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Abstract
We give a construction of the free dcpo-cone over any dcpo. There are two steps for getting this result.
Firstly, we extend the notion of power domain to directed spaces which are equivalent to T0 monotone-
determined spaces introduced by Erné, and we construct the probabilistic powerspace of the monotone
determined space, which is defined as a free monotone determined cone. Secondly, we take D-completion
of the free monotone determined cone over the dcpo with its Scott topology. In addition, we show that
generally the valuation power domain of any dcpo is not the free dcpo-cone.

Keywords: Topological cone; monotone determined cone; continuous valuation; point-continuous; D-completion;
dcpo-cone

1. Introduction
Probabilistic power domain in domain theory plays an important role in modeling the semantics
of nondeterministic functional programming languages with probabilistic choice. For example,
the universal property of probabilistic power domain can help us define the sequential compo-
sition of two programs (Tix et al. 2009). Saheb-Djahromi (1980) considered probabilistic power
domains over ω-algebraic dcpos, Escrig (1986) studied the case of SFP domains, and Jones (1990)
extended the case to general dcpos. It is also shown by Jones and Gordon (1989) that the proba-
bilistic power domain of a domain is still a domain and it has a kind of universal property. Kirch
(1993) generalized Jones’ results to extended probabilistic power domain, and Tix (1995) proved
that the extended probabilistic power domain of any domain is the free dcpo-cone. However,
we show that the extended probabilistic power domain of a dcpo is generally not a free dcpo-
cone in this paper. This leads to the question of: what the representation of free dcpo-cone over
a non-continuous dcpo is. The aim of this paper is to deal with this problem. We believe that
this construction can also be applied to study the algebra of valuation monad over the category of
dcpos (Tix et al. 2009, p. 30).

The intuitive idea of our strategy consists of two steps: the first one is to construct some kind of
variation of free cone and the next step is to consider an appropriate completion of this free object.
To achieve our goal we will need two tools – directed spaces and D-completions. Directed spaces
were introduced independently by Yu and Kou (2015), which are equivalent to the T0 monotone-
determined spaces defined by Erné (2009). They can be regarded as a topological extended model
of domain theory. A monotone determined space is a T0 space whose topology can be determined
by its convergent directed subsets. For instance, every dcpo endowed with the Scott topology is
a monotone determined space. The category of monotone determined spaces with continuous
maps is a Cartesian closed category, and many properties of dcpos can be extended to monotone
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determined spaces (Yu and Kou 2015). A natural question arises: what is a monotone determined
version of extended probabilistic powerspace over a monotone determined space? To answer this
question, we have to do two things. The first one is to define amonotone determined cone by using
Keimel’s topological cone (Keimel 2008), just like the d-cone (Gierz et al. 2003). The second one is
to construct a free object over any monotone determined space. We give a concrete construction
of extended probabilistic powerspace over any monotone determined space. After that we get a
representation of free dcpo-cone over any dcpo L by taking the D-completion of the monotone
determined probabilistic powerspace over the Scott space �L.

The paper is organized as follows. In Section 2, we introduce the concept of directed spaces and
their properties. In the next section, we define the notion of a monotone determined cone and
then give its concrete representation by constructing an appropriate topology on the set of simple
valuations. In Section 4, we recall some useful results of D-completion and Scott completion. In
addition, we exhibit the free dcpo-cone over any dcpo, which provides an answer to the problem of
characterizing the probabilistic power domains of general dcpos. In the final section, we show that
the valuation power domain over a dcpo D is not always the free dcpo-cone on D by considering
an example by Goubault and Jia (2021).

2. Preliminaries
First, we introduce some basic concepts. For basic knowledge and notations in domain theory,
topology, and category theory, we refer to Abramsky and Jung (1994), Gierz et al. (2003), MacLane
(1971).

Let P be a partially ordered set (poset for short). Given any subset A⊆ P, denote ↓A= {x ∈ P :
∃a ∈A, x≤ a}, ↑A= {x ∈ P : ∃a ∈A, a≤ x}. We say that A is a lower set (upper set) if A=↓A
(A=↑A). A nonempty set D⊆ P is called a directed set if each finite nonempty subset of D has
an upper bound in D. A poset P is called a directed complete poset, abbreviated as a dcpo, if each
directed subset D of P has a supremum (denoted by

∨
D). A subset U of a poset P is called a

Scott open subset if U is an upper set and for each directed subset D⊆ P such that
∨

D exists and
belongs toU,U ∩D 	= ∅. The set of all Scott open subsets of a poset P form a topology on P, which
is called the Scott topology and denoted by σ (P). A topological space is called a Scott space if it
is a dcpo endowed with the Scott topology. We denote by �P= (P, σ (P)). Suppose that P and E
are two posets, a map f : P−→ E is called Scott continuous if it is continuous with respect to σ (P)
and σ (E). A poset L is called a complete lattice if any subset has a supremum in L. We say x≪ y
in L, if for any set A with y≤∨A, there exists some a ∈A such that x≤ a. A complete lattice L is
prime continuous if for any x ∈ L, x=∨{y ∈ L : y≪ x}.

All topological spaces in this paper are supposed to be T0 spaces. A net in a topological space
X is a map ξ : J −→ X, where J is a directed set. Usually, we denote a net by (xj)j∈J or (xj). We
say that (xj) converges to x, denoted by (xj)→ x or x≡ lim xj, if (xj) is eventually in every open
neighborhood of x, that is, for every open neighborhood U of x, there exists j0 ∈ J such that for
every j ∈ J, j≥ j0⇒ xj ∈U.

Let X be a T0 topological space with its topology denoted by O(X). Then, the specialization
order on X is defined as follows:

∀x, y ∈ X, x� y⇔ x ∈ {y}
where {y} denotes the closure of {y}. From now on, the order of a T0 topological space always
indicates the specialization order “�”.

Supposing that X is a T0 space, then every directed set D⊆ X can be regarded as a net (d)d∈D
in X. We use D→ x or x≡ limD to represent that D converges to x. Define

D(X)= {(D, x) : x ∈ X, D is a directed subset of X and D→ x}.
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It is easy to verify that, for every x, y ∈ X, x� y⇐⇒{y}→ x. Therefore, if x� y then ({y}, x) ∈
D(X). Next, we introduce the concept of monotone determined spaces.

Definition 1. (Yu and Kou 2015) Let X be a T0 space.

(1) A subset U of X is called a directed open set if ∀(D, x) ∈D(X), x ∈U⇒D∩U 	= ∅. Denote
the set of all directed open subsets of X by d(X).

(2) X is called a monotone determined space if each directed open subset of X is an open subset,
that is, d(X)=O(X).

Dcpos endowed with the Scott topology are monotone determined spaces andmany properties
of dcpos can be extended to monotone determined spaces. The topology on a monotone deter-
mined space need not be Scott topology; for example, every poset with the Alexanderoff topology
is a monotone determined space. The natural numbers with co-finite topology are not a monotone
determined space. For more details, we refer to Yu and Kou (2015).

Monotone determined spaces with continuous maps as morphisms form a Cartesian closed
category, denoted by Dtop. In the following, we introduce the representation and some basic
properties of categorical product of monotone determined spaces inDtop.

Suppose that X, Y are two monotone determined spaces. Let X× Y be the Cartesian product
of X and Y , then we have a natural partial order on it: ∀(x1, y1), (x2, y2) ∈ X× Y ,

(x1, y1)≤ (x2, y2) ⇐⇒ x1 � x2, y1 � y2.

which is called the pointwise order onX× Y . Now, we define a topological spaceX⊗ Y as follows:

(1) The underlying set of X⊗ Y is X× Y ;
(2) The topology on X⊗ Y is generated as follows: for each given ≤- directed set D⊆ X× Y

and (x, y) ∈ X× Y , define

D→d (x, y) ∈ X⊗ Y ⇐⇒ π1D→ x ∈ X, π2D→ y ∈ Y .

A subset U ⊆ X⊗ Y is open iff for every D→d (x, y) as defined above, (x, y) ∈U =⇒U ∩
D 	= ∅.

Theorem 2. (Yu and Kou 2015) Let X and Y be two monotone determined spaces.

(1) The topological space X⊗ Y defined as above is a monotone determined space, and the
specialization order on X⊗ Y is equal to the pointwise order on X× Y.

(2) Let Z be a monotone determined space. Then f : X⊗ Y −→ Z is continuous if and only if it
is continuous in each argument separately.

Definition 3. Let X, Y be two T0 spaces. A map f : X−→ Y is called directed continuous if it is
monotone and preserves all limits of directed subsets of X, that is, (D, x) ∈D(X)⇒ (f (D), f (x)) ∈
D(Y).

Proposition 4. (Yu and Kou 2015) Let X, Y be two T0 spaces, and f : X−→ Y be a map from X
to Y.

(1) f is directed continuous if and only if ∀U ∈ d(Y), f−1(U) ∈ d(X).
(2) If X, Y are monotone determined spaces, then f is continuous if and only if it is directed

continuous.
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Let P be a dcpo, and x, y ∈ P. We say that x is way-below y, if for each given directed set D⊆
P, y≤∨D implies that there exists some d ∈D such that x≤ d. We write ↓↓x= {a ∈ P : a� x},
↑↑x= {a ∈ P : x� a}.

Definition 5. A dcpo P is called a domain if for each x ∈ P, ↓↓x is directed and x=∨ ↓↓x.
A T0 topological space X is a c-space if for each x ∈ X and each open neighborhood U of x,

there exists some y ∈U such that x ∈ (↑ y)◦ ⊆U. The c-spaces are classical spaces investigated by
many scholars. Continuous domains endowed with the Scott topology are c-spaces, and c-spaces
are monotone determined spaces (Erné 2009).

The following result gives a characterization of c-space.

Proposition 6. (Goubault-Larrecq 2013, Lemmas 8.3.41, 8.3.42) A T0 space is a c-space iff the
lattice O(X) with the inclusion order is prime continuous.

3. The Monotone Determined Probabilistic Powerspaces
As mentioned above, monotone determined spaces form a very natural topological extended
model of dcpos in Domain theory. Like the work done by Battenfeld and Schöder (1994), extend-
ing the power domain to the category of monotone determined spaces is useful. In this section,
we will construct the monotone determined probabilistic powerspace of an arbitrary monotone
determined space, which is a free algebra generated by the addition and scalar multiplication over
the monotone determined space.

Definition 7. (Heckmann 1996) Let X be a topological space. A map μ :O(X)−→ [0,+∞] is
called a continuous valuation if the following hold:

(1) strictness: μ(∅)= 0;
(2) monotonicity: ∀ V ⊆U ∈O(X) =⇒ μ(V)≤μ(U);
(3) modular law: μ(U)+μ(V)=μ(U ∪V)+μ(U ∩V), ∀ U,V ∈O(X);
(4) continuity: for each directed subset D , also called a directed family of O(X), μ( supD)=

sup{μ(U) :U ∈D}.
V (X) stands for the set of continuous valuations over X.

Definition 8. (Heckmann 1996) A continuous valuation μ is called a point-continuous valuation
if for any non-negative real number r and any open set U of X with μ(U)> r, there is a finite set
F⊆U such that μ(V)> r for any open set V ⊇ F. Let Vp(X) denote the set of all point-continuous
valuations over X.

Definition 9. (Gierz et al. 2003, Definition IV-9.9) Let X be a topological space. For each x ∈ X, we
define the point valuation ηx :O(X)−→ [0,+∞] as follows: ηx(U)= 1 if x ∈U, and ηx(U)= 0 if
x /∈U. A finite linear sum ξ =∑b∈B rbηb with 0< rb <+∞, defined by ξ (U)=∑b∈U rb, is called
a simple valuation. The set B= suppξ is called the support of ξ . We denote the set of all simple
valuations by Vf (X).

The following lemma shows that every simple valuation has a unique representation as a linear
combination of point valuations.
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Lemma 10. (Gierz et al. 2003, Lemma IV-9.22) Let ζ =∑b∈B rbηb and
∑

c∈C scηc = ξ be two
simple valuations on O(X), where X is a T0 space. If ξ and ζ are distinct as linear combinations,
then they are distinct as valuations.

Topological cones were defined by Keimel (2008). In the following, we replace the T0 space by
monotone determined space to give the definition of monotone determined cone.

Definition 11. A monotone determined cone is a monotone determined space X equipped with a
distinguished element 0 ∈ X, an addition+ : X⊗ X→ X, and a scalar multiplication · :R+ ⊗ X→
X(R+ endowed with the Scott topology in its usual partial order) such that both operations are
continuous and the following are satisfied.

(1) x+ y= y+ x, ∀x, y ∈ X,
(2) (x+ y)+ z= x+ (y+ z), ∀x, y, z ∈ X,
(3) 0+ x= x, ∀x ∈ X,
(4) (kl) · x= k · (l · x), ∀k, l ∈R+, ∀x ∈ X,
(5) (k+ l) · x= (k · x)+ (l · x), ∀k, l ∈R+, ∀x ∈ X,
(6) k · (x+ y)= (k · x)+ (k · y), ∀k ∈R+, ∀x, y ∈ X,
(7) 1 · x= x, ∀x ∈ X,
(8) k · 0= 0, ∀k ∈R+.

Definition 12. Let (X,+, ·), (Y ,�, ∗) be two monotone determined cones. A map f : (X,+, ·)→
(Y ,�, ∗) is called a monotone determined cone homomorphism between X and Y, if f is continuous
and f (x+ y)= f (x)� f (y) and f (a · x)= a ∗ f (x) hold for all x, y ∈ X, and a ∈R+ = [0,+∞) .

Denote the category of all monotone determined cones andmonotone determined cone homo-
morphisms by Dscone. Then Dscone is a subcategory of Dtop. Now, we define the notion of
monotone determined probabilistic powerspaces.

Definition 13. Let X be a monotone determined space. A monotone determined cone (Z,+, ·)
is called the monotone determined probabilistic powerspace of X if there is a continuous map
i : X−→ Z that satisfies the following property: for arbitrary monotone determined cone (Y , �, ∗)
and continuous map f : X−→ Y, there exists a unique monotone determined cone homomorphism
f̄ : (Z, +, ·)→ (Y , �, ∗) such that f = f̄ ◦ i.

By the definition above, if monotone determined cones (Z1,+, ·) and (Z2,�, ∗) are both the
monotone determined probabilistic powerspaces of X, then there exists a topological homomor-
phism which is also a monotone determined cone homomorphism g : Z1→ Z2. Therefore, up
to isomorphism, the monotone determined probabilistic powerspace of a monotone determined
space is unique. Hence, we denote the monotone determined probabilistic powerspace of each
monotone determined space X by PD(X).

Now, we show the existence of monotone determined probabilistic powerspaces by giving the
concrete construction of the monotone determined probabilistic powerspace of any monotone
determined space X.

For any monotone determined space X, there is a natural pointwise order ≤ on Vf (X):

ξ ≤ η ⇐⇒ ξ (U)≤ η(U), ∀U ∈O(X).

In the following, we will introduce a new convergence on the set of simple valuations.
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Definition 14. Let D = {ξi}i∈I be a directed subset of Vf (X) in the pointwise order and ξ ∈ Vf (X)
with nonempty support. We write D ⇒P ξ if there is a representation of ξ as

∑n
i=1 rbiηbi (rbi > 0

for each i, bi may be equal to bj for i 	= j), and there exist directed subsets D1, · · · ,Dn ⊆ X
satisfying ∀i ∈ {1, · · · , n} :Di→ bi in X, such that for any (d1, . . . , dn) ∈∏n

i=1 Di and r′bi < rbi
(for i= 1, . . . , n), there exists some ξ ′ ∈D such that

∑n
i=1 r′biηdi ≤ ξ ′. If the support of ξ is ∅, then

ξ = 0. We define that any directed subset of Vf (X) always converges to 0.

A subset U ⊆ Vf (X) is called a ⇒P convergence open subset of Vf (X) if and only if for each
directed subset D of Vf (X) and ξ ∈ Vf (X), D ⇒P ξ ∈U implies D ∩U 	= ∅. Denote the set of all
⇒P convergence open subsets of Vf (X) by O⇒P (Vf (X)) .

Proposition 15. Let X be a monotone determined space. Then, the following statements hold.

(1) (Vf (X), O⇒P (Vf (X))) is a topological space, henceforth, denoted as CX.
(2) The specialization order� on CX is equal to the pointwise order.
(3) CX is a monotone determined space, that is, O⇒P (Vf (X))= d(CX).

Proof. (1) Obviously, ∅, CX ∈O⇒P (Vf (X)). Suppose that U ∈O⇒U (Vf (X)), ξ ≤ η, ξ ∈U , and
ξ =∑n

i=1 rbiηbi . Then, it is evident that {η}⇒P ξ , since we only need to take Di = {bi} for i=
1, . . . , n. Then, {η} ∩U 	= ∅, this means η ∈U , and thus U is an upper set with respect to the
pointwise order ≤.

Let U1,U2 ∈O⇒P (Vf (X)), and D be a directed subset of Vf (X) with D ⇒P ξ ∈U1 ∩U2. Then,
there exists some ξ1 ∈D ∩U1 and ξ2 ∈D ∩U2. SinceD is directed, there exists some ξ3 ∈D such
that ξ3 ≥ ξ1, ξ2. Then, ξ3 ∈D ∩U1 ∩U2, and then U1 ∩U2 ∈O⇒P (Vf (X)). In the same way, we
can show that O⇒U (Vf (X)) is closed under arbitrary unions. Hence, O⇒U (Vf (X)) is a topology.

(2) By the proof of (1), each ⇒P convergence open set is an upper set with respect to the
pointwise order. We only need to prove that ↓≤ η is a closed set in CX. Equivalently, we show that
CX\ ↓≤ η is a⇒P convergence open set.

Set U = CX\ ↓≤ η and D ⇒P ξ ∈U . To obtain a contradiction, suppose U ∩D =∅, that is,
∀ξ ′ ∈D , ξ ′ ≤ η. By the definition of D ⇒P ξ , there is a representation ξ =∑n

i=1 rbiηbi , and we
have directed sets D1, . . . ,Dn ⊆ X with Di→ bi, i= 1, . . . , n, and for any (d1, . . . , dn) ∈∏n

i=1 Di
and any r′bi < rbi (1≤ i≤ n), there exists some ξ ′ ∈D such that

∑n
i=1 r′biηdi ≤ ξ ′. Now, we

claim that ξ ≤ η, which contradicts ξ ∈U . By the definition of pointwise order ≤, for any
U ∈O(X), we may assume that b1, . . . , bk ∈U, 0≤ k≤ n. Since Di→ bi, i= 1, . . . , k, there exists
(d1, . . . , dk) ∈

∏k
i=1 Di such that di ∈U. For each r′bi < rbi , i= 1, . . . , k, there exists ξ ′ ∈D such

that
∑k

i=1 r′biηdi ≤ ξ ′. Note that k≤ n, then,

⎛
⎝ k∑

i=1
r′biηbi

⎞
⎠ (U)=

k∑
i=1

r′bi ≤ ξ ′(U)≤ η(U).

But the supremum of the left hand side is
∑k

i=1 rbi = (
∑k

i=1 rbiηbi)(U)= ξ (U).
(3) For an arbitrary topological space X, O(X)⊆ d(X) holds. Thus, O⇒P (Vf (X))⊆ d(CX). On

the other hand, according to the definition of⇒P convergence topology, if D ⊆ CX is directed
and D ⇒P ξ , then D converges to ξ with respect to O⇒P (Vf (X)). By the definition of directed
open set, D ⇒P ξ ∈U ∈ d(CX) will imply U ∩D 	= ∅. Then, U ∈O⇒P (Vf (X)), it follows that
O⇒P (Vf (X))= d(CX), that is, CX is a monotone determined space.
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Proposition 16. Suppose that X, Y are two monotone determined spaces. Then, a map f : CX→ Y
is continuous if and only if for each directed subset D ⊆ CX and ξ ∈ CX, D ⇒P ξ implies f (D)→
f (ξ ).

Proof. Since⇒P convergence will lead to topological convergence in CX, the necessity is obvious.
We need only to prove the sufficiency. First, we check that f is monotone. If ξ , η ∈ CX and ξ ≤
η, then {η}⇒P ξ , by the hypothesis, {f (η)}→ f (ξ ), thus f (ξ )� f (η). Suppose that U is an open
subset of Y and the directed set D ⇒P ξ ∈ f−1(U), then f (D) is a directed set of Y and f (D)→
f (ξ ) ∈U, thus ∃ ξ ′ ∈D such that f (ξ ′) ∈U. That is, ξ ′ ∈D ∩ f−1(U). According to the definition
of⇒P convergence open set, f−1(U) ∈O⇒P (Vf (X)), which means that f is continuous.

The addition operation on CX is defined as follows:

∀ξ , η ∈ CX, (ξ + η)(U)= ξ (U)+ η(U), ∀U ∈O(X).

And the scalar multiplication operation on CX is defined as follows:

∀a ∈R+, ∀ξ ∈ CX, (a · ξ )(U)= aξ (U).

We now check that the two operations are both continuous, and thus, (CX,+, ·) is a monotone
determined cone.

Theorem 17. Let X be a monotone determined space. Then, (CX,+, ·) is a monotone determined
cone.

Proof. By Proposition 15, CX is a monotone determined space, and by the definition of + and
·, the two operations are monotone. According to Theorem 2 and Proposition 16, to prove the
continuity of +, we only need to check that for arbitrary fixed η=∑m

j=1 scjηcj ∈ CX (cj1 	= cj2
for different j1 and j2) and a directed set D = {ξi}i∈I ⊆ CX with D ⇒P ξ , we have D + η= {ξi +
η}i∈I⇒P ξ + η. Assume that ξ has a representation ξ =∑n

i=1 rbiηbi and there exist D1, · · · ,Dn –
with Di→ bi for 1≤ i≤ n – as in the definition of D ⇒P ξ .

For an arbitrary (d1, . . . , dn, c1, . . . , cm) ∈∏n
i=1 Di ×∏m

j=1{cj}, and ∀r′bi < rbi , s′cj < scj , i=
1, . . . , n, j= 1, . . . ,m, by the definition of D ⇒P ξ , there exists some ξ ′ ∈D such that∑n

i=1 r′biηdi ≤ ξ ′. Since+ is monotone,
n∑

i=1
r′biηdi +

m∑
j=1

s′cjηcj ≤ ξ ′ +
m∑
j=1

s′cjηcj ≤ ξ ′ + η.

Now, we prove continuity of scalar product. For an arbitrary fixed a ∈R+ and a directed set
D = {ξi}i∈I ⊆ CX with D ⇒P ξ , we claim that a ·D = {a · ξi}i∈I⇒P (a · ξ ). By the hypothesis of
D ⇒P ξ there is a representation of ξ =∑n

i=1 rbiηbi and we have D1, · · · ,Dn – with Di→ bi
for 1≤ i≤ n, for ∀ (d1, . . . , dn) ∈∏n

i=1 Di, ∀ r′bi < rbi , i= 1, . . . , n, there exists ξ ′ ∈D , such that∑n
i=1 r′biηdi ≤ ξ ′. Hence, we have

∑n
i=1 a · r′biηdi ≤ a · ξ ′.

For arbitrary ξ =∑n
i=1 rbiηbi ∈ CX and a directed set D⊆R

+ with D→ a. We claim that D ·
ξ = {d · ξ}d∈D⇒P (a · ξ ). LetDi = {bi}, i= 1, . . . , n, ∀ (b1, . . . , bn) ∈∏n

i=1 Di and ∀ r′bi < arbi , i=
1, . . . , n, we only need to find d ∈D with r′bi ≤ drbi , i= 1, . . . , n. This is possible, because for each

i= 1, . . . , n,
r′bi
rbi

< a and D→ a.

In conclusion, (CX,+, ·) is a monotone determined cone.

We now show that (CX,+, ·) is the free monotone determined cone over X. It is the main result
of this section. We begin with one useful lemma.
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Proposition 18. (Gierz et al. 2003, Proposition IV-9.18) (Splitting Lemma) For two simple valua-
tions in Vf (X), where X is a T0 space, we have ζ =∑b∈B rbηb ≤

∑
c∈C scηc = ξ if and only if there

exist {tb,c ∈ [0,+∞) : b ∈ B, c ∈ C} such that for each b ∈ B, c ∈ C,∑
c∈C

tb,c = rb,
∑
b∈B

tb,c ≤ sc

and tb,c 	= 0 implies b≤ c.

Theorem 19. Let X be a monotone determined space. Then (CX,+, ·) is the monotone determined
probabilistic powerspace over X, that is, endowed with topology O⇒P (Vf (X)), (CX,+, ·)∼= PD(X).

Proof. Define the map i : X→ CX as follows: ∀x ∈ X, i(x)= ηx. By Lemma 10, i is injective. We
now prove the continuity of i. It is evident that if x≤ y ∈ X then ∀U ∈O(X), x ∈U =⇒ y ∈U,
that is, ηx ≤ ηy. Suppose that D is a directed subset of X with D→ x ∈ X. Let D = {ηd : d ∈D},
then i(D)=D is a directed set in CX and D ⇒P ηx. Because, by hypothesis, D→ x, and ∀d ∈
D, ∀k< 1 : kηd ≤ ηd.

Let (Y ,�, ∗) be a monotone determined cone and f : X→ Y be a continuous map. Define f̄ :
CX→ Y as follows: ∀ξ =∑n

i=1 rbiηbi ∈ CX (supp(ξ )= {b1, · · · , bn}),

f̄ (ξ )=
n⊎
i=1

rbi ∗ f (bi).

By Lemma 10, f̄ is well-defined.
(1) f = f̄ ◦ i.
For arbitrary x ∈ X, (f̄ ◦ i)(x)= f̄ (i(x))= f̄ (ηx)= f (x).
(2) f̄ is a monotone determined cone homomorphism, that is, f̄ is continuous and for arbitrary∑n
i=1 rbiηbi , f̄ (

∑n
i=1 rbiηbi)=

⊎n
i=1 rbi ∗ f̄ (ηbi). This equation is evident since f̄ (ηbi)= f (bi), i=

1, . . . , n. So, we only need to prove that f̄ is continuous.
First, f̄ is monotone. Let ζ =∑b∈B rbηb ≤

∑
c∈C scηc = ξ . By Proposition 18, there exist {tb,c ∈

[0,+∞) : b ∈ B, c ∈ C} such that for each b ∈ B, c ∈ C,∑
c∈C

tb,c = rb,
∑
b∈B

tb,c ≤ sc

and tb,c 	= 0 implies b≤ c. From the definition of f̄ , we have

f̄ (ζ )=
⊎
b∈B

rb ∗ f (b)=
⊎
b∈B

⊎
c∈C

tb,c ∗ f (b)≤
⊎
c∈C

⊎
b∈B

tb,c ∗ f (c)≤
⊎
c∈C

sc ∗ f (c)= f̄ (ξ ).

By Proposition 16, to show the continuity of f , we need only to prove that f̄ preserves ⇒P
convergence class. Suppose that we have a directed setD = {ξi}i∈I ⊆ CX and ξ ∈ CX withD ⇒P ξ ,
then, we need to show that f̄ (D)→ f̄ (ξ ) in Y . There is a representation ξ =∑n

i=1 rbiηbi and let
D1, · · · ,Dn with Di→ bi(1≤ i≤ n) be as in the definition of D ⇒P ξ . From the continuity of
f , � and ∗, we have

E = (r′b1 ∗ f (D1))� · · · � (r′bn ∗ f (Dn))→
n⊎

i=1
rbi ∗ f (bi)= f̄ (ξ ).

Notice that E = {(r′b1 ∗ f (d1))� · · · � (r′bn ∗ f (dn)) : (d1, . . . , dn) ∈
∏n

i=1 Di, r′bi < rbi , i=
1, · · · , n} is a directed set in Y . For an arbitrary open neighborhood U of f̄ (ξ ), there exists
some (d1, . . . , dn) ∈∏n

i=1 Di and r′bi < rbi , i= 1, · · · , n such that
⊎n

i=1 r′bi ∗ f (di) ∈U. For the
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given d1, . . . , dn and r′bi < rbi , i= 1, . . . , n, again by the definition of D ⇒P ξ , there exists some
ξ ′ ∈D such that

∑n
i=1 r′biηdi ≤ ξ ′. Then f̄ (

∑n
i=1 r′biηdi)=

⊎n
i=1 r′bi ∗ f (di)≤ f̄ (ξ ′). Since U is an

upper set, then f̄ (ξ ′) is included in U. Hence, f̄ is continuous.
(3) The homomorphism f̄ is unique.
Suppose we have a monotone determined cone homomorphism g : (CX,+, ·)→ (Y ,�, ∗) such

that f = g ◦ i, then g(ηx)= f (x)= f̄ (ηx). For each ξ =∑n
i=1 rbiηbi ∈ CX,

g(ξ ) = g(rb1ηb1 + rb2ηb2 · · · + rbnηbn)
= g(rb1ηb1 )� g(rb2ηb2 )� · · · � g(rbnηbn)
= rb1 ∗ g(ηb1 )� rb2 ∗ g(ηb2 )� · · · � rbn ∗ g(ηbn)
= rb1 ∗ f (b1)� rb2 ∗ f (b2)� · · · � rbn ∗ f (bn)
= f̄ (ξ ).

Thus f̄ is unique.
In conclusion, the monotone determined cone (CX,+, ·) is the monotone determined proba-

bilistic powerspace of X, that is, PD(X)∼= (CX,+, ·).

Remark 20. A related result is from Heckmann. It was shown that Vf (X) with weak topology is
the free locally convex T0 cone over X in TOP (Heckmann 1996, Theorem 7.6). The difference
between our results is that the two topologies on Vf (X) are not the same generally.

The monotone determined probabilistic powerspace is unique up to algebraic isomorphism
and topological homemorphism, so we can directly denote the monotone determined probabilis-
tic powerspace by PD(X)= (CX,+, ·) for each monotone determined space X.

Suppose that X and Y are two monotone determined spaces and f : X→ Y is a continuous
map. Define the map PD(f ) : PD(X)→ PD(Y) as follows: ∀ξ =∑n

i=1 rbiηbi ∈ CX,

PD(f )(ξ )=
n∑

i=1
rbiηf (bi).

PD(f ) is well-defined and order preserving. It is also easy to check that, PD(f ) is a monotone
determined cone homomorphism between these two extended probabilistic powerspaces. If idX
is the identity map and g : Y→ Z is an arbitrary continuous map from Y to a monotone deter-
mined space Z, then, PD(idX)= idPD(X), PD(g ◦ f )= PD(g) ◦ PD(f ). Thus, PD :Dtop→Dscone is
a functor from Dtop toDscone. LetU :Dscone→Dtop be the forgetful functor. By Theorem 19,
we have the following result.

Corollary 21. PD is the left adjoint of the forgetful functor U, that is, Dscone is a reflective
subcategory of Dtop.

Remark 22. Let X be a c-space, is PD(X) still a c-space? We will answer this question in the last
section of this paper.

4. D-Completion and Free dcpo-cone over Any dcpo
Monotone convergence spaces (a.k.a d-spaces) form a very important class of T0 topological
spaces in domain theory. Interestingly, every T0 space has a D-completion (See Definition 25).
In this section, we will recall some notions about D-completions which are useful for our further
discussions.
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Definition 23. (Gierz et al. 2003, Definition II-3.12) Let X be a T0 space. If X with the specialization
order (X,≤ ) is a dcpo and every open set of X is Scott open in (X,≤ ), then we call X a monotone
convergence space.

A subset A of a poset P is called d-closed if for every directed subset D of A that possesses
supremum

∨
D,
∨

D is included in A. The d-closed sets form the closed sets for a topology,
called the d-topology (Keimel and Lawson 2009, Lemma 5.1). We denote the closure of A in P
with d-topology by cld(A). If cld(A) is equal to P, then we say that A is d-dense in P. A map f from
a poset P to a poset Q is called d-continuous if f is continuous under the d-topology.

Lemma 24. (Keimel and Lawson 2009, Lemma 6.3) Consider the following properties for a subset
A of a T0 space X

(1) A is a monotone convergence space.
(2) A is a sub-dcpo.
(3) A is d-closed.

Then, (1) implies (2) and (2) implies (3), and all three are equivalent if X is a monotone convergence
space.

Definition 25. (Keimel and Lawson 2009, Definition 6.5) An embedding j : X→ X̃ of a space X
with image a d-dense subset of a monotone convergence space X̃ is called a D-completion.

The following result says that D-completions are universal, and hence, they are unique up to
isomorphism.

Theorem. (Keimel and Lawson 2009, Theorem 6.7) Let j : X→ Y be a topological embedding of
a space X into a monotone convergence space Y. Let X̃= cld(j(X)) be the d-closure of j(X) in Y,
equipped with the relative topology from Y. Then k : X→ X̃, the co-restriction of j, is a universal
D-completion, that is, for every continuous map f from X to a monotone convergence space M, there
is a unique continuous map f̃ : X̃→M such that f̃ ◦ k= f .

Proposition 26. Let X be a T0 space and Xd be its D-completion. Then, O(X)∼=O(Xd).

Proof. Let f : X→ Xs be the soberification map. Since Xs is sober, it is a monotone convergence
space (Goubault-Larrecq 2013, Proposition 8.2.34), the D-completion Xd of X can be regarded as
a subspace of Xs by Theorem 4. Then, Xs is also a soberification of Xd. We conclude that O(X)∼=
O(Xd) directly.

Next we introduce the concept of Scott completion.

Definition 27. (Zhang et al. 2022, Definition 4.4) A Scott completion (Y , f ) of a space X is a Scott
space Y together with a continuous map f : X→ Y such that for any Scott space Z and continuous
map g : X→ Z, there exists a unique continuous map g̃ satisfying g = g̃ ◦ f .

Not every space has a Scott completion (see the following Example 28). An alternative argu-
ment is that the category of Scott space with continuous maps is not reflective in the category of
T0 spaces, we refer to Sheng et al. (2023, Theorem 3.6).
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Example 28. Let N be the set of natural numbers endowed with co-finite topology.
Claim: N does not have a Scott completion. To obtain a contradiction, assume that N has a Scott
completion (N̄, f ), where f is a continuous map from N to the Scott space N̄.

(1) f is injective.
For any two different numbers n andm, consider the Sierpinski space S which is the poset
{⊥,�}(⊥<�) equipped with its Scott topology. Define a continuous map g : N→ S as
follows: g(n)=⊥, g(x)=� for any x 	= n. Since (N̄, f ) is a Scott completion, there is a con-
tinuous map g̃ : N̄→ S such that g̃ ◦ f = g. It follows that g̃(f (n))= g(n)=⊥, g̃(f (m))=
g(m)=�. Hence, f (n) 	= f (m).

(2) For any two different numbers n,m of N, f (n) and f (m) are incomparable in N̄.
Without loss of generality, we assume that f (m)< f (n). By the same argument of the first
step,�= g(m)= g̃(f (m))≤ g̃(f (n))= g(n)=⊥, a contradiction.

(3) For any x ∈ N̄, there is some n ∈N such that f (n)≤ x. In other words, ↓x ∩ f (N) 	= ∅. To
obtain a contradiction, suppose there is some x0 ∈ N̄ with ↓x0 ∩ f (N)=∅. We take a con-
stant map g = λn.�: N→ S. Clearly, it is continuous. Now let us consider two continuous
maps g1, g2 : N̄→ S as follows:

g1(x)=� , ∀ x;

g2(x)=
{
�, x 	≤ x0,
⊥, x≤ x0.

It is easy to verify that g = g1 ◦ f = g2 ◦ f , which contradicts the uniqueness of g̃.

We conclude that f (N) is the set of minimal elements of N̄ from (1), (2) and (3). Notice that
every subset A of f (N) is Scott closed in N̄. Hence, f (N) with its subspace topology of N̄ is a
discrete space. It follows that f−1(A) is closed in N for any A⊆ f (X). We see at once that N is a
discrete space as well, a contradiction.

But any poset with Scott topology has a Scott completion (Keimel and Lawson 2009) and the
following result tells us that every monotone determined space has a Scott completion. Let X
be a monotone determined space. The map i : X→ 
X is defined by i(x)=↓x, where 
X is the
lattice of closed subsets of X. We denote the d-closure of i(X)= {↓x : x ∈ X} in 
X by X̃. The map
i : X→ X̃ has the universal property: For any Scott space Z and any continuous map f : X→ Z,
there is a unique Scott continuous map f̄ : X̃→ Z which is defined by f̄ (A)=∨ clσ (f (A)), such
that f = f̄ ◦ i.

Theorem 29. (Zhang et al. 2022, Theorem 4.7) Let X be a monotone determined space. Then, (X̃, i)
is a Scott completion of X, which we call the standard Scott completion.

Remark 30. Let X be a monotone determined space. The Scott completion of X is just the D-
completion of X because the D-completion of X is a Scott space. An interesting question is: the
D-completions of which kind of T0 spaces are Scott spaces.

Next, we will recall some basic properties of dcpo-cones. As far as we know, there is no
representation of free dcpo-cone over general dcpos. In this section, we will construct the free
dcpo-cone over any dcpo by using the Scott completion of a monotone determined space.
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Definition 31. (Gierz et al. 2003, Definition IV-9.20) A dcpo-cone is a dcpo C equipped with a
distinguished element 0 ∈ C, an addition + : C× C→ C which is Scott continuous, and a scalar
multiplication · :R+ × C→ C which is Scott continuous, such that the usual axioms of a vector
space hold, except for the existence of an additive inverse (in this case, one also assumes that 0 · a= 0
for any a ∈ C.)

Definition 32. Let C,D be two dcpo-cones. A map f : C→D is said to be linear if

f (r · a)= rf (a), for all r ∈R+and a ∈ C
and

f (a+ b)= f (a)+ f (b), for all a, b ∈ C.
Let Dcone denote the category of dcpo-cones with Scott continuous linear maps.

Lemma 33. (Keimel and Lawson 2012, Lemma 3.4) Let f : ∏n
i=1 Xi→ Y be separately continuous.

Then for arbitrary nonempty subsets, Ai ⊆ Xi for 1≤ i≤ n and B⊆ Y :
(1) f (

∏n
i=1 Āi)⊆ B̄ whenever f (

∏n
i=1 Ai)⊆ B;

(2) f (
∏n

i=1 Āi)= f (
∏n

i=1 Ai);
(3) f γ : ∏n

i=1 
Xi→ 
Y is separately continuous, hence Scott continuous. Here the definition
of f γ is as follows:

f γ (A1, · · · ,An)= f

( n∏
i=1

Ai

)
= {f (x1, · · · , xn) : xi ∈Ai for 1≤ i≤ n}.

Definition 34. Let X be a monotone determined cone. We denote the Scott completion of X by X̃.
For any A, B ∈ 
X, we define A⊕ B= cl{a+ b : a ∈A, b ∈ B}, r!A= {ra : a ∈A} for all r ∈R+.

Next we will verify that X̃ with these two operations is a dcpo-cone.

Lemma 35. Let X be a monotone determined cone. The Scott completion (X̃,⊕,!) is a dcpo-cone.

Proof. It is easy to see that X→ X̃ is a linear map. First, we show that ⊕: X̃× X̃→ X̃ is a well-
defined Scott continuous map. By Lemma 33(3), ⊕: 
X× 
X→ 
X is Scott continuous, hence
d-continuous. For any A ∈ X̃, we consider a map g : 
X→ 
X, g(F)=A⊕ F, ∀F ∈ 
X. Since g
is d-continuous,

∀B ∈ X̃ :A⊕ B ∈ g(cld{↓x : x ∈ X})⊆ cld({A⊕↓x : x ∈ X}).
Next we consider another map h : 
X→ 
X, h(F)= F⊕↓y for a given y ∈ X.

A⊕↓y ∈ h(X̃)= h(cld{↓x : x ∈ X})
⊆ cld({↓x⊕↓y : x ∈ X}) (h is d-continuous)
= cld({↓(x+ y) : x ∈ X})
⊆ X̃

Hence, we obtain that A⊕ B ∈ X̃.
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Second for any A, B, C ∈ 
X, obviously A⊕ B= B⊕A, A⊕↓0=A, and:

{a+ b+ c : a ∈A, b ∈ B, c ∈ C} ⊆A⊕ (B⊕ C)
= {a+ x : a ∈A, x ∈ B⊕ C}
=
⋃
a∈A
{a+ x : x ∈ B⊕ C}

⊆
⋃
a∈A

cl{a+ (b+ c) : b ∈ B, c ∈ C} (λx.a+ x : X→ X is continuous)

⊆ {a+ b+ c : a ∈A, b ∈ B, c ∈ C}
Thus, we haveA⊕ (B⊕ C)= {a+ b+ c : a ∈A, b ∈ B, c ∈ C}. For the same reason, (A⊕ B)⊕ C is
equal to {a+ b+ c : a ∈A, b ∈ B, c ∈ C}. Therefore, (A⊕ B)⊕ C=A⊕ (B⊕ C).

For any positive real number r, the map λx.rx : X→ X is a homomorphism. Hence, r!
F= {ra : a ∈ F} ∈ 
X for each F ∈ 
X. Note that the map f = λF.r! F : 
X→ 
X is an order
isomorphism under the inclusion ordering. For any A ∈ X̃,

r!A ∈ f (X̃)= f (cld{↓x : x ∈ X})
⊆ cld({f (↓x) : x ∈ X}) (f is d-continuous)
= cld{↓(rx) : x ∈ X} = X̃

Therefore, the map λA.r!A : X̃→ X̃ is well-defined and Scott continuous.
Given any non-negative real numbers r, s and A, B ∈ X̃, clearly

1!A=A, 0!A=↓0, (rs)!A= r! (s!A),
and

r! (A⊕ B)= r! {a+ b : a ∈A, b ∈ B} = {ra+ rb : a ∈A, b ∈ B} = (r!A)⊕ (r! B).
Next we show that

(r+ s)!A= (r!A)⊕ (s!A).
If A=↓x for some x ∈ X, then (r+ s)!↓x=↓(r+ s)x and (r!↓x)⊕ (s!
↓x)={ra+ sb : a≤ x, b≤ x} = ↓(r+ s)x. We set S := {C ∈ 
X : (r+ s)! C= (r! C)⊕ (s! C)}.
By the preceding argument, {↓x : x ∈ X} ⊆S . For any directed family {Ai : i ∈ I} of S ,

(r!
∨
i∈I

Ai)⊕ (s!
∨
i∈I

Ai)= (r!
⋃
i∈I

Ai)⊕ (s!
⋃
i∈I

Ai)

= r ·
⋃
i∈I

Ai ⊕ s ·
⋃
i∈I

Ai

= {ra+ sb : a ∈
⋃
i∈I

Ai, b ∈
⋃
i∈I

Ai} (By Lemma 33(2))

⊆
⋃
i∈I

(r!Ai)⊕ (s!Ai)

=
⋃
i∈I

(r+ s)!Ai (Ai ∈S , ∀i ∈ I)

= {(r+ s)a : a ∈
⋃
i∈I

Ai}

= (r+ s)!
⋃
i∈I

Ai = (r+ s)!
∨
i∈I

Ai
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It is easy to see that

(r+ s)!
∨
i∈I

Ai ⊆ (r!
∨
i∈I

Ai)⊕ (s!
∨
i∈I

Ai).

It follows that
∨

i∈I Ai ∈S . Hence, we have A ∈ X̃⊆S .
Finally, for any fixed A ∈ X̃, g = λx.x!A : R+→ X̃ is Scott continuous. Since λx.xa : R+→ X

is continuous for each a ∈ X, then g is monotone. Given any bounded directed set {xi : i ∈ I} ⊆
R
+, (

∨↑
i∈I xi)!A= {(∨↑

i∈I xi)a : a ∈A} = {
∨↑

i∈I xia : a ∈A} ⊆
⋃↑

i∈I xi !A=∨↑
i∈I (xi !A). It

is easily seen that
∨↑

i∈I (xi !A)⊆ (
∨↑

i∈I xi)!A. We conclude that
∨↑

i∈I (xi !A)= (
∨↑

i∈I xi)!
A. Therefore (X̃,⊕,!) is a dcpo-cone.

Next we give the construction of free dcpo-cone over any dcpo by using the D-completions. It
is one of the main results of this paper.

Theorem 36. Let D be a dcpo. The standard Scott completion
(
(D,⊕,!), i) of PD(�D) is the free

dcpo-cone, that is, given any dcpo-cone E and any Scott continuous map f : D→E, if we assign
ξ = i ◦ η′ : D→D, where ∀d ∈D : η′(d)= ηd. Then, there is a unique Scott continuous linear map
f̄ : D→E such that f̄ ◦ ξ = f .

D PD(�D) D

E

f

η′

f̂

i

f̄

Proof. Since E is a dcpo-cone, it is also a monotone determined cone with respect to Scott topol-
ogy. Because PD(�D) is the free monotone determined cone over �D, there exists a unique
continuous linear map f̂ : PD(�D)→E such that f̂ ◦ η′ = f . By a similar argument, there is a
unique continuous map f̄ : D→E with f̄ ◦ i= f̂ . We claim that f̄ is also a linear map between
D and E. For any element F ∈D, f̄ (F)=∨ f̂ (F). Given any λ ∈R+, f̄ (λ! F)=∨ f̂ (λ! F)=∨

λ! f̂ (F)=∨ (λf̂ (F))= λ ·∨ (f̂ (F))= λ · f̄ (F). For any A, B ∈F , we calculate

f̄ (A⊕ B)=
∨

f̂ (A⊕ B)

=
∨

f̂ (cl{a+ b : a ∈A, b ∈ B})
=
∨

f̂ ({a+ b : a ∈A, b ∈ B}) (f̂ is continuous)

=
∨

f̂ (A)+ f̂ (B)

=
∨

cl(f̂ (A))+ cl(f̂ (B)) (By Lemma 33(2))

=
∨

f̂ (A)+
∨

f̂ (B)

= f̄ (A)+ f̄ (B).

Suppose that there is another Scott continuous linear map g : D→E such that g ◦ ξ = f . Set S=
{x ∈D : f̄ (x)= g(x)}. Clearly, S is closed under addition and scalar multiplication. Because f̄ and
g are Scott continuous, S is also a sub-dcpo ofD. It is easy to see that for any d ∈D, ξ (d) ∈ S. Since
i preserves multiplication, i(r · ηd)= r! (i ◦ η′(d))= r! ξ (d) ∈ S. By the additivity of i, i(a) ∈ S
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for any a ∈ PD(�D). Hence, S is equal toD because the image of i is d-dense inD. Consequently
f̄ = g.

Remark 37. By the above argument, we have actually shown that the standard Scott-completion
functor : Dscone→Dcone is the left adjoint of the forgetful functor. Jia andMislove (2022) have
considered the D-completion of Vf (X) with the weak topology and dcpo completion of the poset
Vf (X), which are different from our construction due to the different topology on Vf (X).

5. Valuation Power domain and Free dcpo-cone
A well-known result in probabilistic power domain theory is that the space of continuous valua-
tions over�D is the free dcpo-cone of�D ifD is a continuous domain (Gierz et al. 2003, Theorem
IV-9.24). But it is unknown whether this result still holds for the case of general dcpos. In this sec-
tion, we will discuss this problem and build some relationships between the space of valuations
and the free dcpo-cones for more general dcpos instead of continuous ones.

In the following, we introduce some notations. Let F(D) denote the free dcpo-cone over D
if D is a dcpo. For a topological space X, the valuation power domain (also called the extended
probabilistic power domain) V (X) of X is the set of all continuous valuations on O(X) with the
pointwise order, sometimes called the stochastic order: μ≤ ν iff μ(U)≤ ν(U) for all open sets U.

Theorem 38. (Gierz et al. 2003, Theorem IV-9.24) Given any dcpo-cone C and a continuous map
f : X→ C, where X is a domain equipped with the Scott topology, there exists a unique continuous
linear map f ∗ : V (X)→ C such that f ∗ηX = f , here ηX(x)= ηx, ∀x ∈ X.

Theorem 39. Let D be a domain. The extension map η̂ : PD(�D)→ V (D) is a D-completion map.
The topology on PD(�D) is the subspace topology induced by the Scott topology on V (D).

Proof. By Theorem 38 (V (D), η) is the free dcpo-cone over continuous dcpo D. Applying
Theorem 36 to this case, the map η̄ : D → V (D) is an isomorphism between d-cones.

D PD(�D) D

V (D)

η

η′

η̂

i

η̄

Clearly, the map η̄ : �(D)→�(V (D)) is also a topological isomorphism. Notice that
i : PD(�D)→D is a D-completion map. It follows that η̂ : PD(�D)→ V (D) is a D-completion
map. Hence, the topology of PD(�D) is the subspace topology induced by the Scott topology on
V (D).

Corollary 40. Let X be a c-space. The powerspace PD(X) is also a c-space.

Proof. Xd is a c-space by Propositions 6 and 26. Hence, Xd with specialization order is a domain.
Using the universal properties of D-completion on monotone determined spaces and V on
domains, V (Xd) is the free dcpo-cone over X. Similar arguments tell us that PdD(X) is also the free
dcpo-cone over X. Since V (Xd) is a continuous dcpo, then PdD(X)∼= V (Xd) is a c-space. Again by
Propositions 6 and 26, we have that PD(X) is also a c-space.

Proposition 41. Let X be a topological space. Vp(X) (the set of point-continuous valuations, see
Definition 8) with the usual addition and scalar multiplication is a dcpo-cone.
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Proof. It is easy to see that Vp(X) is a dcpo with the pointwise order and the supremum of
a directed family {μi : i ∈ I} of point-continuous valuations is μ= λU.

∨↑
i∈I μi(U) for any U ∈

O(X).
We first show that Vp(X) is closed under addition. Given any two point-continuous valua-

tions μ1,μ2, for any r ∈ R̄+ and U ∈O(X), assume that μ1(U)+μ2(U)> r. If one of μ1(U) and
μ2(U) is equal to 0, without loss of generality we say μ1(U)= 0, then μ2(U)> r. Since μ is point-
continuous, there is a finite subset F of U such that μ2(V)> r for any open set V ⊇ F. It follows
that μ1(V)+μ2(V)> r for any open set V ⊇ F. Another case is that neither of μ1(U) nor μ2(U)
is equal to 0. Take a positive real number ε such that ε < μ1(U), ε < μ2(U),μ1(U)− ε +μ2(U)−
ε > r. By the point continuity ofμi (i=1,2), there is a finite set Fi ⊆U satisfyingμi(V)> μi(U)− ε

for any open set V ⊇ Fi. Let F be the union of F1 and F2, clearly μ1(V)+μ2(V)> r for any open
set V ⊇ F. We conclude that μ1 +μ2 ∈ Vp(X).

It is easily seen that Vp(X) is closed under scalar multiplication. It is a routine to check that
· : R+ × Vp(X)→ Vp(X) and+: Vp(X)× Vp(X)→ Vp(X) are Scott continuous. Hence, Vp(X) is a
dcpo-cone.

Example 42. Let D be the Smyth power domain (Q(R�)) of the Sorgenfrey line R�. By the result
of Goubault and Jia (2021, Theorem 39), the inclusion map j : Vp(D)→ V (D) is not surjective.
We claim that (V (D), η) is not the free dcpo-cone over D. Let (F(D), ξ ) be the free dcpo-cone
overD and η1 the co-restriction of η : D→ V (D) on Vp(D). Obviously η= j ◦ η1. By the universal
property of F(D), there is a unique Scott continuous linear map f with η1 = f ◦ ξ . Let g denote the
map j ◦ f , then g ◦ ξ = (j ◦ f ) ◦ ξ = j ◦ (f ◦ ξ )= j ◦ η1 = η. Clearly g is a Scott continuous linear
map but not surjective. Hence, (V (D), η) is not a free dcpo-cone over D.

D F(D)

Vp(D) V (D)

η1

ξ

f
g

j

Remark 43. In the future, we plan to discuss the relations between the free dcpo-cone over a
general (quasicontinuous) dcpo D and the space of minimal valuations over D (Goubault and Jia
2021).

Acknowledgements. We thank the anonymous referee for improving the presentation of the paper, and we would like to
thank Chen Yu for patient and helpful discussions. This work was supported by NSF of China (Nos. 12001385, 12231007,
11871353) and “the Fundamental Research Funds for the Central Universities” No. 2021SCU12108.

References
Abramsky, S. and Jung, A. (1994). Domain theory. In: Abramsky, S., Gabbay, D. M. and Maibaum, T. S. E. (eds.) Semantic

Structures, Handbook of Logic in Computer Science, vol. 3, Clarendon Press, 1–168.
Battenfeld, I. and Schöder, M. (2015). Observationally-induced lower and upper powerspace constructions. Journal of Logical

and Algebraic Methods in Programming 84 668–682.
Erné, M. (2009). Infinite distributive laws versus local connectedness and compactness properties. Topology and its

Applications 156 2054–2069.
Escrig, D. F. (1986). Some probabilistic powerdomains in the category SFP. In: STACS 86, Lecture notes in Computer Science,

vol. 210, 49–59.
Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M. and Scott, D. S. (2003). Continuous Lattices and Domains,

Cambridge, Cambridge University Press.
Goubault-Larrecq, J. (2013). Non-Hausdorff Topology and Domain Theory: Selected Topics in Point-Set Topology, Cambridge,

Cambridge University Press.

https://doi.org/10.1017/S0960129523000427 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000427


Mathematical Structures in Computer Science 79

Goubault-Larrecq, J. and Jia, X. (2021). Separating minimal valuations, point-continuous valuations, and continuous
valuations.Mathematical Structures in Computer Science 31 (6) 614–632.

Heckmann, R. (1996). Spaces of valuations. In: Andima, S., Flagg, R. C., Itzkowitz, G., Misra, P., Kong, Y. and Kopperman,
R. (eds.) Papers on General Topology and Applications: Eleventh Summer Conference at the University of Southern Maine,
Annals of the New York Academy of Sciences, vol. 806, 174–200.

Jia, X. and Mislove, M. (2022). Completing simple valuations in K-categories. Topology and its Applications 318 108192.
Jones, C. (1990). Probabilistic Non-Determinism. Phd thesis, University of Edinburgh.
Jones, C. and Gordon, P. (1989). A probabilistic powerdomain of evaluations. In: Proceedings of the 4th Annual Symposium

on Logic in Computer Science, IEEE Computer Society.
Keimel, K. (2008). Topological cones: functional analysis in a T0-setting. Semigroup Forum 77 (1) 109–142.
Keimel, K and Lawson, J. (2009). D-completions and the d-topology. Annals of Pure and Applied Logic 159 292–306.
Keimel, K. and Lawson, J. (2012). Extending algebraic operations to D-completions. Theoretical Computer Science 430 73–87.
Kirch, O. (1993). Bereiche und Bewertungen. Master’s thesis, Technische Hochschule Darmstadt.
MacLane, S. (1971). Categories for the Working Mathematician, New York, Springer-Verlag.
Saheb-Djahromi, N. (1980). CPO’s of measures for nondeterminism. Theoretical Computer Science 12 (1) 19–37.
Sheng, C., Xi, X. and Zhao, D. (2023) The reflectivity of some categories of T0 spaces in domain the-

ory. To appear in Rocky Mountain Journal of Mathematics. https://projecteuclid.org/journals/rmjm/
rocky-mountain-journal-of-mathematics/DownloadAcceptedPapers/230116-Shen.pdf

Tix, R. (1995) Stetige Bewertungen auf topologischen Räumen. Master’s thesis, Technische Hochschule Darmstadt.
Tix, R., Keimel, K. and Plotkin, G. (2009). Semantic domains for combining probability and non-determinism. Electronic

Notes in Theoretical Computer Science 222 3–99.
Yu, Y. and Kou, H. (2015). Directed spaces defined through T0 spaces with specialization order. Journal of Sichuan University

(Natural Science Edition) 52 (2) 217–222. http://dx.doi.org/10.3969/j.issn.0490-6756.2015.02.001.
Zhang, Z., Shi, F. and Li, Q. (2022). Continuity and Directed Completion of Topological Spaces. Order 39 (3) 407–420.

Cite this article: Chen Y, Kou H, Lyu Z and Xie X (2024). A construction of free dcpo-cones. Mathematical Structures in
Computer Science 34, 63–79. https://doi.org/10.1017/S0960129523000427

https://doi.org/10.1017/S0960129523000427 Published online by Cambridge University Press

https://projecteuclid.org/journals/rmjm/rocky-mountain-journal-of-mathematics/DownloadAcceptedPapers/230116-Shen.pdf
https://projecteuclid.org/journals/rmjm/rocky-mountain-journal-of-mathematics/DownloadAcceptedPapers/230116-Shen.pdf
http://dx.doi.org/10.3969/j.issn.0490-6756.2015.02.001
https://doi.org/10.1017/S0960129523000427
https://doi.org/10.1017/S0960129523000427

	A construction of free dcpo-cones
	Introduction
	Preliminaries
	The Monotone Determined Probabilistic Powerspaces
	D-Completion and Free dcpo-cone over Any dcpo
	Valuation Power domain and Free dcpo-cone


