A NOTE ON SUMS OF PRIMES

BY
ANDREW GRANVILLE

Abstract

Under the assumption of the prime k-tuplets conjecture we show that it is possible to construct an infinite sequence of integers, such that the average of any two is prime.

Recently Pomerance, Sárközy and Stewart [2] constructed sets of integers A and B for which every element of $A+B$ is prime; and a set of odd integers A for which $\frac{1}{2}\left(a+a^{\prime}\right)$ is prime for any $a \neq a^{\prime}$ in A. These sets were chosen from $\{1,2, \ldots, N\}$ so as to make them as large as possible. A natural question that arises is whether we can construct infinite sets with these properties, and we do this here under the assumption of Hardy and Littlewood's
PRIME k-TUPLETS CONJECTURE. Suppose that $a_{1}, a_{2}, \ldots, a_{k}, b_{1}, b_{2}, \ldots, b_{k}$ are integers such that each $\left(a_{j}, b_{j}\right)=1$ and, for each prime $p \leq k$, there exists an integer x for which none of $a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ are divisible by p. Then there are arbitrarily large integers x for which each of $a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}$ is prime.
Actually we will prove a considerable (though technical) generalization of the above questions:

THEOREM. Let $c_{1}, c_{2}, \ldots, c_{N}$ be given positive integers and suppose that the prime k tuplets conjecture is true. We can construct infinite sets $A_{1}, A_{2}, \ldots, A_{N}$ of distinct odd prime numbers such that every element of the set $\frac{1}{d}\left\{c_{1} A_{1}+\ldots+c_{N} A_{N}\right\}$ is prime, where $g=\operatorname{gcd}\left(c_{1}, c_{2}, \ldots, c_{N}\right)$ and $d=\operatorname{gcd}\left(2 g, c_{1}+c_{2}+\ldots+c_{N}\right)$.
REMARK: The set $\left\{c_{1} A_{1}+\ldots+c_{N} A_{N}\right\}$ is defined to be the set whose elements are the sum of any c_{1} elements of A_{1}, any c_{2} elements of A_{2}, \ldots, and any c_{N} elements of A_{N}. Note that the element $c_{1} a_{1}+\ldots+c_{N} a_{N}$ of $c_{1} A_{1}+\ldots+c_{N} A_{N}$ must be divisible by d.
By taking $N=2, c_{1}=1, c_{2}=2, A=A_{1}$ and $B=\left\{2 a: a \in A_{2}\right\}$ in the Theorem above, we have constructed infinite sets of integers A and B for which every element of $A+B$ is prime. By taking $N=1$ and $c_{1}=2$ we have constructed an infinite set of integers A for which $\frac{1}{2}\left(a+a^{\prime}\right)$ is prime for any $a, a^{\prime} \in A$.
Before the Theorem we prove
LEmma. For any given $B>0$ we can find, under the same hypothesis as in the Theorem, distinct primes a_{1}, \ldots, a_{N}, each greater than B, such that $\frac{1}{d}\left(c_{1} a_{1}+\ldots+c_{N} a_{N}\right)$ is prime.

Proof. Without loss of generality we may assume that $g=1$. Let D be the product of the odd primes dividing $c_{1} c_{2} \ldots c_{N}$. We shall choose integers r_{1}, \ldots, r_{N} which satisfy the following congruences: $r_{i} \equiv 1(\bmod p)$ for each prime $p=q$ dividing D, and also
for $p=4$ and $q=2$, for each i, unless
p divides $c_{1}+c_{2}+\ldots+c_{N}$ and i is the smallest index for which q does not divide c_{i}, in which case we take $r_{i} \equiv-1(\bmod p)$. Such integers exist because of the Chinese Remainder Theorem.
We now choose a_{2}, \ldots, a_{N} to be distinct primes, greater than B, with each $a_{i} \equiv$ $r_{i}(\bmod 4 D)$, which is certainly possible by Dirichlet's Theorem for primes in arithmetic progressions. We are thus left with having to find an arbitrarily large integer x such that both $a_{1}=4 D x+r_{1}$ and $2 D c_{0} x+e$ are prime, where $c_{0}=2 c_{1} / d$ and $e=\left(c_{1} r_{1}+c_{2} a_{2}+\ldots+c_{N} a_{N}\right) / d$. However, by the choice of the r_{i} 's, we know that both r_{1} and e are coprime with $2 D c_{0}$ and so, by the prime k-tuplets conjecture, arbitrarily large such x exist.
Proof of the Theorem: By construction. The first elements of each set are given by taking $B=e^{c_{1}+c_{2}+\ldots+c_{N}}$ in the Lemma. We then continue to construct the sets by adding one new prime to each set in turn, starting $A_{1}, A_{2}, \ldots, A_{N}, A_{1}, \ldots$ etc.
We now show how to select a suitable prime p to add to the set F_{j}, once we have already constructed the subsets $F_{1}, F_{2}, \ldots F_{N}$ of $A_{1}, A_{2}, \ldots, A_{N}$ in this way:
Suppose that q was the last prime added to F_{j} and let m be the product of the primes $<q / 2$. We shall be choosing p of the form $p=q+m x$ for some sufficiently large choice of x, so that p is larger than any prime previously chosen and also larger than $3 c_{j} \prod_{i=1}^{n}\left(a_{i}+1\right)^{c_{i}}$, where a_{i} is the cardinality of F_{i}.

Let $G_{j}=F_{j} \cup\{p\}$ and $G_{i}=F_{i}$ otherwise. An element of $\frac{1}{d}\left\{c_{1} G_{1}+\ldots+c_{N} G_{N}\right\}$ that contains p in its sum can be seen to be equal to an element of $\frac{1}{d}\left\{c_{1} F_{1}+\ldots+c_{N} F_{N}\right\}$ that contains q in its sum plus some integer multiple of $m x / d$: Therefore it can be written in the form

$$
\begin{equation*}
r+t m x / d \tag{*}
\end{equation*}
$$

for some t in the range $1 \leq t \leq c_{j}$, where r is a prime, with $r>q / 2$. By definition $(r, t m / d)=1$, and so each such integer $(*)$ is free of prime factors less than $q / 2$.

There are $k-1 \leq c_{j} \prod_{i=1}^{n} a_{i}^{c_{i}}(<q / 3)$ such elements (*), and none of them is divisible by any prime $\leq k$ when we take $x=0$. Therefore, by the prime k-tuplets conjecture, there are infinitely many integers x such that $q+m x$ and all of the integers $\left(^{*}\right)$ are prime. Hence, by choosing a sufficiently large such integer x, we can ensure that p is a suitable element to be added to F_{j}.

REFERENCES

1. G. H. Hardy, J. E. Littlewood, Some problems of Partitio Numerorum III: On the expression of a number as a sum of primes, Acta Math. 44 (1922) 1-70.
2. C. Pomerance, A. Sárközy, C. L. Stewart, On divisors of sums of integers III, Pacific J. Math. 133 (1988) 363-379.

Department of Mathematics
University of Toronto
Toronto, Ontario M5S IAI

Current address:

School of Mathematics
Institute for Advanced Study
Princeton, New Jersey 08540,
U. S. A.

