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Abstract

We answer two conjectures suggested by Zalman Rubinstein. We prove his Conjecture 1, that
is, we construct convergent iterative sequences for / „ ' ( z ) with an arbitrary initial point, where
fm(z) = z + zm with m > 2. We also show by several counterexamples that Rubinstein's
Conjecture 2 is generally false.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 30 D 05.

1. Introduction

Zalman Rubinstein constructed convergent iterative sequences for the poly-
nomials /(z) = z + zm, m>2, with initial point in the lemniscate {z\ |/'(z)|
< 1} by variational methods. His main results showed that for every point
z0 e {z\ |/ '(z)| < 1}, the iterative sequence zn+l = f(zn), n - 0,1, . . . , con-
verges to 0 as n —> oo. In the particular case m = 2, convergent iterative
sequences were constructed also for f~l{z) with an arbitrary initial point.
For the case m > 2, and more generally, for polynomials with positive real
coefficients, the following two conjectures were mentioned in [1].

CONJECTURE 1. Let f(z) = z + zm, m > 2. There exists a determination
of f~l(z) such that for every ZQ 6 C the sequence zn = f~l(zn-i) tends to
zero as n —* oo.
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CONJECTURE 2. Let f{z) = z + aiz2 -\ \-amzm be of degree m>2, and
assume that a^ > 0 for all k. Then for every ZQ such that | / '(zo)| < 1, the
sequence zn+i = f{zn) converges.

In this paper, we will discuss the above two problems. We will show that
Conjecture 1 is true, while Conjecture 2 is generally false, by way of several
counterexamples.

2. Definitions and lemmas

We need some results of the Fatou and Julia theory of iteration ([3], [4]
and [5]; also see [2]). Let f(z) be a polynomial. Denote f" — / o / o • • • of as
the /ith order iteration of / . The Fatou set F of / is the maximal open set in
which {/"} is a normal family. The Julia set J of / is the complement of F.
The point z is called an nth order periodic point i f /"(z) = z and fk(z) ^ z
for all 0 < k < n. Such an nth order periodic point z is called attractive
[repulsive or rationally indifferent respectively) if |(/")'(z)l < 1 (|(/")'(z)| > 1
or (f"Y(z) is a r o o t of unity respectively). We also call {/"(z)} a. forward
orbit of / at z, and denote by f~"(z) the inverse images of / " at z, for
n = 1,2, Every branch of f~n{z) on a domain is denoted by f~"{z).

The following results of Fatou and Julia will be used.

(1) F is open. J is perfect and non-empty. F and J are completely
invariant under / , that is, f{F) = f~l{F) = F, etc.

(2) The Julia set coincides with the closure of the set of repulsive periodic
points.

(3) Every attractive periodic point is in F and every repulsive or rational
indifferent periodic point in J.

(4) If / is a polynomial, then the unbounded component A(oo) of F is
exactly the set of all points whose iterative sequences tend to infinity.

(5) If zo is not a limit point of the forward orbit of some point z £ / ,
then every accumulation point of {f~"{z)} belongs to / .

(6) Let {f~n{z)}j<n be any infinite set of inverse branches which are holo-
morphic in a domain D, and suppose that there exists an open subset of D
containing no limit points of the forward orbit of any point z $ J. Then
{f~"{z)} is normal in D and every convergent subsequence tends to a con-
stant.
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Now suppose that g(z) = z + amzm H is a power series analytic at the
origin. For 0 < 8 < n/2 and sufficiently small p > 0, we define the domain

, „ , , (2j-2)n n-8
- 1 m — 1

< argz < —y -
-2)n n-8\
- 1 + m-1J

J~1
for j = l,2,...,m - 1 and the "star domain" D(6,p) = \JJ~{

1 D(j,6,p),
where y is a constant satisfying -am exp{-iy(m - 1)} > 0.

LEMMA 1 [6, Lemma 9]. Let g(z) = z+amzm-\— be analytic at the origin.
Then for given 0 < 6 < n/2 and sufficiently small p > 0, we have g(D(8,p)) c
D{6, p) and the iteration g"(z) converges to zero locally uniformly in D(6, p).

LEMMA 2. Let f(z) = z + zm. Then {z\zm~l e R}, which we abbreviate to
{zm~x e R}, and {zm~x > 0} are both invariant under f, and {zm~l > 0} c
,4(oo).

PROOF. If z = pekniH.m-\) € {zm-i eR},0<p< +oo, then

/(Z) = ̂ *»'"/C"-»(l ± pm~\) e {zm-l e R}

If z = ̂ 2*«i/(«-i) 6 {zm-i > o}, 0 < p < +oo, then

(/(z))1""1 = ((/> + p'")e2*:'t'/('"-1))'"-1 = (^ + ^mjw-i > o.

These show that {zm~l e R} and {zm~i > 0} are both invariant under / .
Because/(z) = (\z\+\z\m)e2kniHm-V for z e {zm~l > 0}, and also | / (z) | =

\z\ + \z\m > \z\, we have by induction that

f(Z) = \f"-\z)\{\ + |/"-l(z)|«-l

Hence

which tends to infinity as n —• oo, that is {zm~' > 0} c A(oo), from Result 4
above.

LEMMA 3. Let lk = {z\z = ^(2*+D>"7(«-i)>_00 < p < + o o } , A; = 1,2,.. . ,

m - 1 , tea straight line in {zm~l e R}, anrf to h^ be the subset of Ik,
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where po = {{m - l)//n)(l/m)1/(m~1). Then if m is even, all m branches
of f~l{hk) are disjoint from {zm~l e R}. If m is odd, there is a branch of
f~\hk):

{z\z = re
(lk+x)nil(m-x\-oo < r < rQ < -(l/m)1'^-^},

which is contained in lk. The other m - 1 branches of f~l{hk) are disjoint
from{zm-1 €R}.

PROOF. We first prove that f~x{hk) n {zm~x € R} c lk. In fact, if z =
re'e € f~l(hk) n {zm~' € R}, we have e'(m~1)e = ±1 and there is p > p0 such
that zm + z = ^(2*+i)«i/(m-i)> t h a t is>

rei6{\ ± rm~l) — ^(2*+1)»'7('"-i)<

Now p ^ 0 implies r ^ 0 and (1 ± rm~') ^ 0. Thus, the above equality shows
that z = re'" and / (z ) = ^>(2*+i)*i/(m-i) He on the same straight line lk.

However.if z = re(2fc+i)t'/(»i-i) e ^ w j t h r r e a j a n d z e f~\hk), then we
have

r - rm — p where p > po

or

It is easy to check that when w is even and p > po, the equation has no real
root, so f~l(hk) n {zm~l e R} = 0 .

If w is odd, there is a unique real root rp of equation <pp(r) = 0 and A>
belongs to the interval (-oo,r\), where r\ = -(1/m)1/*"1"^. We now want
to prove that the real root rp is a one-to-one continuous function of p when
/? > po. Suppose po < p,p'. Then rp — r™ = p and rp, - r™, = p'. We have

= P'-P>

or

k=0 J

Since rp, rp> are both less than r\ = -(l/m)x^m~x\ we have that rk
p,r^~x~k is

more than \/m for k = 0 , 1 , . . . , m - 1. This means that Y^klo rp'rp"~l~k > 1
o r 1 ~ I X K ) ' r£'r™~1~A: < 0- Hence p' > p implies Ay < rp. We have thus
shown that rp is a strictly monotone function for p > p0. If we fix p > po and
let p' be sufficiently close to p, we can be sure that rp and rp> are all less than
a constant c < r\. Then 53/T̂ o1 rp'rpn~1~k ~ 1 wiU be greater than a positive
constant 3 (dependent only on p). Hence, from the equality
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it follows that rp is continuous for p > p0. We now know that the ray
line {rpe

(-2k+i')'"^m~l')\p > po} is a branch of f~l(hk) contained in {z\z -
re{2k+i)ni/(m-i)^ _ o o < r < r , } . By the monotonicity and continuity of rp,
that branch is

{z\z = re(2k+x)nil{m-x\-<x> <r<ro< r{\,

with endpoint ro, the negative root of the equation r — rm = p0. And the
other branches of f~x{hk) are disjoint from {zm~l e R}.

LEMMA 4. The figure off~l(hk) is symmetrical about the straight line lk:

PROOF. Let zx = r<?(((2*+i)*/(m-i))+e)« e f-\hk). We will prove that z2 =
re(((2k+\)ni(m-\))-e)i e f-\hk), where r,0 are real. In fact, there is p > p0

such that

zm + Z i _ re(((2*+l)re/(m-l))+0)i^j + rm-\e(m-\)8i^ _ pe(2k+\)ni/(m-\)_

That is
(r cos 0 + rm cos md) + i(r sin 6 + rm sin m0) = p,

or

Hence

z?

( ) = 2 -)- 2,.

This shows the symmetry of the figure of f~l(hk).

3. Theorem and its proof

Let f(z) = z + zm, m>2. The critical points (singularities) of / " ' (z) are

ck =

= ( ( rcos0 + rm cosm0) - i(r sin0 + rm sinm0))e ( 2 / c + 1 ) ; t ' / ( m- ' '

whereto = {(m-l)/m)(l/m)l^m-l\ andoo. LetL = {z\z = peW+i)*i/{m-i)f

Po < p < +oo, k = 1,2,...,m - 1}. Then we can choose a single-value
analytic branch of / ~ ' on the domain C\L. We have

THEOREM. Let f{z) = z + zm, m > 2. Then there exists an analytic
determination of f~l(z) in C\L which satisfies /~ ' (0) = 0, is continuous to
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L one sidedly, and is such that for every z0 € C the sequence zn = f~x{zn-\)
tends to zero as n —> oo.

PROOF. We choose f~l(z) in C\L that is an inverse analytic branch of /
satisfying /~ '(0) = 0, and choose / " ' on Z — \J™~{

1 hk that maps hk onto
one of the inverse branches of hk ending at zk = (i//n)i/C«-i)g(2*+i)*i/(m-i)
and f~\ck) = zk for k = l,2,...,m - 1. Thus f~\z) is well defined
on C. We have f~l(z) is continuous when z tends to L from one side
of hk. In fact, there two inverse branches of hk ending at zk. By Lemma
3, they do not lie on lk and are disjoint from {zm~{ € R}. By Lemma 4,
they are symmetrical about 4 . so they, when zk is added, form a curve
through the point zk which is symmetrical about lk and separates C into two
regions. For k — 1,2,..., m - 1, there are m - 1 such curves separating C
into m regions, only one of them containing the origin. Then the region
containing the origin is the image domain of C\L under f~l as f~l{0) — 0.
Also f~\z) constructed as above is continuous to Z one sidedly. Moreover,
/ - ' ( £ ) n{zw-> G R } = 0 .

Obviously, /~ ' (z ) is analytic at z = 0 with an expansion

Let G = C\{zm~l € R}, which is such that G c C\Z. By Lemma 2,
f~l(G) C G C C\L. Now G is the union of 2(m - 1) components Gj, j —
1,2,..., 2(m -1) , each Gj being a simply connected unbounded sector. Given
Gj for some j , f~n{z) is analytic in Gj for all n > 0. Since f"(z) tends to
infinity uniformly for z sufficiently large, there exists a region in Gj containing
no limit points of the forward orbit of any z e C . By Result 6 of Fatou and
Julia, {/""} is normal in Gj and every convergent subsequence tends to a
constant. By Lemma 1, with 0 < 6 < n/2 and sufficiently small p > 0,
f~"(z) tends to 0 locally uniformly in the domain D(d, p) = (J^Ji' DU, 0,p)
where

AM - 1 m - 1

j ~ 2)n
argz < — m - \ m

n-d\
m - 1J '

Since the intersection between Gj and D(8, p) is nonempty, every convergent
subsequence of {/~"(z)} tends to zero in D(d,p) n Gj and so tends to zero
in Gj for j = 1,2,..., 2(m - 1). This shows that {f~"(z)} tends to zero in
G = \J?=Tl]Gj.

Next, we consider the convergence of f~"(z) in the set {zm~x e R}. If
z e L, then /~ ' (z ) e G from Lemmas 3, 4 and the construction of / " ' .
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The above discussion shows that f~"(z) tends to zero as n -> oo. If z = 0
then / - " (0) = 0 for all n > 0. We will prove that {zm~x e R}\(L U {0}) =
{zm~l > 0} U {z"1"1 < 0}\L lies in the Fatou set of / .

By Lemma 2, {z1"'1 > 0} c A(oo) cF.LetR = {zm~x < 0}\L = {z\z =
re(2k+\)mi(m-\)t o < r < ft), * = l , 2 , . . . , / n - l } . For z = r«(2*+1)'"'/('"-1) e £,
/ ' (z ) = l+mz™-' = 1-wr"1-1 so | / ' (z) | < 1 asO < r < ft). This implies that
| / ' (z) | < 1 as z G !R except for z = 0. By [1, Lemma 2 and Theorem 1], we get
Rc F,RnJ = {0} and R contains no limit points of forward orbits of points
in C. Also {zm~l > 0} c ^4(oo) contains no limit points of forward orbits.
From Result 5 above the accumulation points of {f~"(z)} belong to the Julia
set, for every z e {zm~l e R}\(£ U {0}). If /~"(z) e {z"1"1 e R}\L for all
n > 0, f~n(z) -> 0 as n -» oo since {zm~l e R}\L n / = {0}. Otherwise,
there exists an integer n > 0 such that w = f~"(z) £ {zm~x e R}\L. But
we have shown, for w £ {zm~l e R}\£, that is, for w e G or ID e L, that
f~"(w) tends to zero as n —> oo. Hence f~n{z) also tends to zero as n —» oo.

COROLLARY. Let f(z) = z + zm,m>2. Then for every z0 e {z| | / ' (z) | <
1}, there exists a sequence {zn} such that zn+l = f{zn) and zn —* 0, z_n -+ 0
as n —> oo.

PROOF. This is a direct consequence of the above theorem and [ 1, Theorem
1].

4. Counterexamples

In this section we will give two examples to show that Conjecture 2 is false.
EXAMPLE 1. Let / (z ) = z(l + az)2, a > 1, be a polynomial with positive

real coefficients. Now / ( - I / a ) = 0 e J (since /(0) = 0 and / '(0) = 1 is a
root of unity, from Result 3) and - I / a e / (since the Julia set is completely
invariant, from Result 1). It is easy to see tha t / ' ( - l / a ) = 0, so that - I / a is
in D, one of the components of {z\ | / ' (z) | < 1}. But / is a perfect set and
the repulsive periodic points of / are dense in J from Results 1 and 2. There
exists at least one repulsive periodic point p € D with period not less than 2.
Thus f"(p) does not converge.

Since - 1 / 2 < f'(z) < 1 when z e [ - l /a ,0) , we have D D [- l /a,0). So
the origin is a boundary point of D. If we restrict the initial point to be in
the component of {z\ | / ' (z) | < 1} with boundary point 0, the result is also
not true.

In this example, we showed that for a polynomial with positive real co-
efficients f(z), the set {z\ | / ' (z) | < 1} may contains some points in / . The
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next example shows that there exists such a polynomial for which there is a
region in {z\ | / ' (z ) | < 1} n F in which iterative sequences of all points are
divergent.

Let ZQ € C be a fixed point of polynomial f(z), and suppose that X =
f'(z0) = e2niw. Then we have

LEMMA 5 (Siegel [7]). Let co be an irrational. Suppose there are positive
constants a and b satisfying \w - (m/n)\ > a/nb for all integers m,n with
n > 1. Then there exists a neighbourhood U of ZQ and a homeomorphism
(p:U^Dr = {C\ |f | < r}, <p(z0) = 0, such that <p o / o p - ' ( f ) = *2«tof.

The set of a> satisfying the condition of Lemma 5 is dense in interval [0,1 ].
We will construct a polynomial f(z) satisfying the condition of Conjecture

2, which has a fixed point ZQ different from 0 and is such that X = f'{z0) —
e2niw, where co satisfies the condition of Lemma 5. For g(Q = e2niwC,: Dr ->
Dr, when d e Dr and fi ^ 0, its iterative sequence {£„},£„ = g(Cn-i) =
e2nmu>£x j s ( j e n s e o n c i r c i e {|f| = \^\). Thus t,n does not converge as n —> oo,
and therefore, for z\ = ^"'(Ci)»^i ¥=• zo,Zn+i — f{zn) is also not convergent
as n —* oo. Since \f'(zo)\ = 1, we deduce, using the minimum principle, that
there is a region V in U disjoint from ZQ such that for all z eV, \f'(z)\ < 1.
This is all we need.

EXAMPLE 2. Choose co e [0,1], satisfying the condition of Lemma 5.
Let B = (2 + eo)/4. Then n < 2nd < 3n/2 or coslnd < 0. Let r =

f(z) = z + z2(z - re2nie){z - re~2%ie)

= z + r2z2 - 2rcos(2nd)zi + z\

Then f(z) is a polynomial with positive real coefficients having nonzero fixed
point z0 = re2nie.

f'(z0) = 1 + 2r2z0 - 3r(e2nie + e-2ni6)z\ + 4z0
3

= i+r3e2*i0(e4nie - 1).

Since eia - 1 = \eia - l\e^+a^2 for real a,

rle2ni8re4n<8 _ n - rie2nie^AniB _ j |e(4jr©+jr)//2

when d = (2 + w)/4 and r = {\e2ni0) - \\/\e*Kie - ID1/3, we get

= 1 + \e2lcio> - U

= 1 + \e2ni(O — 1 U(
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This completes the construction of our example.
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