J. Austral. Math. Soc. (Series A) 47 (1989), 382-390

ON THE CONSTRUCTION OF CONVERGENT ITERATIVE SEQUENCES OF POLYNOMIALS

QIU WEIYUAN

(Received 24 December 1987; revised 11 July 1988)

Communicated by R. O. Vyborny

Abstract

We answer two conjectures suggested by Zalman Rubinstein. We prove his Conjecture 1, that is, we construct convergent iterative sequences for $f_m^{-1}(z)$ with an arbitrary initial point, where $f_m(z) = z + z^m$ with $m \ge 2$. We also show by several counterexamples that Rubinstein's Conjecture 2 is generally false.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 30 D 05.

1. Introduction

Zalman Rubinstein constructed convergent iterative sequences for the polynomials $f(z) = z + z^m$, $m \ge 2$, with initial point in the lemniscate $\{z | | f'(z) | \le 1\}$ by variational methods. His main results showed that for every point $z_0 \in \{z | | f'(z) | \le 1\}$, the iterative sequence $z_{n+1} = f(z_n)$, $n = 0, 1, \ldots$, converges to 0 as $n \to \infty$. In the particular case m = 2, convergent iterative sequences were constructed also for $f^{-1}(z)$ with an arbitrary initial point. For the case m > 2, and more generally, for polynomials with positive real coefficients, the following two conjectures were mentioned in [1].

CONJECTURE 1. Let $f(z) = z + z^m$, $m \ge 2$. There exists a determination of $f^{-1}(z)$ such that for every $z_0 \in \mathbb{C}$ the sequence $z_n = f^{-1}(z_{n-1})$ tends to zero as $n \to \infty$.

This work was supported by the Science Fund of the Chinese Academy of Science. © 1989 Australian Mathematical Society 0263-6115/89 \$A2.00 + 0.00

CONJECTURE 2. Let $f(z) = z + a_2 z^2 + \cdots + a_m z^m$ be of degree $m \ge 2$, and assume that $a_k \ge 0$ for all k. Then for every z_0 such that $|f'(z_0)| \le 1$, the sequence $z_{n+1} = f(z_n)$ converges.

In this paper, we will discuss the above two problems. We will show that Conjecture 1 is true, while Conjecture 2 is generally false, by way of several counterexamples.

2. Definitions and lemmas

We need some results of the Fatou and Julia theory of iteration ([3], [4] and [5]; also see [2]). Let f(z) be a polynomial. Denote $f^n = f \circ f \circ \cdots \circ f$ as the *n*th order iteration of f. The Fatou set F of f is the maximal open set in which $\{f^n\}$ is a normal family. The Julia set J of f is the complement of F. The point z is called an *n*th order periodic point if $f^n(z) = z$ and $f^k(z) \neq z$ for all 0 < k < n. Such an *n*th order periodic point z is called attractive (repulsive or rationally indifferent respectively) if $|(f^n)'(z)| < 1$ ($|(f^n)'(z)| > 1$ or $(f^n)'(z)$ is a root of unity respectively). We also call $\{f^n(z)\}$ a forward orbit of f at z, and denote by $f^{-n}(z)$ the inverse images of f^n at z, for $n = 1, 2, \ldots$ Every branch of $f^{-n}(z)$ on a domain is denoted by $f_i^{-n}(z)$.

The following results of Fatou and Julia will be used.

(1) F is open. J is perfect and non-empty. F and J are completely invariant under f, that is, $f(F) = f^{-1}(F) = F$, etc.

(2) The Julia set coincides with the closure of the set of repulsive periodic points.

(3) Every attractive periodic point is in F and every repulsive or rational indifferent periodic point in J.

(4) If f is a polynomial, then the unbounded component $A(\infty)$ of F is exactly the set of all points whose iterative sequences tend to infinity.

(5) If z_0 is not a limit point of the forward orbit of some point $z \notin J$, then every accumulation point of $\{f^{-n}(z)\}$ belongs to J.

(6) Let $\{f_j^{-n}(z)\}_{j,n}$ be any infinite set of inverse branches which are holomorphic in a domain D, and suppose that there exists an open subset of D containing no limit points of the forward orbit of any point $z \notin J$. Then $\{f_j^{-n}(z)\}$ is normal in D and every convergent subsequence tends to a constant.

Qiu Weiyuan

Now suppose that $g(z) = z + a_m z^m + \cdots$ is a power series analytic at the origin. For $0 < \theta < \pi/2$ and sufficiently small $\rho > 0$, we define the domain

$$D(j,\theta,\rho) = \left\{ z \mid 0 < |z| < \rho, -\gamma - \frac{(2j-2)\pi}{m-1} - \frac{\pi-\theta}{m-1} \\ < \arg z < -\gamma - \frac{(2j-2)\pi}{m-1} + \frac{\pi-\theta}{m-1} \right\}$$

for j = 1, 2, ..., m - 1 and the "star domain" $D(\theta, \rho) = \bigcup_{j=1}^{m-1} D(j, \theta, \rho)$, where γ is a constant satisfying $-a_m \exp\{-i\gamma(m-1)\} > 0$.

LEMMA 1 [6, Lemma 9]. Let $g(z) = z + a_m z^m + \cdots$ be analytic at the origin. Then for given $0 < \theta < \pi/2$ and sufficiently small $\rho > 0$, we have $g(D(\theta, \rho)) \subset D(\theta, \rho)$ and the iteration $g^n(z)$ converges to zero locally uniformly in $D(\theta, \rho)$.

LEMMA 2. Let $f(z) = z + z^m$. Then $\{z|z^{m-1} \in \mathbb{R}\}$, which we abbreviate to $\{z^{m-1} \in \mathbb{R}\}$, and $\{z^{m-1} > 0\}$ are both invariant under f, and $\{z^{m-1} > 0\} \subset A(\infty)$.

PROOF. If
$$z = \rho e^{k\pi i/(m-1)} \in \{z^{m-1} \in \mathbb{R}\}, 0 \le \rho < +\infty$$
, then

$$f(z) = \rho e^{k\pi i/(m-1)} (1 \pm \rho^{m-1}) \in \{z^{m-1} \in \mathbb{R}\}.$$

If $z = \rho e^{2k\pi i/(m-1)} \in \{z^{m-1} > 0\}, 0 < \rho < +\infty$, then

$$(f(z))^{m-1} = ((\rho + \rho^m)e^{2k\pi i/(m-1)})^{m-1} = (\rho + \rho^m)^{m-1} > 0.$$

These show that $\{z^{m-1} \in \mathbb{R}\}$ and $\{z^{m-1} > 0\}$ are both invariant under f.

Because $f(z) = (|z|+|z|^m)e^{2k\pi i/(m-1)}$ for $z \in \{z^{m-1} > 0\}$, and also $|f(z)| = |z| + |z|^m \ge |z|$, we have by induction that

$$f^{n}(z) = |f^{n-1}(z)|(1+|f^{n-1}(z)|^{m-1})e^{2k\pi i/(m-1)}$$

= $f^{n-1}(z)(1+|f^{n-1}(z)|^{m-1})$
= $z\prod_{k=0}^{n-1}(1+|f^{k}(z)|^{m-1}).$

Hence

$$|f^{n}(z)| \geq |z|(1+|z|^{m-1})^{n} = \rho(1+\rho^{m-1})^{n},$$

which tends to infinity as $n \to \infty$, that is $\{z^{m-1} > 0\} \subset A(\infty)$, from Result 4 above.

LEMMA 3. Let $l_k = \{z | z = \rho e^{(2k+1)\pi i/(m-1)}, -\infty < \rho < +\infty\}, k = 1, 2, ..., m-1$, be a straight line in $\{z^{m-1} \in \mathbf{R}\}$, and let h_k be the subset of l_k ,

$$h_k = \{ z | z = \rho e^{(2k+1)\pi i/(m-1)}, \rho > \rho_0 \},\$$

where $\rho_0 = ((m-1)/m)(1/m)^{1/(m-1)}$. Then if m is even, all m branches of $f^{-1}(h_k)$ are disjoint from $\{z^{m-1} \in \mathbb{R}\}$. If m is odd, there is a branch of $f^{-1}(h_k)$:

$$\{z | z = r e^{(2k+1)\pi i/(m-1)}, -\infty < r < r_0 < -(1/m)^{1/(m-1)}\},\$$

which is contained in l_k . The other m-1 branches of $f^{-1}(h_k)$ are disjoint from $\{z^{m-1} \in \mathbf{R}\}$.

PROOF. We first prove that $f^{-1}(h_k) \cap \{z^{m-1} \in \mathbf{R}\} \subset l_k$. In fact, if $z = re^{i\theta} \in f^{-1}(h_k) \cap \{z^{m-1} \in \mathbf{R}\}$, we have $e^{i(m-1)\theta} = \pm 1$ and there is $\rho > \rho_0$ such that $z^m + z = \rho e^{(2k+1)\pi i/(m-1)}$, that is,

$$re^{i\theta}(1\pm r^{m-1})=
ho e^{(2k+1)\pi i/(m-1)}$$

Now $\rho \neq 0$ implies $r \neq 0$ and $(1 \pm r^{m-1}) \neq 0$. Thus, the above equality shows that $z = re^{i\theta}$ and $f(z) = \rho e^{(2k+1)\pi i/(m-1)}$ lie on the same straight line l_k .

However, if $z = re^{(2k+1)\pi i/(m-1)} \in l_k$ with r real and $z \in f^{-1}(h_k)$, then we have

$$r-r^m=\rho$$
 where $\rho>\rho_0$

or

$$\varphi_{\rho}(r)=r^m-r+\rho=0.$$

It is easy to check that when *m* is even and $\rho > \rho_0$, the equation has no real root, so $f^{-1}(h_k) \cap \{z^{m-1} \in \mathbf{R}\} = \emptyset$.

If *m* is odd, there is a unique real root r_{ρ} of equation $\varphi_{\rho}(r) = 0$ and r_{ρ} belongs to the interval $(-\infty, r_1)$, where $r_1 = -(1/m)^{1/(m-1)}$. We now want to prove that the real root r_{ρ} is a one-to-one continuous function of ρ when $\rho > \rho_0$. Suppose $\rho_0 < \rho, \rho'$. Then $r_{\rho} - r_{\rho}^m = \rho$ and $r_{\rho'} - r_{\rho'}^m = \rho'$. We have

$$r_{\rho'} - r_{\rho} - (r_{\rho'}^m - r_{\rho}^m) = \rho' - \rho,$$

٥r

$$(r_{\rho'}-r_{\rho})\left(1-\sum_{k=0}^{m-1}r_{\rho'}^{k}r_{\rho}^{m-1-k}\right)=\rho'-\rho.$$

Since r_{ρ} , $r_{\rho'}$ are both less than $r_1 = -(1/m)^{1/(m-1)}$, we have that $r_{\rho'}^k r_{\rho}^{m-1-k}$ is more than 1/m for k = 0, 1, ..., m-1. This means that $\sum_{k=0}^{m-1} r_{\rho'}^k r_{\rho}^{m-1-k} > 1$ or $1 - \sum_{k=0}^{m-1} r_{\rho'}^k r_{\rho}^{m-1-k} < 0$. Hence $\rho' > \rho$ implies $r_{\rho'} < r_{\rho}$. We have thus shown that r_{ρ} is a strictly monotone function for $\rho > \rho_0$. If we fix $\rho > \rho_0$ and let ρ' be sufficiently close to ρ , we can be sure that r_{ρ} and $r_{\rho'}$ are all less than a constant $c < r_1$. Then $\sum_{k=0}^{m-1} r_{\rho'}^k r_{\rho}^{m-1-k} - 1$ will be greater than a positive constant δ (dependent only on ρ). Hence, from the equality

$$|r_{\rho'} - r_{\rho}| = \frac{|\rho' - \rho|}{\left|1 - \sum_{k=0}^{m-1} r_{\rho'}^{k} r_{\rho}^{m-1-k}\right|}$$

Qiu Weiyuan

it follows that r_{ρ} is continuous for $\rho > \rho_0$. We now know that the ray line $\{r_{\rho}e^{(2k+1)\pi i/(m-1)}|\rho > \rho_0\}$ is a branch of $f^{-1}(h_k)$ contained in $\{z|z = re^{(2k+1)\pi i/(m-1)}, -\infty < r < r_1\}$. By the monotonicity and continuity of r_{ρ} , that branch is

$$\{z | z = r e^{(2k+1)\pi i/(m-1)}, -\infty < r < r_0 < r_1\},\$$

with endpoint r_0 , the negative root of the equation $r - r^m = \rho_0$. And the other branches of $f^{-1}(h_k)$ are disjoint from $\{z^{m-1} \in \mathbf{R}\}$.

LEMMA 4. The figure of $f^{-1}(h_k)$ is symmetrical about the straight line l_k :

PROOF. Let $z_1 = re^{((2k+1)\pi/(m-1))+\theta)i} \in f^{-1}(h_k)$. We will prove that $z_2 = re^{((2k+1)\pi/(m-1))-\theta)i} \in f^{-1}(h_k)$, where r, θ are real. In fact, there is $\rho > \rho_0$ such that

$$z_1^m + z_1 = re^{(((2k+1)\pi/(m-1))+\theta)i}(1 + r^{m-1}e^{(m-1)\theta i}) = \rho e^{(2k+1)\pi i/(m-1)}.$$

That is

$$(r\cos\theta + r^m\cos m\theta) + i(r\sin\theta + r^m\sin m\theta) = \rho,$$

or

$$r\sin\theta + r^m\sin m\theta = 0.$$

Hence

$$z_2^m + z_2 = re^{((2k+1)\pi/(m-1))-\theta)i}(1 + r^m e^{-(m-1)\theta i})$$

= $((r\cos\theta + r^m\cos m\theta) - i(r\sin\theta + r^m\sin m\theta))e^{(2k+1)\pi i/(m-1)}$
= $\rho e^{(2k+1)\pi i/(m-1)} = z_1^m + z_1.$

This shows the symmetry of the figure of $f^{-1}(h_k)$.

3. Theorem and its proof

Let $f(z) = z + z^m, m \ge 2$. The critical points (singularities) of $f^{-1}(z)$ are

$$c_k = \rho_0 e^{(2k+1)\pi i/(m-1)}, \qquad k = 1, 2, \dots, m-1,$$

where $\rho_0 = ((m-1)/m)(1/m)^{1/(m-1)}$, and ∞ . Let $L = \{z | z = \rho e^{(2k+1)\pi i/(m-1)}, \rho_0 < \rho < +\infty, k = 1, 2, ..., m-1\}$. Then we can choose a single-value analytic branch of f^{-1} on the domain $\mathbb{C}\setminus \overline{L}$. We have

THEOREM. Let $f(z) = z + z^m$, $m \ge 2$. Then there exists an analytic determination of $f^{-1}(z)$ in $\mathbb{C}\setminus \overline{L}$ which satisfies $f^{-1}(0) = 0$, is continuous to

 \overline{L} one sidedly, and is such that for every $z_0 \in \mathbb{C}$ the sequence $z_n = f^{-1}(z_{n-1})$ tends to zero as $n \to \infty$.

PROOF. We choose $f^{-1}(z)$ in $\mathbb{C}\setminus\overline{L}$ that is an inverse analytic branch of f satisfying $f^{-1}(0) = 0$, and choose f^{-1} on $\overline{L} = \bigcup_{k=1}^{m-1} \overline{h}_k$ that maps h_k onto one of the inverse branches of h_k ending at $z_k = (1/m)^{1/(m-1)}e^{(2k+1)\pi i/(m-1)}$ and $f^{-1}(c_k) = z_k$ for k = 1, 2, ..., m-1. Thus $f^{-1}(z)$ is well defined on C. We have $f^{-1}(z)$ is continuous when z tends to \overline{L} from one side of \overline{h}_k . In fact, there two inverse branches of \overline{h}_k ending at z_k . By Lemma 3, they do not lie on l_k and are disjoint from $\{z^{m-1} \in \mathbb{R}\}$. By Lemma 4, they are symmetrical about l_k . so they, when z_k is added, form a curve through the point z_k which is symmetrical about l_k and separates \mathbb{C} into two regions. For k = 1, 2, ..., m-1, there are m-1 such curves separating \mathbb{C} into m regions, only one of them containing the origin. Then the region containing the origin is the image domain of $\mathbb{C}\setminus\overline{L}$ under f^{-1} as $f^{-1}(0) = 0$. Also $f^{-1}(z)$ constructed as above is continuous to \overline{L} one sidedly. Moreover, $f^{-1}(L) \cap \{z^{m-1} \in \mathbb{R}\} = \emptyset$.

Obviously, $f^{-1}(z)$ is analytic at z = 0 with an expansion

$$f^{-1}(z) = z - z^m + \cdots.$$

Let $G = \mathbb{C} \setminus \{z^{m-1} \in \mathbb{R}\}$, which is such that $G \subset \mathbb{C} \setminus \overline{L}$. By Lemma 2, $f^{-1}(G) \subset G \subset \mathbb{C} \setminus \overline{L}$. Now G is the union of 2(m-1) components G_j , $j = 1, 2, \ldots, 2(m-1)$, each G_j being a simply connected unbounded sector. Given G_j for some j, $f^{-n}(z)$ is analytic in G_j for all n > 0. Since $f^n(z)$ tends to infinity uniformly for z sufficiently large, there exists a region in G_j containing no limit points of the forward orbit of any $z \in \mathbb{C}$. By Result 6 of Fatou and Julia, $\{f^{-n}\}$ is normal in G_j and every convergent subsequence tends to a constant. By Lemma 1, with $0 < \theta < \pi/2$ and sufficiently small $\rho > 0$, $f^{-n}(z)$ tends to 0 locally uniformly in the domain $D(\theta, \rho) = \bigcup_{j=1}^{m-1} D(j, \theta, \rho)$ where

$$D(j,\theta,\rho) = \left\{ z \mid 0 < |z| < \rho, -\frac{(2j-2)\pi}{m-1} - \frac{\pi-\theta}{m-1} \\ < \arg z < -\frac{(2j-2)\pi}{m-1} + \frac{\pi-\theta}{m-1} \right\}.$$

Since the intersection between G_j and $D(\theta, \rho)$ is nonempty, every convergent subsequence of $\{f^{-n}(z)\}$ tends to zero in $D(\theta, \rho) \cap G_j$ and so tends to zero in G_j for j = 1, 2, ..., 2(m-1). This shows that $\{f^{-n}(z)\}$ tends to zero in $G = \bigcup_{i=1}^{2(m-1)} G_j$.

Next, we consider the convergence of $f^{-n}(z)$ in the set $\{z^{m-1} \in \mathbb{R}\}$. If $z \in L$, then $f^{-1}(z) \in G$ from Lemmas 3, 4 and the construction of f^{-1} .

Qiu Weiyuan

The above discussion shows that $f^{-n}(z)$ tends to zero as $n \to \infty$. If z = 0 then $f^{-n}(0) \equiv 0$ for all n > 0. We will prove that $\{z^{m-1} \in \mathbf{R}\} \setminus (L \cup \{0\}) = \{z^{m-1} > 0\} \cup \{z^{m-1} < 0\} \setminus L$ lies in the Fatou set of f.

By Lemma 2, $\{z^{m-1} > 0\} \subset A(\infty) \subset F$. Let $R = \{z^{m-1} < 0\} \setminus L = \{z|z = re^{(2k+1)\pi i/(m-1)}, 0 < r \le \rho_0, k = 1, 2, ..., m-1\}$. For $z = re^{(2k+1)\pi i/(m-1)} \in \overline{R}$, $f'(z) = 1 + mz^{m-1} = 1 - mr^{m-1}$ so |f'(z)| < 1 as $0 < r \le \rho_0$. This implies that |f'(z)| < 1 as $z \in \overline{R}$ except for z = 0. By [1, Lemma 2 and Theorem 1], we get $R \subset F$, $\overline{R} \cap J = \{0\}$ and R contains no limit points of forward orbits of points in C. Also $\{z^{m-1} > 0\} \subset A(\infty)$ contains no limit points of forward orbits. From Result 5 above the accumulation points of $\{f^{-n}(z)\}$ belong to the Julia set, for every $z \in \{z^{m-1} \in \mathbb{R}\} \setminus (L \cup \{0\})$. If $f^{-n}(z) \in \{z^{m-1} \in \mathbb{R}\} \setminus L$ for all n > 0, $f^{-n}(z) \to 0$ as $n \to \infty$ since $\overline{\{z^{m-1} \in \mathbb{R}\} \setminus L \cap J} = \{0\}$. Otherwise, there exists an integer n > 0 such that $w = f^{-n}(z) \notin \{z^{m-1} \in \mathbb{R}\} \setminus L$. But we have shown, for $w \notin \{z^{m-1} \in \mathbb{R}\} \setminus L$, that is, for $w \in G$ or $w \in L$, that $f^{-n}(w)$ tends to zero as $n \to \infty$. Hence $f^{-n}(z)$ also tends to zero as $n \to \infty$.

COROLLARY. Let $f(z) = z + z^m$, $m \ge 2$. Then for every $z_0 \in \{z \mid |f'(z)| \le 1\}$, there exists a sequence $\{z_n\}$ such that $z_{n+1} = f(z_n)$ and $z_n \to 0$, $z_{-n} \to 0$ as $n \to \infty$.

PROOF. This is a direct consequence of the above theorem and [1, Theorem 1].

4. Counterexamples

In this section we will give two examples to show that Conjecture 2 is false.

EXAMPLE 1. Let $f(z) = z(1 + az)^2$, a > 1, be a polynomial with positive real coefficients. Now $f(-1/a) = 0 \in J$ (since f(0) = 0 and f'(0) = 1 is a root of unity, from Result 3) and $-1/a \in J$ (since the Julia set is completely invariant, from Result 1). It is easy to see that f'(-1/a) = 0, so that -1/a is in D, one of the components of $\{z | |f'(z)| < 1\}$. But J is a perfect set and the repulsive periodic points of f are dense in J from Results 1 and 2. There exists at least one repulsive periodic point $p \in D$ with period not less than 2. Thus $f^n(p)$ does not converge.

Since $-1/2 \le f'(z) < 1$ when $z \in [-1/a, 0)$, we have $D \supset [-1/a, 0)$. So the origin is a boundary point of D. If we restrict the initial point to be in the component of $\{z | |f'(z)| < 1\}$ with boundary point 0, the result is also not true.

In this example, we showed that for a polynomial with positive real coefficients f(z), the set $\{z | |f'(z)| < 1\}$ may contains some points in J. The next example shows that there exists such a polynomial for which there is a region in $\{z | |f'(z)| < 1\} \cap F$ in which iterative sequences of all points are divergent.

Let $z_0 \in \mathbb{C}$ be a fixed point of polynomial f(z), and suppose that $\lambda = f'(z_0) = e^{2\pi i \omega}$. Then we have

LEMMA 5 (Siegel [7]). Let ω be an irrational. Suppose there are positive constants a and b satisfying $|\omega - (m/n)| > a/n^b$ for all integers m, n with $n \ge 1$. Then there exists a neighbourhood U of z_0 and a homeomorphism $\varphi: U \to D_r = \{\zeta | |\zeta| < r\}, \varphi(z_0) = 0$, such that $\varphi \circ f \circ \varphi^{-1}(\zeta) = e^{2\pi i \omega} \zeta$.

The set of ω satisfying the condition of Lemma 5 is dense in interval [0, 1].

We will construct a polynomial f(z) satisfying the condition of Conjecture 2, which has a fixed point z_0 different from 0 and is such that $\lambda = f'(z_0) = e^{2\pi i\omega}$, where ω satisfies the condition of Lemma 5. For $g(\zeta) = e^{2\pi i\omega}\zeta$: $D_r \to D_r$, when $\zeta_1 \in D_r$ and $\zeta_1 \neq 0$, its iterative sequence $\{\zeta_n\}, \zeta_n = g(\zeta_{n-1}) = e^{2n\pi i\omega}\zeta_1$ is dense on circle $\{|\zeta| = |\zeta_1|\}$. Thus ζ_n does not converge as $n \to \infty$, and therefore, for $z_1 = \varphi^{-1}(\zeta_1), z_1 \neq z_0, z_{n+1} = f(z_n)$ is also not convergent as $n \to \infty$. Since $|f'(z_0)| = 1$, we deduce, using the minimum principle, that there is a region V in U disjoint from z_0 such that for all $z \in V$, |f'(z)| < 1. This is all we need.

EXAMPLE 2. Choose $\omega \in [0, 1]$, satisfying the condition of Lemma 5. Let $\theta = (2 + \omega)/4$. Then $\pi < 2\pi\theta < 3\pi/2$ or $\cos 2\pi\theta < 0$. Let $r = (|e^{2\pi i\omega} - 1|/|e^{4\pi i\theta} - 1|)^{1/3}$. Let

$$f(z) = z + z^{2}(z - re^{2\pi i\theta})(z - re^{-2\pi i\theta})$$

= $z + r^{2}z^{2} - 2r\cos(2\pi\theta)z^{3} + z^{4}$.

Then f(z) is a polynomial with positive real coefficients having nonzero fixed point $z_0 = re^{2\pi i\theta}$.

$$\begin{aligned} f'(z_0) &= 1 + 2r^2 z_0 - 3r(e^{2\pi i\theta} + e^{-2\pi i\theta})z_0^2 + 4z_0^3 \\ &= 1 + r^3 e^{2\pi i\theta}(e^{4\pi i\theta} - 1). \end{aligned}$$

Since $e^{i\alpha} - 1 = |e^{i\alpha} - 1|e^{(\pi+\alpha)i/2}$ for real α ,

$$r^{3}e^{2\pi i\theta}(e^{4\pi i\theta}-1)=r^{3}e^{2\pi i\theta}|e^{4\pi i\theta}-1|e^{(4\pi\theta+\pi)i/2}.$$

when $\theta = (2 + \omega)/4$ and $r = (|e^{2\pi i\omega} - 1|/|e^{4\pi i\theta} - 1|)^{1/3}$, we get

$$f'(z_0) = 1 + |e^{2\pi i\omega} - 1|e^{(8\pi ((2+\omega)14) + \pi)i/2}$$

= 1 + |e^{2\pi i\omega} - 1|e^{(2\pi\omega + \pi)i/2} = e^{2\pi i\omega}.

390

This completes the construction of our example.

Acknowledgements

I should like to thank Fuyao Ren for considerable discussion, and the referee for his suggestions and help.

References

- [1] Zalman Rubinstein, 'A variational method for the construction of convergent iterative sequences', J. Austral. Math. Soc. Ser. A 41 (1986), 51-58.
- [2] H. Brolin, 'Invariant sets under iteration of rational functions', Ark. Mat. 6 (1965), 103-144.
- [3] P. Fatou, 'Sur les équations fonctionelles', Bull. Soc. Math. France 47 (1919), 161-271.
- [4] P. Fatou, 'Sur l'itération des fonctions transcendantes entieres', Acta Math. 47 (1926), 337-370.
- [5] G. Julia, 'Memoire sur l'itération des fonctions rationnelles', J. Math. Pures Appl. (8) 1 (1918), 47-245.
- [6] I. N. Baker, 'Permutable power series and regular iteration', J. Austral. Math. Soc. 2 (1962), 265-194.
- [7] C. Seigel, 'Iteration of analtyic functions', Ann. of Math. (2) 43 (1942), 607-612.

Institute of Mathematics Fudan University Shangai People's Republic of China