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CHARACTERISATIONS FOR ANALYTIC FUNCTIONS
OF BOUNDED MEAN OSCILLATION

JlE MlAO

Let a > 0 and let / ' a '(z) be the ath fractional derivative of an analytic function
/ on the unit disc D. In this paper we show that / G BMOA if and only if
| / w ( z ) | ' (l - \z\i)3a~1 dA{z) is a Carleson measure and / g VMOA if and only

if / ' a ' (2) | (l — |z|') dA{z) is a vanishing Carleson measure, where A denotes
the normalised Lebesgue measure on D. Hence a significant extension of familiar
characterisations for analytic functions of bounded and vanishing mean oscillation
is obtained.

1. INTRODUCTION

Let D — {z: \z\ < 1}. The space of analytic functions on D of bounded mean

oscillation, denoted by BMOA, consists of all functions in H2 for which

/ 1 r2" , \ 1 / 2

8Up(;r/ | /MO)-/(*)| de) <°°>

where f\{z) = (z — A)/(l — Az) . BMOA is a Banach space under the norm given by

(i r2n • 2 V / 2

II/IIBMOA = l/(°)l + SUP (7T- / \f{vx(et)) - /(A)| de) .
XGD \*~ Jo /

VMOA, the subspace of BMOA, consists of all functions / in H2 for which

lim

It is well known that / £ BMOA if and only if

(1) sup ( / |/'(z)|2 ( l - \<px{z)\2)dA(z)) < oo,
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116 J. Miao [2]

and / G VMOA if and only if

(2) |A|lmo/ I/((Z)|2 i1 ~ \M')\3)dA(z) = 0,

where A denotes the normalised Lebesgue area measure on D. In other words, / £

BMOA if and only if |/ '(«)| (1 — \z\ )dA(z) is a Carleson measure on D, and / £

VMOA if and only if |/ '(«)| f 1 — \z\ jdA(z) is a vanishing Carleson measure on D.
The definitions of the Carleson measure and the vanishing Carleson measure can be
found in [1, 2, 3].

oo

In this paper we consider fractional derivatives. Let f(z) = £) onzn be analytic
n=0

on D and a > 0, the a t h fractional derivative of / is defined by

n = 0

and fia'{z) is analytic on D. We allow fractional derivatives of / to appear in place
of / ' in the integral on the left of (1) and (2). Hence a significant extension of the two
characterisations for BMOA and VMOA is obtained.

For our purpose let us recall the definition of the Bloch space. The Bloch space

B consists of all analytic functions on D for which sup (1 — \z\ ) |/'(.z)| < oo. B is a

Banach space under the norm given by

- sup II —

The little Bloch space Bo, a subspace of B, consists of all analytic functions on D for

which Km (l - |.z|2) \f'(z)\ - 0. It is known (see [5]) that BMOA is contained in

B and VMOA in Bo, and there is a constant C such that

Throughout this paper C denotes a positive constant, not necessarily the same at each
occurrence, it is independent of / and A.

2. EXTENSION OF CHARACTERISATIONS

Our main result is the following theorem.
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THEOREM. Let a > 0 and let f be an analytic function on D. Then

(I) / € BMOA if and only if

sup Q£ |/M(*)|2 (l - M 2 ) * " ^ ^ - |M*)|2)«*W) < °°-

(II) / G VMOA if and only if

8 ) * " 1 " 0 ( 2) = 0.

The proof of the theorem is based on three propositions. After these results are
established, the conclusions of the theorem are easy to obtain.

PROPOSITION 1. For an analytic function f on D the following two quantities
are equivalent:

W SD I/'WI2 (l " \M*)\2)dA{*) + (l - W

(ii) JD\fW{z)\2(l-\<px(z)\2)dA(z).

PROOF: A straightforward computation gives

(4) (A, z e D).

Let /(z) = Y, M n - Then f'{z) = ^ nanz
n~l and /W(z) = Y. {n + l)anz

n. Since
n=0 n=l n=0

1/(1 - Az) = Y, ̂ " z " . w e s e t

n = 0

and / ' (
n = 0

where bn — Y, (i + l)a«A and cn = Y
i+j=n i+j=n

shows that

TJ

n = 0

. Now Parseval's formula

(5)

and

(6)

- £ •
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We can suppose that A ^ 0. It is easy to see the equivalence for A = 0. It follows from

*»/*" = £ (i + l)oi/t that an/A" = (l/(n + l)) fan/A" - ^ / A " ' 1 ) for n ^ 1.
A=0 ^ '

Thus for n > 0 we have

n+l .

cn = A
n+l

n + 1 -r«+i 6;

Similarly for n ^ 2 we have

t = o

n + l

* \ A A
n—2

6o = oo and &i = 2Co +aoA. First we show that quantity (i) is dominated by quantity
(ii). By Holder's inequality it follows that

yn+l
A

•+2) r

Hence

oo , , ,2 c» . , .2 <x>
| » | | * |

\n=0 v '
0 0 11 |2

For the converse, we use the same method to get

1-; („+!)(„ +2)n = 0

00 1 ,2

This completes the proof of the proposition.
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REMARK. By Proposition 1 we actually have

(7) ll/llBMOA

and / 6 VMOA if and only if

(8) = 0.

The following result is a main step to prove the Theorem.

PROPOSITION 2 . Let f be an analytic function on D.

(i) If a >0 , then

(ii) If a > 1/2, then

If 0 < a < 1/2, tien

2 U -
-dA(z) ,

for all /3e(0, a).

PROOF: Let f(z) = g anz
n. Then fa\z) = g (r(n + 1 + a)/n\)anz

n. We set
n=0 n=0

and
n = 0

J. —
n = 0
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where dn = £) [T(i + 1 + a)/i!)ajA and 6n is the same as written in the proof of
»+;'=n

Proposition 1. It follows from (4) and Parseval's formula that

(9)

(l - M 2 ) 2 ^ ^ . ^ - \<px{z)\2)dA{z) = ( l - |A|2) f ; B(n + 1, 2a) \dn\
2 ,

71=0

where £ ( n + 1,2a) = 2 ̂  r 2 n ( l - r 2 ) 2 " Vdr- = (T(2a)T(n + l ) ) / r ( n + 1 + 2a) . We
can also suppose that A ̂  0. Then as in the proof of Proposition 1, for n ) l we have

on the other hand, for n ^ l we have

n—1 T-,/ .

( B

and do = F(l + a)6o • By Stirling's formula we know that F(n + 1 + a)/n\ « (n + l ) a ,

jB(n + 1, 2a) « (n + 1)~ a . Using this fact and Holder's inequality we get

/ n

(n + 1) |dn| + I 2 ,̂1
\i=0

c ((» + i)-2a+2 K|» + ( E (' + i)"172) ( g (*g
»=o
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thus

0 0 IL I2

\bn\

n=0x

c ( E („+1)-»- Mn|2+f; (i+i)-»-+i/» i*ia f;

n=0 n=0 t=0

f f
n=0 t'=0

" 2 a ^(n + 1) |dn| ^ G 2_^B(n + l,2a)\dn\ .
n=0 n=0

In view of (6) and (9), this proves (i) of the proposition.
To prove (ii), we treat the case a > 1/2 and a ^ 1/2 separately. Given a > 0, we

can choose a positive number j3 small enough such that a — /? > 1/2 for a > 1/2, and
a — j3 > 0 for 0 < a ^ 1/2. By the same reason we have

(10)

( n ., .'

V~^ , • . . \ a - 2 \"i\
2^(* + i) —7
i=0 1̂1 ,

C I (n •+• 1 \*a~^ \h I2 j . I \ | 2 n I \ "* (-" 1 1 \20~ 1 I [

( n
t I i \ — ll» I I l \ l ^ I 1 \"P L̂ ( ' 1 i \ \ ^ " —

i=0
The case a > 1/2 is easier:

n = 0

< C ( f ) (» + I)"2 |6n|
2 + £ (n + l)-2a+2^ E (i + !)»(

\n=0 n=0 i=0

= C (± (» + I)"2 |6n|
2 + £ (i + I)*""*- W1 E (n

\n=0 »=0 n=i

n=0

since —2a + 2)9 < — 1. The first part of (ii) is proved.
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For a ^ 1/2, the above method fails to work, so we need to modify the argument.
It is clear that we need only consider the following term:

i=o r*l

^ l \ \ 2 n / i -i\2P I V s / • i -i \2(a—J8)-S "t V"^ / • i 1 \2(a-/3)-3 P»

< |A| (n + 1) "I 2 ^ (* + l) 777^ + 2 ^ (t + 1) 777
\i=0 IAI i=[n/2] IAI

[»/2] n ,fe ,2

t=0 i=[n/2] IAI *

Hence

(11)

n=0

( oo [n/2](
£ (n + l)-
n=0 i=0

n = 0

/ \t=0 /

2t+l \

J (ra "̂ " 1) I
t=0 n=i /

oo oo \

( _ i 1 \2(a~P) IL |2 I \ "* t^ i T \~2 II |2 I

\ n=0 n=0 /

oo
where we used the fact that £) (n + I ) 7 |A|n ^ C(l — |A|)~7~ for 7 > —1 in the last

n=0
step. Again Parseval's formula and Stirling's formula show that

- w 2
(12) £ („

n = 0

Combining (10), (11) and (12) shows that the second part of (ii) holds. This completes
the proof. D

To give the third proposition, we need two lemmas.
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LEMMA 1 . Let f be an analytic function on D.

(i) HfeB, then sup (l - |*|2) |/M(z)| ^ C \\f\\B.

(ii) If f£ Bo, then lim ( l — j^|2) | / l l l (^) | = 0-

PROOF: Since f[1](z) = f(z) + zf'(z), we have

For / e B, we get

(l - \z\2) \f(z)\ = (l - \z\2) I jT" f(X)d\ + /(0)

\f(Q)\

^ II/IIB (1 - l*l2) !°s r ^ T + (1 - Nl2) 1/(0)1 •

Then statements (i) and (ii) follow at once from the above inequalities and the definitions
of the spaces B and Bo • U

LEMMA 2 . [4, p.291] If 7 > - 1 and m > I + 7 , tien for 0 < p < 1,

xl+7-m

PROPOSITION 3 . Let 0 < a ^ 1/2, 0 < 13 < a. and let f be an analytic
function on D.

(i) Iff£B,then

sup

2-2(cr-/9)
( l - I A I 2 ) ^ ^
i , ^ dA(z)^C||/||2B.

(ii) If f eB0) then

Urn
2 I "

= 0.
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PROOF: For / 6 B , using Lemmas 1 and 2, we have

1 - A Z

• / .

Thus statement (i) is proved.

If / £ Bo, according to Lemma 1 (ii), for any e > 0, we can choose a positive

number p sufficiently close to 1 such that (1 — \z\ 1 | /W(z) | < £ for p < \z\ < 1.

Then

| l - A 2 | 2

On the other hand,

C\\f\\l l
Now /J is fixed and if 1 — |A| is sufficiently small, then the last quantity can be less than

or equal to C ' | | / | | B e . Combining the above inequalities shows that (ii) holds. This

completes the proof of the proposition. U

PROOF OF THEOREM: By Proposition 2 (i), (7) and (8) it is easy to see that

the conditions in (I) and (II) are sufficient for containment in BMOA and VMOA,

respectively.

The necessity part of (I) follows immediately from Proposition 2 (ii), (7), Proposi-

tion 3 (i) and (3). The necessity part of (II) follows immediately from Proposition 2 (ii),

(8) and Proposition 3 (ii). This completes the proof. U

Finally, according to familiar characterisations of Carleson measures and vanishing
Carleson measures (see for example [1, Lemma 3.3, p.239]), we state our theorem as
the following corollary.
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COROLLARY. Let a > 0 and let f be an analytic function on D. Then

(I) / G BMOA if and only if \f[a](z)\2 (l - | z | 2 ) 2 a 1 dA(z) is a Carleson

measure on D.

(II) / 6 VMOA if and only if \f[ct](z)\2 (l - |« | 2 )2° *dA{z) is a vanishing

Carleson measure on D.

REFERENCES

[1] J.B. Garnett, Bounded analytic functions (Academic Press, New York, 1981).

[2] S.C. Power, 'Vanishing Carleson measures', Bull. London Math. Soc. 12 (1980), 207-210.
[3] D. Sarason, Function theory on the unit circle, Lecture Notes (Conference at Virginia

Polytechnic and State University, Blacksburg, Virginia, 1978).
[4] A.L. Shields and D.L. Williams, 'Bounded projections, duality and multipliers in spaces

of analytic functions', Trans. Amer. Math. Soc. 162 (1971), 287-302.
[5] K. Stroethoff, 'Besov-type characterisations for the Bloch space', Bull. Austral. Math.

Soc. 39 (1989), 405-420.

Department of Mathematics
Hangzhou University
Hangzhou, Zhejiang
People's Republic of China

https://doi.org/10.1017/S0004972700011722 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700011722

