A NOTE ON SUMS OF PRIMES

ΒY

ANDREW GRANVILLE

ABSTRACT. Under the assumption of the prime *k*-tuplets conjecture we show that it is possible to construct an infinite sequence of integers, such that the average of any two is prime.

Recently Pomerance, Sárközy and Stewart [2] constructed sets of integers A and B for which every element of A + B is prime; and a set of odd integers A for which $\frac{1}{2}(a + a')$ is prime for any $a \neq a'$ in A. These sets were chosen from $\{1, 2, ..., N\}$ so as to make them as large as possible. A natural question that arises is whether we can construct *infinite* sets with these properties, and we do this here under the assumption of Hardy and Littlewood's

PRIME k-TUPLETS CONJECTURE. Suppose that $a_1, a_2, ..., a_k, b_1, b_2, ..., b_k$ are integers such that each $(a_j, b_j) = 1$ and, for each prime $p \le k$, there exists an integer x for which none of $a_1x+b_1, ..., a_kx+b_k$ are divisible by p. Then there are arbitrarily large integers x for which each of $a_1x + b_1, ..., a_kx + b_k$ is prime.

Actually we will prove a considerable (though technical) generalization of the above questions:

THEOREM. Let $c_1, c_2, ..., c_N$ be given positive integers and suppose that the prime ktuplets conjecture is true. We can construct infinite sets $A_1, A_2, ..., A_N$ of distinct odd prime numbers such that every element of the set $\frac{1}{d} \{c_1A_1 + ... + c_NA_N\}$ is prime, where $g = gcd(c_1, c_2, ..., c_N)$ and $d = gcd(2g, c_1 + c_2 + ... + c_N)$.

REMARK: The set $\{c_1A_1 + \ldots + c_NA_N\}$ is defined to be the set whose elements are the sum of any c_1 elements of A_1 , any c_2 elements of A_2 , ..., and any c_N elements of A_N . Note that the element $c_1a_1 + \ldots + c_Na_N$ of $c_1A_1 + \ldots + c_NA_N$ must be divisible by d.

By taking N = 2, $c_1 = 1$, $c_2 = 2$, $A = A_1$ and $B = \{2a : a \in A_2\}$ in the Theorem above, we have constructed infinite sets of integers A and B for which every element of A + B is prime. By taking N = 1 and $c_1 = 2$ we have constructed an infinite set of integers A for which $\frac{1}{2}(a + a')$ is prime for any $a, a' \in A$.

Before the Theorem we prove

LEMMA. For any given B > 0 we can find, under the same hypothesis as in the Theorem, distinct primes a_1, \ldots, a_N , each greater than B, such that $\frac{1}{d}(c_1a_1 + \ldots + c_Na_N)$ is prime.

PROOF. Without loss of generality we may assume that g = 1. Let D be the product of the odd primes dividing $c_1c_2...c_N$. We shall choose integers $r_1,...,r_N$ which satisfy the following congruences: $r_i \equiv 1 \pmod{p}$ for each prime p = q dividing D, and also

452

Received February 16, 1990.

AMS subject classification: 10J15.

⁽c)Canadian Mathematical Society 1990.

for p = 4 and q = 2, for each *i*, *unless*

p divides $c_1 + c_2 + \ldots + c_N$ and i is the smallest index for which q does not divide c_i , in which case we take $r_i \equiv -1 \pmod{p}$. Such integers exist because of the Chinese Remainder Theorem.

We now choose a_2, \ldots, a_N to be distinct primes, greater than *B*, with each $a_i \equiv r_i \pmod{4D}$, which is certainly possible by Dirichlet's Theorem for primes in arithmetic progressions. We are thus left with having to find an arbitrarily large integer *x* such that both $a_1 = 4Dx + r_1$ and $2Dc_0x + e$ are prime, where $c_0 = 2c_1/d$ and $e = (c_1r_1 + c_2a_2 + \ldots + c_Na_N)/d$. However, by the choice of the r_i 's, we know that both r_1 and e are coprime with $2Dc_0$ and so, by the prime *k*-tuplets conjecture, arbitrarily large such *x* exist.

PROOF OF THE THEOREM: By construction. The first elements of each set are given by taking $B = e^{c_1+c_2+\ldots+c_N}$ in the Lemma. We then continue to construct the sets by adding one new prime to each set in turn, starting $A_1, A_2, \ldots, A_N, A_1, \ldots$ etc.

We now show how to select a suitable prime p to add to the set F_j , once we have already constructed the subsets F_1, F_2, \ldots, F_N of A_1, A_2, \ldots, A_N in this way:

Suppose that q was the last prime added to F_j and let m be the product of the primes $\langle q/2 \rangle$. We shall be choosing p of the form p = q + mx for some sufficiently large choice of x, so that p is larger than any prime previously chosen and also larger than $3c_i \prod_{i=1}^{n} (a_i + 1)^{c_i}$, where a_i is the cardinality of F_i .

Let $G_j = F_j \cup \{p\}$ and $G_i = F_i$ otherwise. An element of $\frac{1}{d} \{c_1G_1 + \ldots + c_NG_N\}$ that contains p in its sum can be seen to be equal to an element of $\frac{1}{d} \{c_1F_1 + \ldots + c_NF_N\}$ that contains q in its sum plus some integer multiple of mx/d: Therefore it can be written in the form

(*)
$$r + tmx/d$$

for some t in the range $1 \le t \le c_j$, where r is a prime, with r > q/2. By definition (r, tm/d) = 1, and so each such integer (*) is free of prime factors less than q/2.

There are $k-1 \leq c_j \prod_{i=1}^n a_i^{c_i} (\langle q/3)$ such elements (*), and none of them is divisible by any prime $\leq k$ when we take x = 0. Therefore, by the prime *k*-tuplets conjecture, there are infinitely many integers *x* such that q + mx and all of the integers (*) are prime. Hence, by choosing a sufficiently large such integer *x*, we can ensure that *p* is a suitable element to be added to F_j .

ANDREW GRANVILLE

REFERENCES

1. G. H. Hardy, J. E. Littlewood, Some problems of Partitio Numerorum III: On the expression of a number as a sum of primes, Acta Math. 44 (1922) 1–70.

2. C. Pomerance, A. Sárközy, C. L. Stewart, On divisors of sums of integers III, Pacific J. Math. 133 (1988) 363-379.

Department of Mathematics University of Toronto Toronto, Ontario M5S 1A1

Current address:

School of Mathematics Institute for Advanced Study Princeton, New Jersey 08540, U. S. A.

454