is to be found in [32], and we will rely on their results to derive our very
own precise large-deviation results. Contributions in this area for another subclass of subexpo-
nential distributions, namely, the class of consistently varying random variables, can be found
in [57] or [45]; for precise large-deviation results on (negatively) dependent sequences, see
[56] or [35].

The organisation of the paper is as follows: In Section 2, we describe the main processes
of interest, those that are part of the Poisson cluster process family; in Section 3, we recall
some important notions and characterisations of (multivariate) regular variation; in Section 4,
we derive the tail asymptotics for the maximum of the marks in a generic cluster in the renewal
Poisson cluster process; in Section 5, we derive the tail asymptotics for the sum of the marks
in a generic cluster in the renewal Poisson cluster process; in Section 6, we derive the tail
asymptotics for the maximum of the marks in a generic cluster in the Hawkes process; in
Section 7, we derive the tail asymptotics for the sum of the marks in a generic cluster in the
Hawkes process; in Section 8, we use the results from Section 4 to Section 7 to derive (precise)
large-deviations result for our processes of interest.

Notation

Vectors are usually in boldface. By “i.i.d.”, we classically mean independent and identically
distributed, and, consistently, “i.d.” means identically distributed. We let �·� denote the upper
integer part and �·	 denote the lower integer part. For two functions f (·) and g(·) and c ∈
{0, ∞}, we denote f (x) =O(g(x)), as x → c whenever lim supx→c | f (x)/g(x)|� M, for some
finite M > 0; f (x) = o(g(x)), as x → c whenever limx→c | f (x)/g(x)| = 0; and f (x) ∼ g(x), as
x → c whenever limx→c f (x)/g(x) = 1. The product of two measures μ and ν is written as the
tensor product μ ⊗ ν.

2. Random functionals of clusters

We formally introduce the general Poisson cluster process, a class that includes the pro-
cesses discussed in Section 1, keeping the spirit of the presentation and (most) notations from
[6]. As hinted at in Section 1, this process is made up of two components: an immigration
process and an offspring process.

The immigration process, say, N0, is a marked homogeneous Poisson process (or marked
PRM in short, for marked Poisson random measure), with representation given by:

N0(·) :=
∞∑

i=1

ε�i,Ai0 (·).

This point process has mean measure νLeb ⊗ F, for ν > 0, on the space [0, ∞) ×A, where Leb
is the Lebesgue measure, F is the common distribution function to all marks (Ai0)i∈N, which
take values on a measurable space (A,A); and where A corresponds to the Borel σ -field on
A. In particular, this means that the sequence of times (�i)i∈N, corresponding to the arrivals
of immigrant events, is a homogeneous Poisson process with rate given by νLeb. Since the
space A can be quite general, applying a transformation f (·) : A→R+ is natural, especially in
practical applications. Note that we will also assume this transformation of the marks, i.e. we
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consider only nonnegative transformed marks in our models. For example, in a non–life insur-
ance context and supposing that Ai0 represents the characteristics of the ith accident, f (Ai0)

could represent the claim size pertaining to this accident. In subsequent sections, and to ease
the notation, we shall denote Xi0 := f (Ai0).

Conditioning on observing an immigration event at time �i, the marked PRM N0 is supple-
mented with an additional point process in Mp([0, ∞) ×A) (the space of locally finite point
measures on [0, ∞) ×A), which we denote by GAi0 . The cluster of points GAi0 , occurring after
time �i, augments N0 with triggered offspring points or events.

The offspring cluster process, conditioned on observing an immigrant event (�i, Ai0),
admits the representation

GAi0 (·):=
KAi0∑
j=1

εTij,Aij (·),

where (Tij)1�j�KAi0
forms a sequence of nonnegative random variables indicating, for a fixed j,

the random time from the immigrant event occurring at time �i and the jth event of the cluster
and where KAi0 is a random variable with values in N0 corresponding to the number of events
in the ith cluster. These events are the offspring of the immigrant event identified by (�i, Ai0).
A complete representation of the general Poisson cluster process is given by

N(·) :=
∞∑

i=1

KAi0∑
j=0

ε�i+Tij,Aij(·),

providing we set Ti0 = 0 for all i ∈N.
The first functional of interest is the maximum of the marks in the ith cluster, defined by

Hi :=
KAi0∨
j=0

Xij. (1)

For ease of notation, we have defined Xi0 = f (Ai0); accordingly, we let Xij = f
(
Aij
)

for the
transformation f (·) : A→R+. The point process associated with the ith cluster is defined by

Ci(·) := ε0,Ai0 (·) + GAi0 (·).
It allows us to define the second functional of interest in this paper, namely, the sum of all
marks in the ith cluster, by

Di :=
∫

[0,∞)×A

f (a)Ci(dt, da). (2)

In Section 8, we will look at the whole process on a subset of the temporal axis: At the
level of the point process N, the sum of all marks in the finite time interval [0, T], for T > 0,
is given by

ST :=
∫

[0,T]×A

f (a)N(dt, da). (3)

From Section 4 to Section 7, we propose tail asymptotics for Hi and Di in the settings
of mainly two different submodels of the general Poisson cluster process, which was briefly
described in the introduction, that we formally discuss next, keeping the presentation in [6]
but fully described in Example 6.3 of [13]. However, we refer to the former reference for a
complete description. In our work, we also assume that the sequence of marks

(
Xij
)

is i.i.d.
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2.1. Mixed binomial Poisson cluster process

In this model, the assumptions on N0 are kept unchanged, and the ith cluster has a
representation of the form

Ci(·) = ε0,Ai0 (·) + GAi0 (·) = ε0,Ai0 (·) +
KAi0∑
j=1

εWij,Aij(·),

where
(

KAi0 , (Wij)j�1, (Aij)j�0

)
i�0

is an i.i.d. sequence; the sequence (Aij)j�0 is also i.i.d.

for any fixed i = 1, 2, . . . ; and, finally, (Aij)j�1 is independent of both KAi0 and (Wij)j�1 for
any i = 1, 2, . . .. Note that this latter statement does not exclude dependence between Ai0 and
KAi0 (respectively, (Wij)j�1). Additionally, it is assumed that E [KA] < ∞, where KA denotes a
generic random quantity distributed as KAi0 .

2.2. Renewal Poisson cluster process

In this model, the ith cluster has the representation

Ci(·) = ε0,Ai0 (·) + GAi0 (·) = ε0,Ai0 (·) +
KAi0∑
j=1

εTij,Aij (·), (4)

where all the assumptions from Section 2.1 hold, except that now, we denote the occurrence
time sequence of the offspring events by (Tij)j�1 to emphasise that this forms a renewal
sequence—that is, for any fixed i = 1, 2, . . ., Tij = Wi1 + · · · + Wij. Note that this process is
such that every Poisson immigrant has only KAi0 first-generation offspring events. These points
cannot generate further generations themselves, in contrast with the Hawkes process, whichwe
will introduce next.

Applying the transformation f on the marks of the events, we will, in Section 4 and
Section 5, derive tail asymptotics of generic versions of Equation (1) and Equation (2), given
by:

(i) for the maximum,

HR D= X ∨
KA∨
j=1

Xj; (5)

(ii) for the sum,

DR D= X +
KA∑
j=1

Xj. (6)

We isolate X := f (A) from the rest of the transformed claims
(
Xj
)

:= (
f
(
Aj
))

to emphasise
the possible dependence between X and KA.

Remark 1. These two processes have been considered in the monograph [38]. The mixed bino-
mial Poisson cluster process and the renewal Poisson cluster process are very similar in their
description, and because their sole difference is the placement of the points along the time axis,
we focus—in what follows—on the renewal Poisson cluster process. The results of Section 4
and Section 5 are directly applicable to the mixed binomial Poisson cluster process; the results
of Section 8 also apply, upon the use of an alternative justification regarding the leftover effects
to be discussed in that section. We refer to [5, 6] for justifications.
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2.3. Hawkes process

The specificity of the Hawkes process is that the clusters have a recursive pattern, in the
sense that each point, whether immigrant or offspring, has the ability to act as an immigrant
and generate a new cluster. To obtain the representation of the ith cluster GAi , one typically
introduces a time-shift operator θt, as in [6]. Let m(·) =∑∞

j=1 εtj,aj (·) be a point measure: Then,
the time-shift operator is defined by

θtm(·) =
∞∑

j=1

εtj+t,aj(·)

for all t � 0. Then the (recursive) representation of the ith cluster, conditioning on observing
an immigration event (�i, Ai0), is given by

Ci(·) = ε0,Ai0 (·) + GAi0 (·) = ε0,Ai0 (·) +
LAi0∑
j=1

(
ετ1

ij,A
1
ij
(·) + θτ1

ij
GA1

ij
(·)
)
,

where, given Ai0, the first-generation offspring process NAi0 (·) =∑LAi0
j=1 ετ 1

ij ,A
1
ij
(·) is again a

Poisson process, this time with (random) mean measure ∫ h (s, Ai0) ds ⊗ F, and where the
sequence (GA1

ij
)j�1 is i.i.d. and independent of the first-generation offspring process NAi0 . Note

that the sequence of times in the cluster representation GAi0 , hereby denoted as
(
τij
)
, is the

sequence of times of the first-generation offspring events. The function h(·) is referred to as the
fertility function and controls both the displacement and the expected number of offspring(s)
of a specific event. Hence, by definition, the number of first-generation offspring events is
Poisson and depends on the mark of the event acting as an immigrant to the stream of points
considered. Note that the above representation also emphasises the independence among the
subclusters considered at any point from the immigrant perspective. There is a connection with
Galton-Watson theory that was historically used to show that the Hawkes process is a general
Poisson cluster process (see [23]); we define it as part of this family, but the Hawkes process
is classically introduced from the self-excitation perspective; that is, from the specification of
the function h(·) (see e.g. [21]).

We propose in Section 6 and Section 7 tail asymptotics for the generic versions of
Equation (2) and Equation (1), which satisfy, in the settings of the Hawkes process, fixed-point
distributional equations of the form:

(i) for the maximum,

HH D= X ∨
LA∨
j=1

HH
j ; (7)

(ii) for the sum,

DH D= X +
LA∑
j=1

DH
j , (8)

where LA|A ∼ Poisson (κA) and κA = ∫(0,∞) h (t, A) dt and where
(

HH
j

)
and

(
DH

j

)
are i.i.d.

copies of HH and DH , respectively. In this work, we always assume the subcriticality condi-
tion (in the terminology of branching processes) E [κA] < 1, in order for clusters to be almost
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surely finite. This also implies that the expected total number of points in a cluster is given by
1

1−E[κA] , using a geometric series argument (see Chapter 12 in [8]). As pointed out in [1] and
references therein, the combination of the subcriticality assumption (the fact that the random
quantities involved in Equation (8) are nonnegative) and the assumption that E [X] < ∞ (to be
made through the index of regular variation of X in further sections) yields the existence and
uniqueness of a nonnegative solution to this distributional equation; for Equation (7), a discus-
sion about the existence of potentially multiple solutions to the higher-order Lindley equation
can be found in [2]. Lastly, note that Equation (7) and Equation (8) emphasise the cascade
structure of the Hawkes process.

3. A word on regular variation

Throughout this paper, we will assume that the governing random components of our pro-
cesses of interest are regularly varying; that is, roughly speaking, they exhibit heavy tails. More
specifically, we will assume that the random vector X is regularly varying. For the renewal
Poisson cluster process, this amounts to assuming that X = (X, KA) is regularly varying, where
X and KA are defined as in Section 2.2; for the Hawkes process, this amounts to assuming that
X = (X, κA) is regularly varying, where X and κA are as defined in Section 2.3. The exact def-
inition of regular variation varies in the literature depending on the context (see e.g. [15, 25,
49, 50, 53]). Hence, we first recall the definition of regular variation that we use in this text in
full generality, borrowing notations from [40]. We let Rd

0 =R
d\ {0} , with 0 = (0, 0, . . . , 0).

We let |·| be any norm on R
d (by their equivalence). Note that in subsequent sections, our

framework is restricted to the case where d = 2.

Definition 1. Let X be a random vector with values in R
d. Suppose that |X| is regularly varying

with index α > 0. Let (an) be a real sequence satisfying nP (|X| > an) → 1, as n → ∞. The
random vector X (and its distribution) are said to be regularly varying if there exists a non-
null Radon measure μ on the Borel σ -field of Rd

0 such that, for every μ-continuity set A, it
holds that

μn(A) := nP
(

a−1
n X ∈ A

)
→ μ(A), as n → ∞.

In the Definition 1, two remarks are in order:

(i). the regular variation of |X| is univariate; the standard definition applies, namely, that the
distribution of |X| has power-law tails; that is, P (|X| > x) = x−αL(x) for x > 0, where
L(·) is a slowly varying function;

(ii). the kind of convergence that takes place is vague convergence. The limiting measure
possesses various nice properties, among which one can cite homogeneity: For any
Borel set B ⊂R

d
0 and t > 0, it holds that μ (tB) = t−αμ (B).

Rather than using the sequential form as in Definition 1, it is possible to use an alternative
continuous form. Additionally, a distinguished characterisation in the literature is through a
limiting decomposition into “spectral” and “radial” parts; see [50].

Proposition 1. (Theorem 6.1 in [50].) A random vector X with values in R
d is regularly vary-

ing with index α > 0 and non-null Radon measure μ on R
d
0 if and only if one of the following

relations holds:
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(i) (Continuous form): The random variable |X| is regularly varying with index α > 0 and

P
(
x−1X ∈ ·)

P (|X| > x)

v→ μ(·), as x → ∞.

(ii) (Weak convergence to independent radial/spectral decomposition): the following limit
holds

P

((
X
x

,
X
|X|

)
∈ ·
)

w→ P ((Y, 
) ∈ ·) as x → ∞,

where Y ∼ Pareto(α) with α > 0 and is independent of �, which takes values on the unit
sphere S

d−1 defined by S
d−1 = {

x ∈R
d : |x| = 1

}
.

In Proposition 1, the notation
v→ refers to vague convergence: Wee say that in a sequence

of measures (μn) (with μn ∈ M+ (E), the space of nonnegative Radon measure on (E, E))
converges vaguely to a measure μ ∈ M+ (E) if for all functions f ∈C

+
K (E), we have

∫E f (x)μn (dx) → ∫E f (x)μ (dx), where C+
K (E) denotes the set of functions f : E →R+ being

continuous with compact support. For more details about vague convergence, see e.g. Chapter 3
in [50]. The notation refers to the standard notion of weak convergence. The above character-
isations have various consequences. The first property is a continuous mapping theorem, first
proved in [25] in the framework of metric spaces. We use a simplified version fitting our set-
tings, which we partially reproduce from [40]. See also Proposition 4.3 and Corollary 4.2
in [33].

Proposition 2. (Theorem 2.2.30 in [40], Proposition 4.3, and Corollary 4.2 in [33]) Let X be a
random vector in R

d, and suppose it is regularly varying with index α > 0 and non-null Radon
measure μ on R

d
0. Let g(·) : Rd →R be a non-zero, continuous, and positively homogeneous

map of order γ ; i.e. for every x ∈R
d, g (tx) = tγ g(x) for some γ > 0. Then the following limit

relation holds:
P
(
x−1g (X) ∈ ·)
P (|X|γ > x)

v→ μ
(

g−1(·)
)

as x → ∞.

Note that for every ε > 0, μ(g−1({x ∈R : |x| > ε})) < ∞. Moreover, if μ
(
g−1(·)) is not the

null measure on R0, then g (X) is regularly varying with index α/γ and with non-null Radon
measure

μ
(
g−1(·))

μ(g−1({x ∈R : |x| > 1})) .

Example 1. It is easily seen that the map defined by the projection on any coordinate of X is
a continuous mapping satisfying the assumptions of Proposition 2 with γ = 1. If d = 2, X =
(X1, X2) and g (X) := X1, then by the homogeneity property of the limiting Radon measure
μ, as long as

μ({(x1, x2) ∈R
2
0 : x1 > 1}) > 0,

one obtains regular variation of X1 with index α > 0.

A second useful result, due to [53] again in the setting of metric spaces that we simplify
here, shows that one can actually replace the norm |·| by any modulus. A modulus, as defined
in Definition 2.2 of [53], is a function ρ : Rd → [0, ∞) such that ρ(·) is non-zero, continuous,
and positively homogeneous of order 1. Proposition 3.1 in [53] then ensures the following:

Proposition 3. (Proposition 3.1 in [53]) A random vector X with values in R
d is regularly

varying with index α > 0 and non-null Radon measure μ on R
d
0 if and only if there exists a
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modulus ρ such that ρ (X) is regularly varying with index α > 0 and is a random vector 


taking values on S
d−1 := {

x ∈R
d : ρ (x) = 1

}
such that

P

(
X

ρ (X)
∈ ·
∣∣∣∣ ρ (X) > x

)
w→ P (
 ∈ ·) as x → ∞.

Finally, in subsequent sections we shall also use another characterisation via the regular
variation of linear combinations, proven by [3]. We denote the inner product in R

d by 〈·, ·〉.
Proposition 4. (Proposition 1.1 in [3]) A random vector X with values in R

d is regularly vary-
ing with noninteger index α > 0 if and only if there exists a slowly varying function L(·) such
that, for all t ∈R

d,

lim
x→∞

P (〈t, X〉 > x)

x−αL(x)
= w (t) exists,

for some function w(·) and there exists one t0 �= 0 such that w (t0) > 0.

The above result states that a random vector X is regularly varying with index α > 0 if and
only if all linear combinations of its components are regularly varying with the same index
α > 0. Note that it is not necessary for α in Proposition 4 to be noninteger for the above
equivalence to hold; however, when this is not the case, there are some caveats that we avoid
considering in our the results of upcoming sections (e.g., with α noninteger, we do not have to
consider t ∈R

d but rather t ∈R
d+); see [3].

Finally, the last result of great importance in showing the transfer of regular variation in the
subsequent sections is Karamata’s Theorem, which can be found as Theorem 8.1.6 in [7]. Let
X be a random variable, denote its associated Laplace-Stieltjes transform by ϕX(s) := E

[
e−sX

]
for s > 0, and denote its nth derivative by ϕ

(n)
X (s) =E

[
(−X)ne−sX

]
. Let �(·) define the Gamma

function.

Theorem 1. (Karamata’s Tauberian Theorem, Theorem 8.1.6 in [7]) The following statements
are equivalent:

(i) X is regularly varying with noninteger index α > 0 and slowly varying function LX(·),
i.e.

P (X > x) ∼ x−αLX(x) as x → ∞.

(ii) For a noninteger index α > 0,

ϕ
(�α�)
X (s) ∼ Cαsα−�α�LX (1/s) as s → 0+,

for LX(·) a slowly varying function, where Cα := −� (α + 1) � (1 − α) /� (α − �α	).
Remark 2. Note that when X is regularly varying with index α ∈ (n, n + 1), the (n + 1)-th
moment does not exist. Observe that the above trivially implies that when α ∈ (n, n + 1),
ϕ

(n+1)
X (s) = ϕ

(�α�)
X (s) → ∞ as s → 0+, a property we will use repeatedly in subsequent

sections.

4. Tail asymptotics of maximum functional in renewal Poisson cluster process

We now prove a single big-jump principle for the tail asymptotics of the distribution of the
maximum functional of a generic cluster in the settings of the renewal Poisson cluster process.
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As mentioned in Remark 1, the conclusions reached for this process are, of course, valid for
the mixed binomial Poisson cluster process.

Proposition 5. Suppose the vector (X, KA) in Equation (5) is regularly varying with index
α > 1 and non-null Radon measure μ. Then,

P
(
HR > x

) ∼ (1 +E [KA]) P (X > x) as x → ∞.

Moreover, if μ({(x1, x2) ∈R
2
+,0 : x1 > 1}) > 0, then HR is regularly varying with index α > 1.

Proof of Proposition 5. The proof can be found in Appendix A. It uses a classical approach
via conditioning on KA and Taylor expansions and is given for completeness.

Remark 3. In the proof of Proposition 5, one only needs X to be regularly varying for HH

to be regularly varying. However, to keep the same settings in terms of regular variation as
for the upcoming results, we make the assumption that (X, KA) is regularly varying and reg-
ular variation of X follows by considering the consequences of this assumption contained in
Example (1). The case where P (X > x) = o(P (KA > x)), x → ∞, X regularly varying and KA

a stopping time with respect to (Aj)j�0 is treated in Proposition 3.1 and Corollary 4.2 of [5].
It is proved that HR is also regularly varying but, more generally, that HR falls in the same
MDA than X. What we propose in Proposition (5) is merely a refinement for the Fréchet
MDA, describing explicitly the tail of HR when P (KA > x) =O(P (X > x)), x → ∞, and KA

depending only on X0.

5. Tail asymptotics of the sum functional in renewal Poisson cluster process

We now prove a result concerning the sum functional of a generic cluster in the settings of
the renewal Poisson cluster process. Again, this extends easily to the mixed-binomial Poisson
cluster process.

Proposition 6. Suppose the vector (X, KA) in Equation (6) is regularly varying with noninteger
index α > 1. Then DR is regularly varying with the same index α. More specifically,

P
(
DR > x

)∼ P (X +E [X] KA > x) +E [KA] P (X > x) as x → ∞.

Proof of Proposition 6. First note that the Laplace-Stieltjes transform of DR in Equation (6)
is given by

ϕDR (s) := E

[
e−sX−s

∑KA
j=1 Xj

]
=E

[
E

[
e−sXe−s

∑KA
j=1 Xj |A

]]

=E

[
e−sXeKA log E

[
e−sX

]]
=: E

[
e−sX+KA log ϕX (s)

]
upon recalling that X := f (A) and KA are independent conditionally on the ancestral mark A
and that (Xj)j�1 are i.i.d. and independent of A. We first show that for any noninteger α ∈
(n, n + 1), n ∈N,

ϕ
(n+1)

DR (s) ∼ ϕ
(n+1)
X+E[X]KA

(s) +E [KA] ϕ
(n+1)
X (s) as s → 0+,
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where ϕX+E[X]KA (s) := E
[
e−sX−sE[X]KA

]
and where ϕ

(n)
X is the nth derivative of the Laplace-

Stieltjes transform of a random variable X.
We have to consider the following expression:∣∣∣∣∣ϕ(n+1)

DR (s)−
(
ϕ

(n+1)
X+E[X]KA

(s) +E [KA] ϕ
(n+1)
X (s)

) ∣∣∣∣∣
=
∣∣∣∣∣E
⎡
⎣(−X + KA

ϕ
(1)
X (s)

ϕX(s)

)n+1

e−sX+KA log ϕX (s)

⎤
⎦

+E

[
KA

ϕ
(n+1)
X (s)

ϕX(s)
e−sX+KA log ϕX (s)

]

−E

[
(−X −E [X] KA)n+1e−sX−sE[X]KA

]

−E [KA] E
[
(−X)n+1e−sX

]
+ Cn+1

∣∣∣∣∣
=: |B1 + B2 − B3 − B4 + Cn+1| . (9)

Consider first the difference |B1 − B3|. The following set of inequalities, directly due to the
convexity of the function log ϕX(·), will prove useful in controlling the above difference: For
s > 0, we have

−sE [X] K � K log ϕX(s) � sK
ϕ

(1)
X (s)

ϕX(s)
� 0 �−sK

ϕ
(1)
X (s)

ϕX(s)
�−K log ϕX(s) � sE [X] K. (10)

Using the basic decomposition
(
an+1 − bn+1

)= (a − b)
∑n

k=0 an−kbk as well as
Equation (10) yields

∣∣B1 − B3
∣∣� ∣∣∣∣

(
ϕ

(1)
X (s)

ϕX(s)
+E [X]

)

·E
⎡
⎣KA

(
n∑

k=0

(
−X + KA

ϕ
(1)
X (s)

ϕX(s)

)n−k

(−X −E [X] KA)k

)
e−sX+KA log ϕX (s)

⎤
⎦ ∣∣∣∣

�
∣∣∣∣∣
(

ϕ
(1)
X (s)

ϕX(s)
+E [X]

)(
E

[
KA

(
−X + KA

ϕ
(1)
X (s)

ϕX(s)

)n

e−sX+KA log ϕX (s)

]

+E

[
KA(−X −E [X] KA)ne−sX+KA log ϕX (s)

]

+E

[
KA

(
n−1∑
k=1

(
−X + KA

ϕ
(1)
X (s)

ϕX(s)

)n−k

(−X −E [X] KA)k

)
e−sX+KA log ϕX (s)

])∣∣∣∣∣
=: |G(B11 + B12 + B13)| ,

where G := ϕ
(1)
x (s)
ϕX (s) +E [X] .

We then treat each term separately. First consider B11. Using the binomial theorem, we have
that (

−X + KA
ϕ

(1)
X (s)

ϕX(s)

)n

=
n∑

j=0

(
n
j

)
(−X)j

(
KA

ϕ
(1)
X (s)

ϕX(s)

)n−j

.
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Using the linearity of expectations, we separate the cases. Let j = 0. Because G > 0,

KA
ϕ

(1)
X (s)
ϕX (s) < 0, using Equation (10) and the basic inequality xe−x � e−1, we get:

∣∣∣∣∣GE

[
KA

(
KA

ϕ
(1)
X (s)

ϕX(s)

)n

e−sX+KA log ϕX (s)

]∣∣∣∣∣
� G

s
E

⎡
⎣Kn−1

A

∣∣∣∣∣
(

ϕ
(1)
X (s)

ϕX(s)

)n−1∣∣∣∣∣ (−KA log ϕX(s)) eKA log ϕX (s)

⎤
⎦

� G

s
E

⎡
⎣Kn−1

A

∣∣∣∣∣
(

ϕ
(1)
X (s)

ϕX(s)

)n−1∣∣∣∣∣e−1

⎤
⎦ . (11)

In order to control the upper bound, we need to control G/s, and we have to distinguish two
cases:

Case α ∈ (1, 2): We have the identities

G

s
=

ϕ
(1)
X (s)
ϕX (s) +E [X]

s
=

ϕ
(1)
X (s)
ϕX (s) − ϕ

(1)
X (s) + ϕ

(1)
X (s) +E [X]

s

= ϕ
(1)
X (s)

( 1
ϕX (s) − 1

s

)
+ ϕ

(1)
X (s) +E [X]

s
.

The limit as s → 0+ of
1

ϕX (s) −1

s is the derivative of 1/ϕX(s) at s = 0 and hence is finite; it
follows that

ϕ
(1)
X (s)

( 1
ϕX (s) − 1

s

)
=O

(
ϕ

(1)
X (s)

)
as s → 0+.

Now note that for the second term, if the first X has negligible tails with respect to
X +E [X] KA, by Lemma 2, it follows that

ϕ
(1)
X (s) +E [X]

s
= o

(
ϕ

(2)
X+E[X]KA

(s) +E [KA] ϕ
(2)
X (s)

)
as s → 0+.

If X is regularly varying with the same index as X +E [X] KA, then clearly, by adapting the
proof of Lemma 2, it follows that

ϕ
(1)
X (s) +E [X]

s
=O

(
ϕ

(2)
X+E[X]KA

(s) +E [KA] ϕ
(2)
X (s)

)
as s → 0+.

By a dominated convergence argument, the upper bound in Equation (11) is such that

E

⎡
⎣Kn−1

A

∣∣∣∣∣
(

ϕ
(1)
X (s)

ϕX(s)

)n−1∣∣∣∣∣(−KA log ϕX(s)) eKA log ϕX (s)

⎤
⎦= o(1) as s → 0+,

https://doi.org/10.1017/apr.2024.32 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.32


14 F. BAERISWYL ET AL.

and combining with the arguments just given proves that no matter if X is lighter than or as
heavy as the modulus X +E [X] KA,

B11 = o
(
ϕ

(2)
X+E[X]KA

(s) +E [KA] ϕ
(2)
X (s)

)
as s → 0+.

Case (n + 1), with n ∈ N{1}:. Using the definition of the derivative, as s → 0+,

lim
s→0+

G

s
= lim

s→0+

ϕ
(1)
X (s)
ϕX (s) +E [X]

s
and lim

s→0+

ϕ
(1)
X (s)
ϕX (s) +E[X]

s

ϕ
(2)
X (s)
ϕX (s) − (ϕ(1)

X (s))
2

(ϕX (s))2

= 1,

and for this range of α ∈ (n, n + 1), with n ∈N\ {1},

ϕ
(2)
X (s)

ϕX(s)
− (ϕ(1)

X (s))
2

(ϕX(s))2
< ∞,

which is finite since α ∈ (n, n + 1) for n � 2. Because ϕ
(1)
X (s) is finite, Equation (11) is finite.

Upon applying Theorem 1, it follows that as s → 0+,∣∣∣∣∣GE

[
KA

(
KA

ϕ
(1)
X (s)

ϕX(s)

)n

e−sX+KA log ϕX (s)

]∣∣∣∣∣= o
(
ϕ

(n+1)
X+E[X]KA

(s) +E [KA] ϕ
(n+1)
X (s)

)
.

The treatment of terms where j > 0 is easier: It is sufficient to note that whenever X appears
in the product, one can always “lose a power”: Suppose without loss of generality that j = 1
in the decomposition due to the binomial theorem above; we are left to consider the following
term ∣∣∣∣∣∣GE

⎡
⎣KA

{(
n
1

)
(−X)1

(
KA

ϕ
(1)
X (s)

ϕX(s)

)n−1}
e−sX+KA log ϕX (s)

⎤
⎦
∣∣∣∣∣∣ .

This is smaller than

G

s
E

⎡
⎣(n

1

)
Kn

A

∣∣∣∣∣
(

ϕ
(1)
X (s)

ϕX()

)n−1∣∣∣∣∣ (sX) e−sX

⎤
⎦� G

s
E

⎡
⎣(n

1

)
Kn

A

∣∣∣∣∣
(

ϕ
(1)
X (s)

ϕX(s)

)n−1∣∣∣∣∣e−1

⎤
⎦ ,

and by similar reasoning as above, the expectation as well as the whole of the upper bound are
finite. All in all, this shows that as s → 0+,∣∣∣∣∣∣GE

⎡
⎣KA

{(
n
1

)
(−X)1

(
KA

ϕ
(1)
X (s)

ϕX(s)

)n−1}
e−sX+KA log ϕX (s)

⎤
⎦
∣∣∣∣∣∣

= o
(
ϕ

(n+1)
X+E[X]KA

(s) +E [KA] ϕ
(n+1)
X (s)

)
.

Upon applying the same arguments on all terms making up B11, using at times Hölder’s

inequality to justify that expectations of the form E

[
KA(−X)j−1(KA

ϕ
(1)
X (s)
ϕX (s) )

n−j]
for 2 � j �
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n − 1 are finite, and noting that one X is factorised as in the reasoning above, this is sufficient
to show that

|GB11| = o
(
ϕ

(n+1)
X+E[X]KA

(s) +E [KA] ϕ
(n+1)
X (s)

)
as s → 0+.

A completely analogous approach—omitted for brevity—shows that

|GB12| = o
(
ϕ

(n+1)
X+E[X]KA

(s) +E [KA] ϕ
(n+1)
X (s)

)
as s → 0+,

replacing only the appeal to Equation (10) by the fact that we can always find an s > 0 small
enough such that sE [X] �−2log ϕX(s), which holds because of the following reasoning: Since
ϕX(s) is differentiable at 0, by the integrability of X, one obtains

lim
s→0+ − log ϕX(s)

s
= −ϕ

(1)
X (0)

ϕX (0)
= −E [−X] ⇐ lim

s→0+ − log ϕX(s)

s
=E [X] .

By a similar argument, − 2log ϕX (s)
s → 2E [X] , as s → 0+. Hence, there exists an s > 0 small

enough such that
sE [X] �−2log ϕX(s).

Finally, consider |GB13|. The sum given can be factorised as

n−1∑
k=1

(
−X + KA

ϕ
(1)
X (s)

ϕX(s)

)n−k

(−X −E [X] KA)k

=
(

−X + KA
ϕ

(1)
X (s)

ϕX(s)

)
n−1∑
k=1

(
−X + KA

ϕ
(1)
X (s)

ϕX(s)

)n−1−k

(−X −E [X] KA)k.

Now this yields, upon using Equation 10 and the basic inequality xe−x � e−1 in the last
step,

|GB13| = G

s
E

[
KA

∣∣∣∣∣
(

−sX + KAs
ϕ

(1)
X (s)

ϕX(s)

)∣∣∣∣∣ e−(sX−KA log ϕX (s))

·
n−1∑
k=1

∣∣∣∣∣
(

−X + KA
ϕ

(1)
X (s)

ϕX(s)

)n−k−1

(−X −E [X] KA)k

∣∣∣∣∣
]

� G

s
E

[
KA (sX − KA log ϕX(s)) e−(sX−KA log ϕX (s))

·
n−1∑
k=1

∣∣∣∣∣
(

−X + KA
ϕ

(1)
X (s)

ϕX(s)

)n−k−1

(−X −E [X] KA)k

∣∣∣∣∣
]

� G

s
E

⎡
⎣KAe−1

n−1∑
k=1

∣∣∣∣∣
(

−X + KA
ϕ

(1)
X (s)

ϕX(s)

)n−k−1

(−X −E [X] KA)k

∣∣∣∣∣
⎤
⎦ .

The highest order of the product of the summands above is of power n: Again, since α ∈
(n, n + 1), using Hölder’s inequality, the expectation is finite. Overall, this shows once again
that

|GB13| = o
(
ϕ

(n+1)
X+E[X]KA

(s) +E [KA] ϕ
(n+1)
X (s)

)
as s → 0+.
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Collecting all of these bounds, this shows that

|B1 − B3| = o
(
ϕ

(n+1)
X+E[X]KA

(s) +E [KA] ϕ
(n+1)
X (s)

)
as s → 0+.

Consider the difference |B2 − B4| , and note that one can write it as

∣∣B2 − B4
∣∣=

∣∣∣∣∣ϕ
(n+1)
X (s)

ϕX(s)
E

[
KA

(
1 − e−sX+KA log ϕX (s)

)]
+ ϕ

(n+1)
X (s)

(
1

ϕX(s)
− 1

)
E [KA]

∣∣∣∣∣
=: |B21 + B22| .

Now by a dominated convergence argument as before, one has that
E
[
KA

(
1 − e−sX+KA log ϕX (s)

)]= o(1) as s → 0+ and, hence, that

|B21| = o
(
ϕ

(n+1)
X (s)

)
= o

(
ϕ

(n+1)
X+E[X]KA

(s) +E [KA] ϕ
(n+1)
X (s)

)
as s → 0+.

Similarly, by the integrability of KA,

|B22| = o
(
ϕ

(n+1)
X (s)

)
= o

(
ϕ

(n+1)
X+E[X]KA

(s) +E [KA] ϕ
(n+1)
X (s)

)
as s → 0+.

Collecting the above, this implies that

|B2 − B4| = o
(
ϕ

(n+1)
X+E[X]KA

(s) +E [KA] ϕ
(n+1)
X (s)

)
as s → 0+.

Lastly, the terms making up Cn+1 when α ∈ (n, n + 1) are all the terms (and cross-products) of
order strictly lower than n + 1 and, consequently, are finite. It follows by Theorem 1 that

Cn+1 = o
(
ϕ

(n+1)
X+E[X]KA

(s) +E [KA] ϕ
(n+1)
X (s)

)
as s → 0+.

All in all, this essentially shows that as s → 0+,∣∣∣ϕ(n+1)

DR (s) −
(
ϕ

(n+1)
X+E[X]KA

(s) +E [KA] ϕ
(n+1)
X (s)

)∣∣∣= o
(
ϕ

(n+1)
X+E[X]KA

(s) +E [KA] ϕ
(n+1)
X (s)

)
and hence that

ϕ
(n+1)

DR (s) ∼ ϕ
(n+1)
X+E[X]KA

(s) +E [KA] ϕ
(n+1)
X (s) as s → 0+,

and this equivalence holds for any α ∈ (n, n + 1), n ∈N.
Because the modulus X +E [X] KA is regularly varying whenever (X, KA) is—see

Remark 4—Karamata’s Theorem (1) implies that

ϕ
(n+1)
X+E[X]KA

(s) ∼ Cαsα−�α�LX+E[X]KA (1/s) as s → 0+

for some slowly varying function LX+E[X]KA (·). Then suppose first that X is not regularly vary-
ing and has negligible tails with respect to the modulus X +E [X] KA. Then Lemma 1 yields
that

ϕ
(n+1)
X (s) = o

(
ϕ

(n+1)
X+E[X]KA

(s)
)

as s → 0+,

and hence, this implies that

ϕ
(n+1)

DR (s) ∼ Cαsα−�α�LX+E[X]KA (1/s) (1 + o(1)) as s → 0+,
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which yields by re-applying Karamata’s Tauberian Theorem (1) that

P
(
DR > x

) ∼ x−αLDR (x) ∼ x−αLX+E[X]KA(x) (1 + o(1)) as x → ∞.

In the case where X is regularly varying, by Example 1, and because X has the same index
α > 1 as the modulus X +E [X] KA, if the limiting Radon measure is non-null on the correct
subspace, Karamata’s Tauberian Theorem (1) yields

ϕ
(n+1)
X (s) ∼ Cαsα−�α�LX (1/s) as s → 0+.

Then for each n ∈N,

ϕ
(n+1)

DR (s) ∼ 2Cαsα−�α� (LX+E[X]KA (1/s) +E [KA] LX (1/s)
)

as s → 0+,

and because the sum of two slowly varying functions is still a slowly varying function, LR
D(·) :=

LX+E[X]KA (·) +E [KA] LX(·) is slowly varying. Again applying Karamata’s Tauberian Theorem
(1) in the other direction yields

P
(
DR > x

) ∼ x−αLDR (x) ∼ x−α
(
LX+E[X]KA(x) +E [KA] LX(x)

)
as x → ∞,

which yields the desired result, and the proof is complete.

Remark 4. Note that the assumption that the random vector (X, KA) is regularly varying with
index α > 1 ensures, by Proposition 3, that X +E [X] KA is regularly varying with the same
index α > 1. Indeed, it can be easily seen that ρ (X, KA) := X +E [X] KA is a modulus (in the
sense made precise in Section 3), provided that E [X] �= 0, which is a natural assumption to
make since X is taken to be nonnegative.

Remark 5. Note that the findings of Proposition 6 are consistent with the findings of [19]:
In particular, if X and KA are independent—which is the setting in the aforementioned
paper—or even if X and KA are asymptotically independent (i.e. if P (X > x,E [X] KA > x) =
o(P (X > x)P (E [X] KA > x)) as x → ∞), then the proposed asymptotics of Proposition 6
encompass three cases, depending on the relation between X and KA:

(i) when P (KA > x) = o(P (X > x)) as x → ∞, then P (X +E [X] KA > x) ∼ P (X > x)
as x → ∞. From Proposition 6, this means that

P
(
DR > x

) ∼ P (X > x) +E [KA] P (X > x) ∼ (E [KA] + 1) P (X > x) as x → ∞,

which is equivalent to Proposition 4.1 in [19];

(ii) when P (X > x) = o(P (KA > x)) as x → ∞, then P (X +E [X] KA > x) ∼
(E [X] )αP (KA > x) as x → ∞. From Proposition 6 this means that

P
(
DR > x

) ∼ (E [X] )αP (KA > x) as x → ∞,

which is equivalent to Proposition 4.3 in [19];

(iii) lastly, when P (KA > x) ∼ cP (X > x) as x → ∞ and for c > 0, then
P (X +E [X] KA > x) ∼ P (X > x) + c(E [X] )αP (X > x) as x → ∞. From
Proposition 6, this means that

P
(
DR > x

) ∼ (E [KA] + 1 + c
(
E [X] )−α

)
P (X > x) as x → ∞,

which is equivalent to Lemma 4.7 in [19].
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Our approach offers a more flexible framework for dependence among the governing com-
ponents of the clusters, namely, X and KA. Yet in this latter direction and more closely related
to our results, [47] shows in a recent contribution that

P
(
DR > x

) ∼ 1{E[KA] < ∞}E [KA] P (X > x) + P (E [X] KA > x) as x → ∞,

in the regime where (X, KA) are arbitrarily dependent, and either KA is intermediate regularly
varying and P (X > x) = o(P (KA > x)) as x → ∞ (Theorem 6.10 in [47]) or X is interme-
diate regularly varying, and P (KA > x) = o(P (X > x)) as x → ∞ (Theorem 6.11 in [47]).
The novelty in this paper is that it proposes similar asymptotics in the case where KA and X are
effectively tail equivalent.

Note that the content of Propositio 6 is a kind of “double” big-jump principle: The heavy-
tailedness introduced by letting the vector (X, KA) be regularly varying implies that there are
two ways for the sum DR to be large: either through a combination of the dependent vari-
ables X and KA or through the classical single big-jump coming from the additional term
E [KA] P (X > x) consisting of the offspring events.

6. Tail asymptotics of the maximum functional in the Hawkes process

We now propose a single big-jump principle concerning the maximum functional of a
generic cluster in the settings of the Hawkes process. Recall that E [LA] =E [κA] = 1.

Proposition 7. Suppose that the vector (X, κA) in Equation (7) is regularly varying with index
α > 1 and non-null Radon measure μ. Then,

P
(
HH > x

) ∼ 1

1 −E [κA]
P (X > x) as x → ∞.

Moreover, if μ({(x1, x2) ∈R
2+,0:x1 > 1}) > 0, then HH is regularly varying with index α > 1.

Proof of Proposition 7. The proof can be found in Appendix B and follows the same
approach as the proof of Proposition 5.

Remark 6. As hinted at in Section 1, a closely related work concerning the maxima of the
marks in a generic cluster of the Hawkes process can be found in [5]. Under the assumption
that KA is a stopping time with respect to a filtration, including the information about

(
Xij
)
,

it is shown in their Lemma 4.1 that HH falls in the same MDA as X. What we propose in
Proposition 7 is merely a refinement for the Fréchet MDA that describes explicitly the tail of
HH .

7. Tail asymptotics of the sum functional in the Hawkes process

We now propose another “double” big-jump principle concerning the sum functional of
a generic cluster in the setting of the Hawkes process. The tail approximation obtained in
Proposition 8 is in fact very similar to the one in Proposition 6, where both a single big-jump
principle and a combination of the effects of the dependent variables X and κA yield large
values for DH .

Proposition 8. Assume that (X, κA) in Equation (8) has a regularly varying distribution with
noninteger index α > 1. Then (X, LA) is regularly varying with the same index, α. Further, DH

is regularly varying with index α. In fact,

P
(
DH > x

) ∼ 1

1 −E [κA]
P

(
X +

(
E [X]

1 −E [κA]

)
κA > x

)
as x → ∞.
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Proof of Proposition 8. Recall that the assumption that (X, κA) is regularly varying with
index α > 1 is equivalent to the regular variation of the linear combinations t1X + t2κA for
all t1, t2 ∈R+ by Proposition 4. Similarly as in the proof of Proposition 6, if we can show,
at any order (n + 1) for n ∈N and for any t1, t2 ∈R+, that the behaviour of ϕ

(n+1)
t1X+t2κA

(s) :=
∂n+1

∂sn+1

(
E
[
e−s(t1X+t2κA)

])
and that of ϕ

(n+1)
t1X+t2LA

(s) := ∂n+1

∂sn+1

(
E
[
e−s(t1X+t2LA)

])
as s → 0+ are

comparable, i.e. if

ϕ
(n+1)
t1X+t2κA

(s) ∼ ϕ
(n+1)
t1X+t2LA

(s) as s → 0+,

then by Karamata’s Theorem (1), we have

P (t1X + t2κA > x) ∼ P (t1X + t2LA > x) as x → ∞.

But this essentially means, reapplying Proposition 4, that (X, LA) is regularly varying.
The following bounds will be useful:

(i) By a Taylor expansion, as s → 0+,

s − (
1 − e−s)� s2/2. (12)

(ii) For an s > 0 small enough,

−(1 − e−s)�−s/2. (13)

First, note that it is possible to write ϕt1X+t2LA(·) as a function of κA instead of as LA. Using
the Tower property and recalling that LA|A ∼ Poisson(κA) yields

ϕt1X+t2LA (s) =E
[
E
[
e−st1X−st2LA | A

]]=E

[
e−st1X−(1−e−st2)κA

]
.

From this, and letting α ∈ (n, n + 1), n � 1, simple derivations and collection of terms lead
us to consider the difference given by

∣∣ϕ(n+1)
t1X+t2LA

(s) − ϕ
(n+1)
t1X+t2κA

(s)
∣∣

=
∣∣∣E [(−t1X)n+1

(
e−st1X−(1−e−st2)κA − e−st1X−st2κA

)]
+ I1E

[
(−t1X)n(−t2κA)

(
e−st1X−(1−e−st2κA)κA− I2st2 − e−st1X−st2κA

)]
+ . . .

+ IjE

[
(−t1X) (−t2κA)n

(
e−st1X−(1−e−st2κA)κA− Ikst2 − e−st1X−st2κA

)]
+ E

[
(−t2κA)n+1

(
e−st1X−(1−e−st2)κA − (n+1)st2 − e−st1X−st2κA

)]
+ Cn+1

∣∣∣
=:

∣∣B1 + B21 + . . . + B2j + B3 + Cn+1
∣∣ ,

where the constants of product terms
(
B21, . . . , B2j

)
I1, I2, . . . , Ij, Ik ∈N depend on n.
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Consider term B1. Using Equation (12) and Equation (13) and the basic inequality
xe−x � e−1, one can show that

|B1| =E

[
(t1X)n+1e−st1X

(
e−(1−e−st2)κA − e−st2κA

)]
�E

[
(t1X)n+1e−st1Xe−(1−e−st2)κAκA

(
st2 − 1 + e−st2

)]
�E

[
(t1X)n+1e−st1Xe−st2κA/2κA(st2)2/2

]
�E

[(
st1Xe−st1X) ( st2κA

2
e−st2κA/2

)
t2(t1X)n

]
�E

[
e−2t2(t1X)n

]
,

and by the finiteness of the nth moment of X when α ∈ (n, n + 1), the above expectation is
finite. Hence, it follows, using Karamata’s Theorem (1) and Remark 2, that

B1 = o
(
ϕ

(n+1)
t1X+t2κA

(s)
)

as s → 0+.

Consider one representative for the cross-product terms, say, without loss of generality, B21.
Then proceeding as before for term B1, using Equation (12) and Equation (13) and the basic
inequality xe−x � e−1, yields

|B21| = I1E

[
(t1X)n (t2κA)e−st1X

((
e−(1−e−st2)κA− st2 − e−st2κA−st1

)
− (

e−st2κA − e−st2κA−st1
))]

� I1E

[
(t1X)ne−st1X

(
t2κ

2
A

)
e−(1−e−st2)κA

(
st2 − 1 + e−st2

)]

� I1E

[
(t1X)ne−st1X

(
t2κ

2
A

)
e−st2κA/2 (st2)2

2

]

� I1E

[(
st1Xe−st1X) ( st2κA

2
e−st2κA/2

)
(t1X)n−1t22κA

]
� I1E

[
e−2(t1X)n−1t22κA

]
.

Using Hölder’s inequality, because the order of the product of Xn−1 and κA is n, one discovers
that the above expectation is finite. It follows from Karamata’s Theorem (1) and Remark 2
that

B21 = o
(
ϕ

(n+1)
t1X+t2κA

(s)
)

as s → 0+,

which is similar for each cross-product term B22, . . . , B2j.
Consider now B3. With similar tools as before and using Equation (12) and Equation (13)

and the basic inequality x2e−x � 4e−2, yields

|B3| =E

[
(t2κA)n+1e−st1X

((
e−(1−e−st2)κA − 2st2 − est2κA − 2st2

)
−
(

e−st2κA − e−st2κA −2st2
))]

�E

[
(t2κA)n+1e−st1X

(
e−(1−e−st2)κA − 2st2 − est2κA−2st2

)]
�E

[
(t2κA)n+1e−(1−e−st2)κA

(
st2κA − (

1 − e−st2
)
κA
)]

� 2E
[
tn+1
2 κn+2

A (st2/2)2e−st2κA/2
]

� 2E
[
(t2κA)n4e−2

]
,
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which essentially shows, once again, using Karamata’s Theorem (1) and Remark 2, that

B3 = o
(
ϕ

(n+1)
t1X+t2κA

(s)
)

as s → 0+.

Lastly, making up the remainder Cn+1 are terms of strictly smaller order than n + 1. These
are finite and trivially, using Karamata’s Theorem (1) and Remark 2:

Cn+1 = o
(
ϕ

(n+1)
t1X+t2κA

(s)
)

as s → 0+.

Collecting all of these results, it follows that∣∣∣ϕ(n+1)
t1X+t2LA

(s) − ϕ
(n+1)
t1X+t2κA

(s)
∣∣∣= o

(
ϕ

(n+1)
t1X+t2κA

(s)
)

as s → 0+,

which essentially means that for all n ∈N,

ϕ
(n+1)
t1X+t2LA

(s) ∼ ϕ
(n+1)
t1X+t2κA

(s) as s → 0+.

Now, by Karamata’s Theorem (1), this means that for all t1, t2 ∈R+,

P (t1X + t2LA > x) ∼ P (t1X + t2κA > x) as x → ∞,

and using Proposition 4, this means that (X, LA) is regularly varying with index α > 1. We
conclude by applying Theorem 1 in [1], which yields the desired result.

Remark 7. Proposition 8 essentially concerns showing that if (X, κA) is regularly varying,
then (X, LA) is also regularly varying, using the same index, α > 1. The equivalence between
the regularly varying property of κA and that of LA is easy to prove and is to be found, for
example, in [34]. The crucial step to obtain the tail asymptotic of DH and its regularly varying
property in Proposition 8 relies on Theorem 1 in [1]. In their even more general setting, the
distribution of X + cLA is intermediate regularly varying for all c ∈ (E [DH

]− ε,E
[
DH

]+ ε
)

for some ε > 0: This assumption encompasses the case where (X, LA) is regularly varying
but also encompasses the cases where X (respectively LA) is intermediate regularly varying
and LA (respectively X) is lighter, in the sense that P (LA > x) = o(P (X > x)) as x → ∞
(respectively P (X > x) = o(P (LA > x)) as x → ∞).

Proposition 8 extends Lemma 5.2 in [6] by letting (X, κA) be regularly varying, while it is
shown in the aforementioned paper that DH is regularly varying in the case where X is itself
regularly varying and with noninteger α ∈ (0, 2). In the aforementioned paper, three cases are
distinguished, with various assumptions on the relation between X and LA. Note that we do not
cover the case α ∈ (0, 1) in Proposition 8 because it is studied in [6].

In a recent contribution concerning PageRank, Theorem 4.2 in [47] provides similar
asymptotics as in Theorem 4.2 that can be specialised to our case when X and KA are allowed
to have any form of dependence but one has a negligible tail with respect to the other. The
aforementioned theorem also applies to intermediate regularly varying X and KA. The main
connection and specialisation are the following two:

(i) if KA is regularly varying with index α > 1 and E
[
Xα+ε

]
< ∞ for some ε > 0 and if

P (X > x) = o(P (KA > x)) as x → ∞, then

P
(
DH > x

) ∼ E [KA] P (X > x) + P (E [X] KA > x) as x → ∞;
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(ii) if X is regularly varying with index α > 1 and E
[
Kα+ε

A

]
< ∞ for some ε > 0 and if

P (KA > x) = o(P (X > x)) as x → ∞, then

P
(
DH > x

) ∼ (1 +E [KA]) P (X > x) as x → ∞.

Hence, our result essentially extends the above, allowing for tail equivalence between X
and KA.

8. Precise large deviations of cluster process functionals

In this section, we make use of the cluster asymptotics from Section 4 through Section 7 to
derive (precise) large deviation results for the renewal Poisson cluster process as well as for
the Hawkes process.

Notation-wise, we let

NT = ∣∣{(i, j) : 0 � �i � T, 0 � �i + Tij � T
}∣∣

represent the number of events occurring in the time interval [0, T] for T > 0, and we let

JT = ∣∣{(i, j) : 0 � �i � T, T � �i + Tij
}∣∣

represent the number of (ordered) events coming from clusters that started in the time interval
[0, T] but that occurred after time T > 0. We will also need the following decomposition of the
maximum: For x > 0,{

max
1 � i � CT

Hi − max
1 � j � JT

Xj > x

}
⊆
{

max
1 � i � NT

Xi > x

}
⊆
{

max
1 � i � CT

Hi > x

}
, (14)

where CT ∼ Poisson(νT) is the number of clusters starting in the interval [0, T] for T > 0,
and Hi is as in Equation (1). This is due to the fact that the immigration process is the classical
homogeneous Poisson process with parameter ν > 0; see Section 2. The upper-bounding set
in decompositions (14) overshoots by taking the maximum over all the events belonging to
clusters initiated before time T > 0; i.e. this includes events occurring after time T > 0. This is
convenient since CT and H are independent.

The precise large deviation results for the sum will necessitate another decomposition.
Notation-wise, rewriting Equation (3) using NT yields

ST :=
NT∑
j=1

Xj,

and we let μST denote the expectation of ST . Then we can decompose the deviation as:

ST − μST =
CT∑
i=1

Di −E

[
CT∑
i=1

Di

]
−
⎛
⎝ JT∑

j=1

f
(
Aj
)−E

⎡
⎣ JT∑

j=1

f
(
Aj
)⎤⎦
⎞
⎠

=:
CT∑
i=1

Di −E

[
CT∑
i=1

Di

]
− (εT −E [εT ]). (15)
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As in decomposition (14), the first difference overshoots by summing marks of all events
belonging to clusters started before T > 0 and by removing the leftover effect of events
occurring after time T > 0 in a second step, denoted by εT . Again, note that CT and D are
independent.

Furthermore, regarding the leftover effect, the following properties hold:

(i) (Property 1) in [5], for both the renewal Poisson cluster process and the Hawkes process;
that is, E [JT ] = o(T) as T → ∞;

(ii) (Property 2) in [6], for both the renewal Poisson cluster process and the Hawkes process;

that is, E [εT ] = o
(√

T
)

as T → ∞; and hence, in our settings, the condition E [εT ] =
o(T) as T → ∞ holds as well.

8.1. Large deviations of maxima over an interval [0, T]

We now illustrate how the asymptotics of Proposition 5 and Proposition 7 help to determine
the asymptotic behaviour of the whole processes on an interval. In what follows, we let H
denote a generic maximum; i.e. it can be either HR or HD from Section 4 and Section 6. At the
end of this section, we present some related work.

Proposition 9. Suppose that the conditions of either Proposition 5 or those of Proposition 7
hold. Then, as T → ∞ and for any γ > 0,

lim
T→∞ supx � γ νT

∣∣∣∣∣P
(
max1 � i � NT Xi > x

)
E [NT ] P (X > x)

− 1

∣∣∣∣∣= 0.

Proof of Proposition 9. Using decomposition (14),

P
(
max1 � i � CT Hi − max1 �j � JT Xi > x

)
E [NT ] P (X > x)

�
P
(
max1 � i � NT Xi > x

)
E [NT ] P (X > x)

�
P
(
max1 � i � CT Hi > x

)
E [NT ] P (X > x)

.

Upper bound: By the remark following Theorem 3.1 in [32] for any γ > 0,

lim
T→∞ supx � γ νT

∣∣∣∣∣P
(
max1 � i � CT Hi > x

)
E [CT ] P (H > x)

− 1

∣∣∣∣∣= 0 as T → ∞.

Using the asymptotics of Proposition 5 and of Proposition 7,

E [CT ] P (H > x) ∼ E [NT ] P (X > x) as T → ∞

for the x-values considered; i.e. when x � γ νT for any γ > 0.
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Lower bound:

P
(
max1 � i � CT Hi − max1 � j � JT Xj >x

)
E[NT ] P(X > x)

= P
(
max1 � i � CT Hi − max1 � j � JT Xj > x, max1 � j � JT Xj � xε

)
E[NT ] P(X > x)

+ P
(
max1 � i � CT Hi − max1 � j � JT Xj > x, max1 � j � JT Xj > xε

)
E[NT ] P(X > x)

�
P
(
max1 � i � CT Hi > x(1 + ε), max1 � j � JT Xj � xε

)
E[NT ] P(X > x)

�
P
(
max1 � i � CT Hi > x(1 + ε)

)
E[NT ] P(X > x)

− P
(
max1 � i � CT Hi > x(1 + ε), max1�j�JT Xj > xε

)
E[NT ] P(X > x)

.

The very last term in the lower bound is bounded above by

P
(
max1 � i � CT Hi > x(1 + ε), max1 � j � JT Xj > xε

)
E [NT ] P (X > x)

�
P
(
max1 � j � JT Xj > xε

)
E [NT ] P (X > x)

.

Conditioning on the values of JT using a union bound and the fact that the Xjs are independent,

P

(
max

1 � j � JT
Xj > xε

)
=

∞∑
k=1

P

(
max

1 � j � k
Xj > xε

)
P (JT = k)

�
∞∑

k=1

k∑
j=1

P
(
Xj > xε

)
P (JT = k)

�
∞∑

k=1

kP (X > xε) P (JT = k)

�E [JT ] P (X > xε).

Using Property 1 and Remark 8, which essentially say that E [NT ] =O(T) as T → ∞, and
under the assumption that x � γ νT for every γ > 0, it holds that TP (X > x) → 0 as T → ∞,
and it follows that for any fixed ε > 0,

P
(
max1 � j � JT Xj > xε

)
E [NT ] P (X > x)

= o(1) as T → ∞.

This implies that

P
(
max1 � i � CT Hi − max1 � j � JT Xj > x

)
E [NT ] P (X > x)

�
P
(
max1 � i � CT Hi > x(1 + ε)

)
E [NT ] P (X > x)

.
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Again using the remark following Theorem 3.1 in [32], it follows, for any x � γ νT , that

lim
T→∞ supx � γ νT

∣∣∣∣∣P
(
max1 � i � CT Hi > x(1 + ε)

)
E [CT ] P (H > x(1 + ε))

− 1

∣∣∣∣∣= 0 as T → ∞.

Because H is regularly varying with index α > 1, it follows that

E [CT ] P (H > x(1 + ε)) = (1 + ε)−α
E [CT ] P (H > x) as x → ∞,

and using the asymptotics of Proposition 5 and of Proposition 7,

E [CT] P (H > x(1 + ε)) ∼ (1 + ε)−α
E [NT ] P (X > x) as T → ∞.

Letting ε → 0, collecting the upper and lower bounds yields the desired result.

Remark 8. Note that by the independence of the clusters, we have:

(i) for the renewal Poisson cluster process, E [NT ] = (E [KA] + 1)νT;

(ii) for the Hawkes process, E [NT ] = νT
1−E[κA] (see e.g. Section 12.1 in [8]).

8.2. Large deviations of sums over an interval [0, T]

We finally illustrate how the results of Proposition 6 and Proposition 8 help to derive results
for the mixed binomial Poisson cluster process as well as for the Hawkes process on an interval
[0, T]. Note that D denotes a generic sum of the marks.

Proposition 10. Suppose limT→∞supx � γ νT
P(εT −E[εT ] > x)

νTP(D > x) = 0 for both the mixed binomial
Poisson cluster process and the Hawkes process.

(i) Suppose the conditions of Proposition 6 hold for the mixed binomial Poisson cluster
process. Then as T → ∞ for all γ > 0,

lim
T→∞ supx � γ νT

∣∣∣∣∣ P
(
ST − μST > x

)
νT (P (X +E [X] KA > x) +E [KA] P (X > x))

− 1

∣∣∣∣∣= 0.

(ii) Suppose the conditions of Proposition 8 hold. Then as T → ∞ for all γ > 0,

lim
T→∞ supx � γ νT

∣∣∣∣∣∣
P
(
ST − μST > x

)
E [NT ] P

(
X +

(
E[X]

1−E[κA]

)
κA > x

) − 1

∣∣∣∣∣∣= 0.

Proof of Proposition 10. We use decomposition (15); i.e.

P
(
ST − μST > x

)= P

(
CT∑
i=1 i

Di −E

[
CT∑
i=1

Di

]
− (εT −E [εT ]) > x

)
.

Upper bound: Note that

P
(
ST − μST > x

)
� P

(
CT∑
i=1

Di −E

[
CT∑
i=1

Di

]
> x −E [εT ]

)
.
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As T → ∞, we can rewrite x � γ νT as x � γ ′νT +E [εT ] for some 0 < γ ′ < γ . Hence,
under the assumption that x � γ ′νT +E [εT ], x −E [εT ] � γ ′νT , and since CT ∼ Poisson (νT)

is independent of D, using Lemma 2.1 and Theorem 3.1 in [32] yields

lim
T→∞ sup

x � γ
′
νT

∣∣∣∣∣∣
P

(∑CT
i=1 Di −E

[∑CT
i=1 Di

]
> x −E [εT ]

)
νTP (D > x −E [εT ])

− 1

∣∣∣∣∣∣= 0.

Recall that D is regularly varying with index α > 1. Using Property 2, we can write x −
E [εT ] = x − o(T) as T → ∞. Using the Potter bounds (see Theorem 1.5.6 in [7]) for all I > 1,
η > 0, there exists X such that for all x − o(T)� X,

P (D > x − o(T))

P (D > x)
� Imax{(1 − o(T)

x
)−α+η, (1 − o(T)

x
)−α+η}.

Because x � γ νT +E [εT ], the upper bound becomes uniformly close to 1 as T → ∞. In
combination with the above, it follows that as T → ∞, uniformly for x � γ ′νT +E [εT ],

P
(
ST − μST > x

)
� νTP (D > x).

Lower bound: Let δ > 0, and note that

P
(
ST − μST > x

)= P

(
CT∑
i=1

Di −E

[
CT∑
i=1

Di

]
− (εT −E [εT ]) > x, εT −E [εT ] � xδ

)

+ P

(
CT∑
i=1

Di −E

[
CT∑
i=1

Di

]
− (εT −E [εT ]) > x, εT −E [εT ] > xδ

)

� P

(
CT∑
i=1

Di −E

[
CT∑
i=1

Di

]
− (εT −E [εT ]) > x, εT −E [εT ] � xδ

)

� P

(
CT∑
i=1

Di −E

[
CT∑
i=1

Di

]
> x(1 + δ)

)

− P

(
CT∑
i=1

Di −E

[
CT∑
i=1

Di

]
− (εT −E [εT ]) > x, εT −E [εT ] > xδ

)

� P

(
CT∑
i=1

Di −E

[
CT∑
i=1

Di

]
> x(1 + δ)

)
− P (εT −E [εT ] > xδ).

By assumption, the second term is (uniformly) negligible with respect to νTP (D > x) for
the x-region considered.

Since x � γ ′νT +E [εT ] � γ νT , again using Theorem 3.1 in [32], it follows that

lim
T→∞ sup

x � γ νT

∣∣∣∣∣∣
P

(∑CT
i=1 Di − E

[∑CT
i=1 Di

]
> x(1 + δ)

)
νTP (D > x(1 + δ))

− 1

∣∣∣∣∣∣= 0.

Since D is regularly varying with index α > 1, letting δ → 0 yields

νTP (D > x(1 + δ)) ∼ νT(1 + δ)−α
P (D > x) ∼ νTP (D > x).

https://doi.org/10.1017/apr.2024.32 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.32


Asymptotics of some Poisson cluster processes 27

It follows that uniformly for x � γ νT and as T → ∞,

νTP (D > x)�P
(
ST − μST > x

)
.

Collecting the upper and lower bounds,

(i) the asymptotics of Proposition 6 yield

lim
T→∞ sup

x � γ νT

∣∣∣∣∣ P
(
ST − μST > x

)
νT (P (X +E [X] KA > x) +E [KA] P (X > x))

− 1

∣∣∣∣∣= 0;

(ii) the asymptotics of Proposition 8 yield

lim
T→∞ sup

x � γ νT

∣∣∣∣∣∣
P
(
ST − μST > x

)
E [NT ] P

(
X +

(
E[X]

1−E[κA]

)
κA > x

) − 1

∣∣∣∣∣∣= 0;

and recalling that νT
1−E[κA] =E [NT ], this concludes the proof.

Remark 9. Early contributions to the (non-uniform) precise large deviation results for non-
random sums of i.i.d. regularly varying random variables can be found in [24, 42, 43], or
[44].

The proofs of Proposition 9 and Proposition 10 rely heavily on the work of [32], in which
the authors show that under the assumption that the process of integer-valued nonnegative
random variables (NT )T > 0 is such that

(i) NT
λT 1 as λT → ∞, where λT =E [NT ];

(ii) and the following limit holds:∑
k>(1+δ)λT

P (NT > k) (1 + ε)k → 0 as λT → ∞.

Furthermore, if the process (NT) is independent of the sequence
(
Xj
)

by their Theorem 3.1 and
if the distribution of X is extended so that it is regularly varying, for any γ > 0,

lim
T→∞ sup

x � γ λT

∣∣∣∣∣P
(
ST − μST > x

)
λTP (X > x)

− 1

∣∣∣∣∣= 0 and

lim
T→∞ sup

x � γ λT

∣∣∣∣∣∣∣∣
P

(
max

1 � j � NT

Xj > x

)
λTP (X > x)

− 1

∣∣∣∣∣∣∣∣
= 0,

where ST =∑NT
j=1 Xj. Note that the authors show that the Poisson process CT satisfies the

assumptions above, but the second condition is difficult to show for more complicated pro-
cesses. Hence, the trick is to bound the processes at hand in this work by a process governed
by an independent variable, in our context, CT , which is Poisson distributed and satisfies the
settings of [32].
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Note that the work in [32] extends the precise large-deviation principles already studied in
[12] (in the case of non-random sums) to the case of random sums.

In [57], the authors relax the two assumptions used in [32] (and mentioned earlier) and
reduce them to the single condition that

E

[
Nβ+ε

T 1{NT > (1+δ)λT }
]
=O(λT) as T → ∞

for fixed ε, δ > 0 small and β, named the upper index of extended regular variation, and prove
similar precise large-deviation results as [32]. In [45], the authors study another subclass of the
subexponential family, namely, the consistently varying random variables, and prove similar
precise large deviations under the same conditions as [57].

Under the assumption that the sequence
(
Xj
)

exhibits negative dependence, i.e.

P

⎛
⎝ n⋂

j=1

{
Xj � xj

}⎞⎠� M
n∏

j=1

P
(
Xj � xj

)
and P

⎛
⎝ n⋂

j=1

{Xj > xj}
⎞
⎠� M

n∏
j=1

P
(
Xj > xj

)

for some M > 0, all x1, . . . , xn ∈R, more recent literature such as [35, 56] propose extensions
and similar results to those of [45] under the same consistently varying random variables.

While our framework is more restrictive regarding the aspect that our sequence (Xj)1� j�NT

has elements that are regularly varying (which is a subclass of the extended regularly varying
distributions) and furthermore that the elements of the sequence are independent, knowledge
of the tail asymptotics of the cluster functionals allowed us to derive expressions that resemble
known precise large-deviation principles for random maxima and sums of independent random
variables, even though, clearly, NT and

(
Xj
)

are dependent over a time window [0, T]. This
comes at the cost of an extra term for the sums of the marks over a finite time interval of an
extra leftover effect E [εT ] that vanishes as T becomes large.

Appendix A.

Proof of Proposition 5

By conditioning and using the independence of X and Xj, where j ≥ 1, and that of KA and
Xj, where j ≥ 1, we obtain

P
(
HR > x

)= 1 −
∞∑

k=0

P (X � x | KA = k)(P (X � x) )k
P (K = k)

= 1 −
∞∑

k=0

P (X � x | KA = k) exp (k log (1 − P (X > x))) P (K = k). (16)

A Taylor expansion on the exponential term as x → ∞ (and hence, as P (X > x) → 0 by the
integrability of X) gives

exp (k log (1 − P (X > x))) = exp (−kP (X > x) − o(kP (X > x)))

= (1 − kP (X > x) + o(kP (X > x))) exp (−o(kP (X > x))),

where the last equality follows from another Taylor expansion of the first exponential term in
the second equality as x → ∞.
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Plugging the preceding expansion into Equation (16) yields

P
(
HR > x

)= 1 −
∞∑

k=0

P (X � x, KA = k) exp (−o(kP (X > x)))

+ P (X > x)
∞∑

k=0

kP (X � x, KA = k) exp (−o(kP (X > x)))

− o(P (X > x))
∞∑

k=0

P (X � x, KA = k) exp (−o(kP (X > x)))

=: 1 − B1 + B2 − B3.

We treat each term separately. For term 1 − B1, remarking that 1 = P (X � x) + P (X > x),
we obtain

1 − B1 = P (X > x) +
∞∑

k=0

P (X � x, KA = k) (1 − exp (−o(kP (X > x)))).

Using the basic inequality 1 − e−x � x, term 1 − B1 is bounded by

0 � 1 − B1 � P (X > x) + o(E [KA] P (X > x)) as x → ∞.

For term B2, we can write

B2 = P (X > x)
∞∑

k=0

k (P (X � x, KA = k)) exp (−o(kP (X > x))) + P (K = k) − P (K = k) )

= P (X > x) E [KA] − P (X > x)
∞∑

k=0

kP (X > x, KA = k)

+ P (X > x)
∞∑

k=0

kP (X � x, KA = k) (exp (−o(kP (X > x))) − 1)

=: B21 − B22 + B23.

Noting that B22 is bounded above by B22 �E [KA] P (X > x) and, hence, by a dominated
convergence argument and the integrability of X, we have that

P (X > x)
∞∑

k=0

kP (X > x, KA = k) = o(P (X > x)) as x → ∞.

For term B23, which is negative since for all k � 0, 0 � e−o(kP (X>x)) � 1, we bound it below
by

− P (X > x)
∞∑

k=0

kP (X � x, KA = k)

� P (X > x)
∞∑

k=0

kP (X� x, KA = k) (exp (−o(kP (X > x))) − 1)

� 0,
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and hence, by a dominated convergence argument, we obtain that as x → ∞,

P (X > x)
∞∑

k=0

kP (X � x, KA = k) (exp (−o(kP (X > x))) − 1) = o(P (X > x)).

Collecting the above results, we see that, essentially,

B2 = P (X > x) E [KA] + o(P (X > x)) as x → ∞.

Finally, by very similar arguments to those employed for B2 and omitted for brevity,

B3 = o(P (X > x)) as x → ∞.

Collecting the above, it essentially follows that

P
(
HR > x

)= P (X > x) + P (X > x) E [KA] + o(P (X > x)) as x → ∞.

The desired result follows at once by taking the limit as x → ∞ and by using the assumption
that the limiting Radon measure is non-null on the subspace {(x1, x2) ∈R

2
+,0 : x1 > 1}, which

implies, by means of Example 1, that HR is regularly varying with index α > 1.

Appendix B.

Proof of Proposition 7

By conditioning and using the independence of X and HH , as well as that of LA and HH , we
obtain, as in the proof of Proposition 5,

P
(
HH > x

)= 1 −
∞∑

k=0

P (X � x|LA = k)exp
(
k log

(
1 − P

(
HH > x

)))
P (LA = k).

A Taylor expansion on the exponential term, as x → ∞ (and hence, as P
(
HH > x

)→ 0 by the
integrability of HH), yields, as x → ∞,

exp
(
k log

(
1 − P

(
HH > x

)))
= (

1 − kP
(
HH > x

)+ o
(
kP

(
HH > x

)))
exp

(−o
(
kP

(
HH > x

)))
.

From here on, the proof follows the same procedures as those of Proposition 6, except that
the tail of HH , rather than the tail of X, appears here. The proof is omitted for brevity, but we
retrieve

P
(
HH > x

)= P (X > x) +E [LA] P
(
HH > x

)+ o
(
P
(
HH > x

))
as x → ∞,

which yields the desired result.

Appendix C.

Proof of Proposition 6

We need the following Lemma in order to prove Lemma 2, which is used in the proof of
Proposition 6:

https://doi.org/10.1017/apr.2024.32 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.32


Asymptotics of some Poisson cluster processes 31

Lemma 1. Suppose (X, KA) is regularly varying, with index α ∈ (n, n + 1), for n ∈N.
Additionally suppose that X has negligible tails with respect to X +E [X] KA; i.e. P (X > x) =
o(P (X +E [X] KA > x)) as x → ∞. Then

ϕ
(n+1)
X (s) = o

(
ϕ

(n+1)
X+E[X]KA

(s)
)

as s → 0+.

Proof Note that

ϕ
(n+1)
X (s) =E

[
(−X)n+1e−sX

]
=
∫ ∞

0
xn+1e−sxd (−P (X � x))

= [ − xn+1e−sx
P (X � x) ]∞0 +

∫ ∞

0

(
(n + 1) xne−sx − sxn+1e−sx

)
P (X � x) dx.

The first term above vanishes; upon substituting, the second term yields

∫ ∞

0

(
(n + 1) xne−sx − sxn+1e−sx

)
P (X � x) dx

=
∫ ∞

0
( (n + 1) (y/s)ne−y − s

(
y/s)n+1e−y

)
P (X � y/s)

dy

s

= s−(n+1)

∫ ∞

0

(
(n + 1) yne−y − yn+1e−y

)
P (X � y/s) dy.

Make ε > 0 small, and split the above integral into

s−(n+1)

∫ ∞

0

(
(n + 1) yne−y − yn+1e−y

)
P (X � y/s) dy

= s−(n+1)

( ∫ ε

0

(
(n + 1) yne−y − yn+1e−y

)
P (X � y/s) dy

+
∫ ∞

ε

(
(n + 1) yne−y − yn+1e−y

)
P (X � y/s) dy

)
=: I1 + I2.

Consider integral I2 first. For some values y ∈ [ε, ∞), the expression (n + 1) yne−y −
yn+1e−y might be negative, so bound I2 above by its absolute value. Additionally, upon using
the hypothesis of negligibility of the tail of X with respect to the tail of X +E [X] KA, it fol-
lows that for any δ > 0 and for any fixed ε > 0 and y > ε, there is s0 such that for all s � s0,
P (X � y/s)� δεP (X +E [X] KA > y/s). All in all, because X +E [X] KA is regularly varying
with index α ∈ (n, n + 1), this yields as an upper bound

|I2|� s−(n+1)

∫ ∞

ε

∣∣∣((n + 1) yne−y − yn+1e−y
)∣∣∣ δεP (X +E [X] KA > y/s) dy

� s−(n+1)

∫ ∞

ε

∣∣∣((n + 1) yne−y − yn+1e−y
)∣∣∣ δε(y/s)−αLX+E[X]KA (y/s) dy

� sα−(n+1)δε

∫ ∞

ε

∣∣∣((n + 1) yne−y − yn+1e−y
)∣∣∣ y−αLX+E[X]KA (y/s) dy.
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Because
(
(n + 1) yne−y − yn+1e−y

)
y−α is integrable over [0, ∞), it follows from Proposition

4.1.2 (b) in [7] that as s → 0+,

sα−(n+1)δε

∫ ∞

ε

∣∣∣((n + 1) yne−y − yn+1e−y
)∣∣∣ y−αLX+E[X]KA (y/s) dy

∼ sα−(n+1)LX+E[X]KA (1/s) δε

∫ ∞

ε

∣∣∣((n + 1) yne−y − yn+1e−y
)∣∣∣ y−αdy.

For each fixed value of ε > 0 and as s → 0+, it is possible to take δε > 0 as small as needed
in order to guarantee that

δε

∫ ∞

ε

∣∣∣((n + 1) yne−y − yn+1e−y
)∣∣∣ y−αdy = o(1) as s → 0+.

This implies that for a fixed ε > 0 as s → 0+,

|I2|
sα−(n+1)LX+E[X]KA (1/s)

�
sα−(n+1)LX+E[X]KA (1/s) δε

∫∞
ε

∣∣((n + 1) yne−y − yn+1e−y
)∣∣ y−αdy

sα−(n+1)LX+E[X]KA (1/s)

� o(1).

Now consider integral I1. Because X is stochastically dominated by X +E [X] KA and using
the regular variation of the latter quantity, this yields

|I1|� s−(n+1)

∫ ε

0

∣∣∣((n + 1) yne−y − yn+1e−y
)∣∣∣ P (X +E [X] KA > y/s) dy

� sα−(n+1)

∫ ε

0

∣∣∣((n + 1) yne−y − yn+1e−y
)∣∣∣ y−αLX+E[X]KA (y/s) dy.

Because the function
(
(n + 1) yne−y − yn+1e−y

)
y−α is integrable over [0, ε), it follows by

Proposition 4.1.2 (a) in [7] that as s → 0+,

sα−(n+1)

∫ ε

0

∣∣∣((n + 1) yne−y − yn+1e−y
)∣∣∣ y−αLX+E[X]KA (y/s) dy

∼ sα−(n+1)LX+E[X]KA (1/s)
∫ ε

0

∣∣∣((n + 1) yne−y − yn+1e−y
)∣∣∣ y−αdy.

It follows that

|I1|
sα−(n+1)LX+E[X]KA (1/s)

�
sα−(n+1)LX+E[X]KA (1/s)

∫ ε

0

∣∣((n + 1) yne−y − yn+1e−y
)∣∣ y−αdy

sα−(n+1)LX+E[X]KA (1/s)
,

�
∫ ε

0

∣∣∣((n + 1) yne−y − yn+1e−y
)∣∣∣ y−αdy

and because one can take ε > 0 as small as needed, this shows that

I1 + I2 = o
(

sα−(n+1)LX+E[X]KA (1/s)
)

, as s → 0+.
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Finally, because n + 1 = �α� and using Karamata’s Tauberian Theorem (1), which implies that
ϕ

(n+1)
X+E[X]KA

∼ Cαsα−�α�LX+E[X]KA (1/s) as s → 0+, this shows that

ϕ
(n+1)
X (s) = o

(
ϕ

(n+1)
X+E[X]KA

)
as s → 0+.

Lemma 2. Suppose (X, KA) is regularly varying with index α ∈ (1, 2) and slowly varying func-
tion LX+E[X]KA (·) and that X has a negligible tail compared to the modulus X +E [X] KA,
i.e. P (X > x) = o(P (X +E [X] KA > x)) as x → ∞. Then,

ϕ
(1)
X (s) +E [X]

s
= o

(
ϕ

(2)
X+E[X]KA

(s) +E [KA] ϕ
(2)
X (s)

)
as s → 0+.

Proof Let α ∈ (1, 2). We assess

ϕ
(1)
X (s) +E [X]

s
=E

[
X
(
1 − e−sX

)
s

]

=
∫ ∞

0

x
(
1 − e−sx

)
s

d(−P (X � x))

=
[

− x
(
1 − e−sx

)
s

P (X � x)

]∞

0

+
∫ ∞

0

((
1 − e−sx

)
s

+ xe−sx

)
P (X � x) dx.

Since X is integrable, one has that xP (X � x) = o(1) as x → ∞, so the first expression on the
right-hand side above vanishes; for the second integral, make ε > 0 small and write

∫ ∞

0

((
1 − e−sx

)
s

+ xe−sx

)
P (X � x) dx =

∫ ∞

0
s−2 (1 − e−y + ye−y)

P (X � y/s)dy,

=
∫ ε

0
s−2 (1 − e−y + ye−y)

P (X � y/s)dy

+
∫ ∞

ε

s−2 (1 − e−y + ye−y)
P (X � y/s)dy

=: (I1 + I2).

First consider integral I2. A similar argument as in the proof of Lemma 1 for integral I2
yields the following upper bound:

I2 �
∫ ∞

ε

s−2 (1 − e−y + ye−y) δεP (X +E [X] KA > y/s) dy

� sα−2δε

∫ ∞

ε

(
1 − e−y + ye−y) y−αLX+E[X]KA (y/s) dy.

As ε → 0, the above integral diverges. But for a (small) fixed value of ε > 0, by using
Proposition 4.1.2 (b) in [7], as s → 0+,

sα−2
∫ ∞

ε

(
1 − e−y + ye−y) y−αδεLX+E[X]KA (y/s) dy

∼ sα−2LX+E[X]KA (1/s) δε

∫ ∞

ε

(
1 − e−y + ye−y) y−αdy.
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As s → 0+ and as in the proof of Lemma (1), it is possible to take δε > 0 as small as needed
in order to ensure that

δε

∫ ∞

ε

(
1 − e−y + ye−y) y−αdy = o(1) as s → 0+.

This implies that as s → 0+,

I2

sα−2LX+E[X]KA (1/s)
�

sα−2LX+E[X]KA (1/s) δε

∫∞
ε

(
1 − e−y + ye−y

)
y−αdy

sα−2LX+E[X]KA (1/s)
� o(1).

Consider now integral I1. Because X is stochastically dominated by X +E [X] KA, for any fixed
ε > 0, we have

I1 �
∫ ε

0
s−2 (1 − e−y + ye−y)

P (X +E [X] KA � y/s) dy

=
∫ ε

0
sα−2 (1 − e−y + ye−y) y−αLX+E[X]KA (y/s) dy.

A Taylor expansion on the function f (y) = e−y + ye−y yields 1 = e−y − ye−y + 2ye−y −
y2e−y + o(−y), and we get that∫ ε

0
sα−2 (1 − e−y + ye−y) y−αLX+E[X]KA (y/s) dy

≈ sα−2
∫ ε

0

(
2ye−y − y2e−y

)
y−αLX+E[X]KA (y/s) dy.

Because the integral
∫ ε

0

(
2ye−y − y2e−y

)
y−αdy < ∞ for α ∈ (1, 2) when ε > 0 is small, even

if it is potentially large for values of α close to 2, it follows from Proposition 4.1.2. (a) in [7]
that as s → 0+,

sα−2
∫ ε

0

(
2ye−y − y2e−y

)
y−αLX+E[X]KA

(y

s

)
dy

∼ sα−2LX+E[X]KA (1/s)
∫ ε

0

(
2ye−y − y2e−y

)
y−αdy.

Hence, as s → 0+

I1

sα−2LX+E[X]KA (1/s)
�

sα−2LX+E[X]KA (1/s)
∫ ε

0

(
2ye−y − y2e−y

)
y−αdy

sα−2LX+E[X]KA (1/s)

�
∫ ε

0

(
2ye−y − y2e−y

)
y−αdy,

and because one can take ε > 0 as small as needed, it essentially follows, all in all, that

(I1 + I2) = o
(

sα−2LX+E[X]KA (1/s)
)
, as s → 0+.

Because X +E [X] KA is regularly varying, by Karamata’s Tauberian Theorem (1),

sα−2LX+E[X]KA (1/s)

ϕ
(2)
X+E[X]KA

(s) +E [KA] ϕ
(2)
X (s)

∼ sα−2LX+E[X]KA (1/s)

Cαsα−2LX+E[X]KA (1/s) +E [KA] ϕ
(2)
X (s)

as s → 0+.
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Applying the result of Lemma 1, this yields

sα−2LX+E[X]KA (1/s) =O
(
ϕ

(2)
X+E[X]KA

(s) +E [KA] ϕ
(2)
X (s)

)
as s → 0+,

which yields the desired result.
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